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Over the past few years, hierarchical Bayesian models have been extensively used for modeling the joint spatial and temporal
dependence of big spatio-temporal data which commonly involves a large number of missing observations. This article
represented, assessed, and compared some recently proposed Bayesian and non-Bayesian models for predicting the daily
average particulate matter with a diameter of less than 10 (PM10) measured in Qatar during the years 2016–2019. The
disaggregating technique with a Markov chain Monte Carlo method with Gibbs sampler are used to handle the missing data.
Based on the obtained results, we conclude that the Gaussian predictive processes with autoregressive terms of the latent
underlying space-time process model is the best, compared with the Bayesian Gaussian processes and non-Bayesian
generalized additive models.

1. Introduction

Many of the environmental data contain different scales of
variability over space and time. For example, scientists from
environmental and public health sciences are typically inter-
ested in modeling the evolving process of the air pollution
during the time over specified locations. Such a stochastic
process is often high-dimensional, large, and complicated
with nonstationary structures, so the traditional statistical
methods are hampered by the need of advanced statistical
techniques to specify the spatio-temporal dependency. This
can be quite practical with modern computers with high-
level computational programming. The spatio-temporal
modeling of PM10 and PM2:5 (particulate matter with diam-
eters of less than 10 and 2.5 micrometers, respectively) is rap-
idly becoming an important component of most air quality
studies [1–3]. Particulate matter (also called particle pollu-
tion) is a mixture of solid particles and liquid droplets found
in the air as a result of dust, soot, dirt, smoke caused by road
transportation, and complex chemical reactions in the atmo-
sphere such as sulfur dioxide and nitrogen oxides. Exposure
to particle pollution is a public health hazard and can cause

acute and chronic heart and lung diseases [4]. The larger
the values of particulate matters (PM) are, the more harm
on short and long terms of public health is. World Health
Organization’s (WHO) air quality guidelines recommend
that the annual and 24-hour mean concentrations should
not, respectively, exceed 20 and 50 microgram per cubic
metre (μg/m3) for PM10, and 10 and 25μg/m3 for PM2.5.
Countries with fast-developed infrastructure such as Qatar
usually suffer from relatively high levels of PM air pollutant.
In this regard, the WHO classified the air quality in Qatar as
poor and unsafe. In this paper, we focus our attention on
modeling the PM10 in Qatar because the PM2.5 data is inac-
cessible. The most recent data indicates that country’s annual
average 24hr PM10 concentration levels were ranged from
126.69μg/m3 to 184.55μg/m3, which exceeds the recom-
mended maximum of 50μg/m3 [4–6].

Several authors have developed spatio-temporal models
for analyzing the ambient of air pollution. Research in this
field is back in dates to Cressie [7] and Goodall and Mardia
[8]. Cressie et al. [9] compared the performance of Markov-
random field with the familiar geestatistical approach in pre-
diction the PM10 concentrations around the city of
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Pittsburgh, United States of America. The authors did not
model the joint temporal and spatial structure of observa-
tions. They first modeled the purely spatial structure of
observations for one particular day, then they incorporated
the temporal component in their final statistical modeling.
Sun et al. [10] developed a spatial forecasting distribution
for unmeasured daily log PM10 average concentration given
from ten locations in Vancouver, Canada. At each monitor-
ing site, Sun et al. [10] showed that the autoregressive model
of order one (AR(1)) described quite well the daily log PM10
average values. The authors did not consider the Bayesian
models in their approach. Golam Kibria et al. [11] proposed
a multivariate spatial prediction methodology in a Bayesian
approach that is suited for spatio-temporal data observed
at a small set of ambient monitoring stations at successive
time points. They demonstrated the usefulness of their
approach by mapping PM2.5 at monitoring sites with differ-
ent start-up times in the city of Philadelphia, USA. Golam
Kibria et al. [11] did not compare the performance of their
model with other non-Bayesian models that are commonly
used in literature. Shaddick and Wakefield [12] and Sahu
and Mardia [13] used short-term spatio-temporal predictive
analysis for modeling the PM2.5 and PM10 concentration
levels. Zidek et al. [3] presented predictive distributions on
nonmonitored PM10 values in Vancouver, Canada. Smith
et al. [14] proposed a spatio-temporal model to predict the
weekly averages of particulate matter concentrations within
three southeastern states in the USA. Sahu et al. [15] mod-
eled the PM2.5 by combining the rural background and the
urban areas into one process. Cocchi et al. [1] developed a
hierarchical Bayesian model for the daily average PM10
values. Pollice and Lasinio [2] developed a Bayesian-based
kriging method for estimating the daily average PM10 con-
centration levels. Wikle et al. [16] provided an excellent
review of classical and Bayesian approaches for analyzing
spatio-temporal data. Although Taylor et al. [6], Ahmadi
et al. [5], and others have studied the relationship between
some environmental conditions and particulate matter levels
assessing the air quality based on particulate matter levels in
different locations in Qatar, they did not study the spatio-
temporal variability of PM10. The main objective of this
research is to develop space-time models for daily PM10 air
pollution levels in Qatar for the four years, 2016-2019 compar-
ing the hierarchical Bayesian approach with other spatio-
temporal recent methods. We develop spatial interpolation
and forecasting model using iterative Markov chain Monte
Carlo (MCMC) computation setup which is an effective
method for modeling a data with large number of missing
values [17]. To the best of our knowledge, this will be the first
study in Qatar, and we hope that this research will be helpful
to protect the environment and public health in Qatar.

The rest of this article is organized as follows: Section 2
provides a brief review of two-stage hierarchical Bayesian
models that have been used for modeling spatio-temporal
data. A numerical example is given in Section 3 to demon-
strate that the Bayesian approach accurately predicts the
daily average PM10 values with a large number of missing
values comparing with non-Bayesian models. Finally, a con-
clusion is given in Section 4.

2. Hierarchical Spatio-Temporal Model

When data is collected at different points in space and time,
we should use a model that can, simultaneously, describe the
dependency structure coming from the three sources of var-
iations: time variation, space variation, and joint variability
between time and space. Such a model is called a space-
time model (or spatio-temporal model, where spatio refers
to space and temporal refers to time).

In this article, we develop hierarchical models to pre-
dict the daily PM10 concentration levels which vary over
time and locations. The PM10 concentration levels do not
often follow the normal distribution. Thus, we usually model
these values on the square-root scale or we use the log-
transformation to stabilize the variance and enforce normal-
ity and to stabilize the variance [18]. We consider the square-
root scale to alleviate the departure from normality in our
research data.

Let ℓ and t denote the two units of time where ℓ = 1,⋯, r
represents the longer unit (e.g., year), and t = 1,⋯, Tℓ repre-
sents the shorter unit (e.g., day). Let Zℓðs, tÞ denote the
observed value of the PM10 concentration, after any neces-
sary transformation, at a given location s and over a given
discrete time t. We assume that the spatial location s is a
two-dimensional vector describing the latitude-longitude
(or equivalently northing and easting coordinates), and the
time unit is typically hour, day, month, or year. We also
assume that the Zℓðs, tÞ is observed at n monitoring sites
denoted by si, i = 1,⋯, n and at time points denoted by
two indices ℓ and t so that the total number of observations
is denoted by N = n∑r

ℓ=1Tℓ. In this article, we denote all the
missing data by z⋆, whereas all the observed data will be
denoted by z.

The first stage of the hierarchy assumes that the observed
values Zℓt , where Zℓt = ðZℓðs1, tÞ,⋯,Zℓðsn, tÞÞ′, can be
decomposed into a true (latent) spatio-temporal process
Yℓt = ðY ℓðs1, tÞ,⋯,Yℓðsn, tÞÞ′ with an error term εℓt =
ðεℓðs1, tÞ,⋯,εℓðsn, tÞÞ′. More specifically, the data (or mea-
surement error) model in the first stage of the hierarchy is

Zℓt = Yℓt + εℓt , ℓ = 1,⋯, r, t = 1,⋯, Tℓ: ð1Þ

The error term εℓt is assumed to be a Gaussian white
noise process with mean zero and constant variance σ2

ε ,
which is often called the nugget effect absorbing microscale
variability.

The second stage assumes that the true process Yℓt has a
systematic mean μℓt and a spatio-temporal error term. The
mean can be modeled based on the past values of the unob-
served variable or/and based on some relevant covariates.
Typically, Yℓt can be specified in the following formula:

Yℓt = μℓt + ηℓt , ð2Þ

where ηℓt = ðηℓðs1, tÞ,⋯,ηℓðsn, tÞÞ′ is an spatio-temporal
residual random intercept assumed to follow N ð0, CÞ, where
C = σ2ηH η, σ

2
η is the site invariant spatial variance, andH η is

the spatial correlation matrix. In this article, we consider
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four modelings for fηℓtg. The first one assumes that the ran-
dom effects, ηℓðsi, tÞ = 0, for all locations si and times t. This
implies that the model in (1)–(2) will be the simple regres-
sion model. The other models for fηℓtg are assumed to be
Gaussian process, independent over the time, which is spec-
ified in Sections 2.1, 2.2, 2.3, and 2.4.

2.1. Matérn Spatio-Temporal Covariance Function. For
spatio-temporal modeling, we usually assume that the ran-
dom effects process is a weakly stationary Gaussian with a
zero mean and a valid isotropic covariance function. A valid
covariance function implied that the covariance matrix is
positive definite, and isotropic means that the separation
vector between the two locations only depends on the dis-
tance and not on the direction. The class of the spatio-
temporal covariance functions can be separable, product-
sum, metric, and sum-metric [19]. In this paper, we use
the separable covariance model which is simply the product
of the pure spatial covariance function, CsðhÞ, by the pure
temporal one, CtðuÞ, given by

C h, uð Þ = Cs hð ÞCt uð Þ, ð3Þ

where h = ks − s′k is the separating spatial distance, and
u = jt − t ′j is the temporal distance for any pair of points
ðs, tÞ × ðs′, t ′Þ in the spatial and temporal study domain.

The Matérn family provides a general choice of covari-
ance functions. For each time t, the Matérn covariance is
given by:

C w s, tð Þ,w s′, t
� �� �

=
σ2η

2κ−1Γ κð Þ 2
ffiffiffi
κ

p
s − s′
�� ��ϕ� �κ

Kκ

� 2
ffiffiffi
κ

p
2
ffiffiffi
κ

p
s − s′
�� ��ϕ� �

ϕ
� �

, ϕ > 0, κ ≥ 1,

ð4Þ

where Kκð·Þ is the modified Bessel function of second kind of
order κ which is a parameter controlling the smoothness of
the realized random field [20], ΓðκÞ is the standard gamma
function, and ϕ is a parameter which controls the decay rate
in the correlation as the distance h increases. Popular special
cases of Matérn model are (i) κ = 0:5 leads to exponential
covariance function CðhÞ = σ2η exp ð−ϕhÞ and (ii) Gaussian

model, CðhÞ = σ2η exp ð−ϕ2h2Þ when κ⟶∞.

2.2. Gaussian Process Model Specification. Consider μℓt =
Xℓtβ in (2), where ℓ = 1,⋯, r, t = 1,⋯, Tℓ, Xℓt is the n ×
ðk + 1Þ design matrix of spatially and temporally varying k
-covariates and β = ðβ0, β1,⋯,βkÞ′ is the k + 1-dimensional
vector of regression coefficients. Thus, the Gaussian process
(GP) two-stage model can be written as

Zℓt = Yℓt + εℓt ,
Yℓt =Xℓtβ + ηℓt:

ð5Þ

We assume that the random effect process fηð·Þg is inde-
pendent from the white noise process fεð·Þg. Note that some
of the covariates may vary spatially and not temporally or
vice versa.

One advantage of using Bayesian model is that we can
use it to handle any missing data. This can be done by using
the Markov chain Monte Carlo, MCMC, computation where
the missing data is simulated from the N ðYℓt , σ2

εÞ distribu-
tion defined by (5) at each MCMC iteration using Gibbs
sampling. The Gibbs sampler requires that the full condi-
tional distributions of the parameters θ = ðβ, σ2

ε , σ2η, ϕ, κÞ
are given in a closed form.

The logarithm of the joint posterior distribution of the
missing data and the parameters in this case is given by:

log p θ, Y, z⋆ ∣ zð Þ

∝−
N
2 log σ2ε −

1
2σ2ε

〠
r

ℓ=1
〠
Tℓ

t=1
Zℓt − Yℓtð Þ′ Zℓt − Yℓtð Þ

−
1
2〠

r

ℓ=1
Tℓ log σ2ηH η

��� ��� − 1
2σ2η

〠
r

ℓ=1
〠
Tℓ

t=1

� Yℓt −Xℓtβð Þ′H−1
η Yℓt −Xℓtβð Þ + log p θð Þ,

ð6Þ

where pðθÞ is the prior distribution [21] and we refer the
readers to Bakar and Sahu ([21], Appendix A) to obtain the
Gibbs sampling using the full conditional distributions of θ.

2.3. Autoregressive Model Specification. The autoregressive
process (AR) model in Equations (1) and (2) can be written
in the hierarchical form (e.g., [18] model) as follows:

Zℓt = Yℓt + εℓt ,
Yℓt = ρYℓt−1 +Xℓtβ + ηℓt ,

ð7Þ

where −1 < ρ < 1 is parameter of the first-order autoregres-
sive model and μℓ = ρYℓt−1 +Xℓtβ. Note that if ρ = 0, we
get the GP model given by (5). Also, note that the autore-
gressive model requires to specify an independent spatial
model with initial values of Yℓ0 for each ℓ = 1,⋯, r, with
mean μℓ and covariance σ2

ℓH 0 obtained from the Matérn
covariance function in (4) with the same set of parameters.
In this case, logarithm of the joint posterior distribution of
the missing data and the parameters in this case is given by:

log p θ, Y, z⋆ ∣ zð Þ

∝−
N
2 log σ2ε −

1
2σ2

ε

〠
r
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〠
Tℓ
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1
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2σ2

η

〠
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〠
Tℓ

t=1
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−
1
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log σ2
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1
σ2ℓ
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0

� Yℓ0 − μℓð Þ + log p θð Þ,

ð8Þ
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where pðθÞ is the prior distribution for the parameter θ =
ðβ, ρ, σ2ε , σ2η, ϕ, κ, μℓ, σ2ℓÞ ([21], see Appendix B).

2.4. Gaussian Predictive Processes with Autoregressive Model
Specification. We now introduce the case that the process
fηℓtg in (2) has a nonstationary covariance structure. We

follow Sahu and Mukhopadhyay [22] by choosing the
integerm out of the sample prediction performance (crossva-
lidation) to get a smaller number of locations (denoted by
knot), S⋆m = ðs⋆1 ,⋯,s⋆mÞ′. Given S⋆m, we assume that η⋆ℓ =
ðηℓðs⋆1 , tÞ,⋯,ηℓðs⋆m, tÞÞ′ is a Gaussian process with zero mean
vector and covariance function given in (4). Thus, the non-
stationary model is defined after replacing ηℓðsi, tÞ in (2) by

~η si, tð Þ = E η si, tð Þ ∣ η⋆t½ �, i = 1,⋯, n, ð9Þ

hence, ðηℓt , η⋆ℓtÞ is a vector of n +m-independent realization
at each time point ℓ and t with the same Gaussian process
in (4). Define ~ηℓ = ð~ηℓðs1, tÞ,⋯,~ηℓðsn, tÞÞ′, we have

~ηt = C⋆ ϕ, κð ÞH−1
η⋆ ϕ, κð Þη⋆t , ð10Þ

Table 1: Summary statistics of the daily PM10 pollutant measured in μg/m3, temperature (denoted by Temp) measured in degree Celsius,
and relative humidity (RH) obtained by air pointer and the meteorological station at Qatar University site. n and SD stand for sample size
and standard deviation, respectively. The % n.a. denotes the percentage of missing values in the data.

Year n % n.a. Min Max Median Mean SD

PM10

2016 348 4.92 18.35 659.49 76.95 102.63 89.23

2017 257 2.28 66.22 1379.13 103.15 154.60 157.84

2018 080 52.66 25.89 551.51 63.03 80.67 68.90

2019 201 15.90 37.87 1542.57 72.29 117.46 157.24

Overall 886 10.96 18.35 1542.57 83.35 119.09 104.68

Temp

2016 363 0.82 8.76 39.08 28.32 27.85 6.89

2017 221 15.97 10.86 41.67 33.10 29.77 7.67

2018 134 20.71 18.57 37.63 28.66 28.62 4.32

2019 126 47.28 22.28 40.28 33.75 32.37 5.12

Overall 844 8.70 8.76 41.67 31.40 29.14 6.30

RH

2016 363 0.82 15.13 92.77 56.34 53.67 18.31

2017 221 15.97 18.16 86.94 52.12 50.57 16.74

2018 134 20.71 23.40 89.05 57.74 55.19 16.86

2019 126 47.28 20.83 80.29 46.40 48.39 15.99

Overall 844 8.70 15.13 92.77 50.81 52.31 16.66

Qatar University

Abu Samra

Al Khor

Al Ruwais

Al Wakrah
Doha Airport

Dukhan

Mukenis−Al Karanaah
Umm Said
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Figure 1: A map of the state of Qatar showing locations of the 9
monitoring sites.

Table 2: Summary statistics of the available temperature in Celsius,
and relative humidity measured at 9 monitoring sites in Qatar; SD
stands for standard deviation.

Year Min Max Median Mean SD

Temp

2016 16.50 38.00 27.65 27.48 6.57

2017 16.30 37.90 29.70 27.90 6.99

2018 16.40 37.80 28.90 28.21 6.44

2019 18.80 37.60 28.50 28.00 6.42

Overall 16.30 38.00 28.30 27.90 6.59

RH

2016 25.00 74.00 57.50 55.28 11.74

2017 23.00 74.00 57.00 53.92 11.27

2018 24.00 73.00 54.00 52.72 11.70

2019 27.00 69.00 56.00 54.16 10.33

Overall 23.00 74.00 56.00 54.02 11.27
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where C⋆ðϕ, κÞ is the n ×m crosscorrelation matrix between
ηt and η⋆t having elements ½C⋆�ij = Cðksi − s⋆j kÞ, i = 1,⋯, n
and j = 1,⋯,m, and H η⋆ðϕ, κÞ is the m ×m correlation
matrix of η⋆t so that ½H η⋆ �ij = ½Cðks⋆k − s⋆j k ; ϕ, κÞ�, for k, j =
1,⋯,m. Clearly, the process f~ηℓtg shows nonstationary
structure with variance function that is given by

Var ~ηtð Þ = C⋆ ϕ, κð ÞH−1
η⋆ ϕ, κð ÞC⋆′ ϕ, κð Þ: ð11Þ

The advantage of using the nonstationary model in (10)
is the flexibility in the ~ηt surface which is based onm≪ n lin-
ear functions of η⋆t . When m is very small compared with n,
this will lead to reduce the computational burden, especially
for big data which is usually the case of the spatio-temporal
data. Moreover, using nonstationary models usually provides
more accurate results in prediction the nonstationary PM10
process. We specify the hierarchical Gaussian predictive pro-
cesses (GPP) as follows:

Zℓt = Yℓt + εℓt ,
Yℓt =Xℓtβ + ~ηℓt ,

ð12Þ

where ~ηℓt is given in (10). The process fη⋆ℓtg, at the S⋆m knots,
can be modeled according to the autoregressive model

η⋆ℓt = ρη⋆ℓt−1 + ηℓt , ð13Þ

where η⋆ℓt ~N mð0, Ση⋆Þ for ℓ = 1,⋯, r, t = 1,⋯, Tℓ and Ση⋆

= σ2ηH η⋆ . We assume that the initial conditions η⋆ℓ0 has nor-

mal distribution with mean zero and covariance matrix Σ0 =
σ2
ℓH 0, and both Ση⋆ , Σ0 can be obtained from the Matérn

covariance function defined in (4), where Ση⋆ is an m ×m
matrix much lower dimensional than Ση of dimension n × n.

In this case, logarithm of the joint posterior distribution of
the missing data and the parameters in this case is given by:

log p θ, Y, z⋆ ∣ zð Þ

∝−
N
2 log σ2ε −

1
2σ2ε

〠
r

ℓ=1
〠
Tℓ

t=1
Zℓt − Yℓtð Þ′ Zℓt − Yℓtð Þ

−
mN
2 log σ2η

� �
−
N
2 log Hη⋆

�� ��� �
−
m
2 〠

r

ℓ=1
log σ2ℓ
� �

−
r
2 log H 0j jð Þ

−
1
2σ2η

〠
r

ℓ=1
〠
Tℓ

t=1
η⋆ℓt − ρη⋆ℓt−1ð Þ′H−1

η⋆ η⋆ℓt − ρη⋆ℓt−1ð Þ

−
1
2〠

r

ℓ=1

1
σ2
ℓ
η⋆′ℓ0H

−1
0 η⋆ℓ0 + log p θð Þ,

ð14Þ

where pðθÞ is the prior distribution for the parameter θ =
ðβ, ρ, σ2

ε , σ2
η⋆ , ϕ, κ, σ2ℓÞ and the Gibbs sampling procedure

of these parameters can be obtained from the full condi-
tional distributions required provided in the Appendix.

Dukhan Mukenis Al Karanaah Umm Said

Al Ruwais Al Wakrah Doha Airport

Qatar University Abu Samra Al Khor
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Figure 2: Daily PM10 concentrations observed in nine locations over the years 2016-2021.
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3. Numerical Example

3.1. Data Description. The data used in this article is
obtained from three different sources. The first one was col-
lected by the air pointer and the meteorological station and
is managed by the Environmental Science Center at Qatar
University over the years 2016-2019. It has hourly pollutant
including PM10 measured in μg/m3, temperature, Temp,
measured in degree Celsius, and relative humidity, RH, with
several missing values.

First, we sort the data into an ascending order by date,
and then, we impute the missing values of the PM10 by aver-
aging the two nonmissing values before and after this miss-
ing value. When two or more successive missing values exist,
we impute them by the corresponding monthly average. We
do the same for the hourly missing values of temperature
and relative humidity. After that, we aggregate the hourly
data into daily data for which we fit our models. The
amended data from this resource is irregular time series
which started on the fourth of January 2016 and ended on
the twenty-eighth of August 2019. Table 1 provides a sum-
mary statistics of this data. Results suggest that the PM10
levels increased during the time, and the majority of missing

observations (with more than 52%) have been occurred dur-
ing the year 2018.

The second source of the data was the regular monthly
observations obtained from nine meteorological stations over
the years 2016-2019. The total number of observations is 432
where the stations are located in the following sites: Qatar Uni-
versity, Abu Samra, Al Khor, Al Ruwais, Al Wakrah, Doha
Airport, Dukhan, Mukenis-Al Karanaah, and Umm Said.
Figure 1 shows the map locations of 9 meteorological sites.
Although this data provides the monthly average values of
temperature in degree Celsius and relative humidity (RH), it
does not include measures for any type of pollutant. Table 2
summarizes the descriptive statistics of this data. We use this
data to interpolate the daily temperature and relative humidity
by disaggregating technique at each location. We also use our
own portable devices to collect daily PM10 values, as a third
source of data, over the period of time from November 5th
to December 31th of 2020 close to these sites. We use these
devices to collect and simulate more daily PM10 concentra-
tions over the aforementioned locations. In particular, we
recorded the average of the PM10 taken randomly in the
morning and evening of each day over this period. Then, we
use this collected data to simulate a new data in each location.

0

200

400

600

2016 2017 2018 2019
Daily average of PM10 pollutant by year

 P
M

10

0

200

400

600

Qatar University Abu Samra Al Khor Al Ruwais Al Wakrah Doha Airport Dukhan Mukenis Al Karanaah Umm Said
Daily average of PM10 pollutant by site

 P
M

10

Figure 3: Boxplots of daily average of PM10 concentrations over the years 2016-2019 and by 9 locations in Qatar showing the quartiles; the
whiskers show the farthest observation from the median.
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Finally, we merge the simulated data with the previous one
and obtained the data that we use in this article.

The final data has 1037 observations (see Figure 2)
which has three variables (PM10, temperature, and relative
humidity) measured over irregular time over the years
2016-2020 in nine spatial locations.

The top panel in Figure 3 shows the distribution of the
daily average PM10 concentrations over the years 2016-
2020, whereas the bottom one in the same figure shows these
averages by the nine sites. Clearly that the distribution of the
PM10 concentrations, in all locations, are right skewed with
very high extreme values. Thus, to stabilize the variance
and reduce the departure from normality, we transform
the original scale to square root scale.

3.2. Parameter Estimates, Model Validations, Prediction, and
Comparison Results. The main objective of this research is to
develop a hierarchical Bayesian model that can be used to

select and validate the best model which fits the daily average
of the PM10 air pollutant levels over different locations in
Qatar. We consider the two covariates, temperature and rel-
ative humidity, for spatial interpolation of the PM10 concen-
tration at a new location and any time.

First, we use the MCMC algorithm with Gibbs sampler,
based on 5,000 iterations discarding the first 1,000 values,
to impute the missing data z⋆ as explained in Appendix,
and then, we utilize this data to predict the values of Zðs′,
tÞ at new location s′ ∉ fs1,⋯,sng. The posterior predictive
distribution is

p z s′, t
� �

∣ z
� �

=
ð
p z s′, t
� �

∣ S⋆m, η⋆, θ, z
� �

� p S⋆m, η⋆, θ ∣ zð ÞdS⋆mdη⋆dθ,
ð15Þ

where θ = ðρ, σ2ε , σ2
η, ϕÞ′ are the model parameters and η⋆

= ðη⋆1 ,⋯,η⋆nÞ′ (see [17]). We fit the Bayesian GP, AR, and
GPP models described in Section 2 using the spTimer pack-
age [21, 23] and compare these models with the non-
Bayesian generalized additive model (GAM) using the R
package mgcv [24–26]. We use the crossvalidation method
to evaluate the predictive performance of these models.
Here, data at locations ðs1,⋯,smÞ where m < n are used to
fit the model while data at other sites ðsm+1,⋯,snÞ are used

Table 3: Posterior estimates and 95% credible interval for the parameters of the AR, GP, and GPP models fitted for PM10 concentration
levels. SD stands for standard deviation.

Models Parameters Mean Median SD 95% credible interval

AR

β0 1.3521 1.3519 0.0206 (1.3115, 1.3934)

Temp 0.0001 0.0001 0.0004 (-0.0007, 0.0009)

RH 0.0000 0.0000 0.0002 (-0.0004, 0.0003)

ρ 0.0160 0.0145 0.0267 (-0.0328, 0.0734)

σ2ε 0.0209 0.0208 0.0007 (0.0199, 0.0226)

σ2η 0.0124 0.0123 0.0009 (0.0107, 0.0144)

ϕ 0.0168 0.0168 0.0000 (0.0168, 0.0168)

GP

β0 12.1303 12.4378 1.1060 (9.7744, 13.5797)

Temp -0.0173 -0.0267 0.0334 (-0.0590, 0.0538)

RH -0.0153 -0.0163 0.0041 (-0.0209, -0.0062)

σ2ε 0.0052 0.0052 0.0001 (0.0050, 0.0054)

σ2η 15.2262 12.8393 7.9727 (6.6616, 35.1414)

ϕ 0.0032 0.0027 0.0018 (0.0011, 0.0069)

GPP

β0 0.4792 0.4784 0.0692 (0.3425, 0.6131)

Temp -0.0028 -0.0028 0.0013 (-0.0053, -0.0003)

RH -0.0013 -0.0013 0.0003 (-0.0018, -0.0007)

ρ 0.9704 0.9704 0.0025 (0.9654, 0.9754)

σ2ε 0.0052 0.0052 0.0001 (0.0050, 0.0054)

σ2η 1.7450 1.7453 0.0256 (1.6955, 1.7954)

ϕ 0.0010 0.0010 0.0000 (0.0010, 0.0010)

Table 4: Validation statistics for the GP, AR, and GAM models.

Models MSE MAE MAPE rBIAS rMSEP

Non-Bayesian
GAM 991.04 79.95 122.43 0.557 0.773

AR 360.15 36.37 46.53 0.337 0.342

Spatio-temporal
GP 332.82 36.61 48.379 0.339 0.316

GPP 202.04 16.61 28.351 0.103 0.096
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Figure 4: Time series plots of the true (blue) and fitted values (green) at one randomly chosen location (Qatar University).
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Figure 5: Spatially interpolated plots of the daily average of PM10 concentration levels (a) and their standard deviations (b) obtained from
the AR model for the 29th of March 2018 (top graphs) and 15 May of 2019 (bottom graphs). Actual values and associated locations are
superimposed in plots, respectively.
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to assess the model using the mean squared error (MSE),
mean absolute error (MAE), mean absolute prediction error
(MAPE), relative bias (rBIAS), and relative mean separation
(rMSEP) defined, respectively, as follows:

MSE = 1
N
〠
N

i=1
zi − ẑið Þ2,

MAE = 1
N
〠
N

i=1
zi − ẑij j,

MAPE = 1
N
〠
N

i=1

zi − ẑið Þ
zi

����
����,

rBIAS = 1
N
〠
N

i=1

zi − ẑið Þ
�z

,

rMSEP = 1
N
〠
N

i=1

zi − ẑið Þ2
�̂z − zi
� � ,

ð16Þ

where N is the total number of nonmissing observations, ẑi
is the posterior predictive value of zi, and �z, �̂z − zi are the
arithmetic means of zi, ẑi for i = 1,⋯,N .

Specifically, we use the data from Abu-Samra and Doha
airport stations with 2 × 1037 = 2074 observations for valida-
tion purposes. The data from the remaining six stations with
7 × 1037 = 7259 total number of observations are used for
model fitting (see Figure 1). The parameter estimates (poste-
rior) for the Bayesian spatio-temporal models are given in
Table 3. The 95% credible intervals for the parameters sug-
gest that most of regression parameters for the AR and GP
models are statistically significant, whereas the GPP model
suggest that the variables are significant. In all models, the
nugget effect σ2ε is small. On the other hand, the spatial
decay parameter ϕ = 0:0033 for GP model and ϕ = 0:001
for GPP model suggesting that the effective ranges will
approximately be 909 and 3000 kilometers, respectively.
These two values are unusual associated with very large spa-
tial variance values (σ2

η) suggesting that the PM10 concentra-
tions in Qatar are not significantly different over the space.

After fitting the three models, we perform the crossvali-
dation and select the best one. Table 4 summarized the val-
idation statistics for the GAM, GP, and AR models. Clearly,
the MSE, MAE, MAPE, rBIAS, and rMSEP are smaller for
the Bayesian spatio-temporal methods providing better pre-
dictive performance compared to the non-Bayesian additive
model. For example, the Bayesian AP, GP, and GPP models
reduced the MSE by about 63.7%, 66.4%, and 79.6%, respec-
tively, compared with the non-Bayesian GAM model. We
conclude from this table that the Bayesian spatio-temporal
GPP model is the best model that can be used to predict
the PM10 concentrations.

Figure 4 shows the time series plot of the true and
fitted values for Qatar University location using the GPP
model. We clearly see that the fitted values are very close
to the true values. To further demonstrate the usefulness
of the spatio-temporal GPP model for predicting the linear

trend surfaces of the PM10 values with their standard values,
we illustrate a prediction map for the 29th of March 2018 and
15 May of 2019 over a one-kilometer square grid (see
Figure 5). Obviously, the graphs show that the GPP model
correctly represented the PM10 concentration level over the
space and time.

4. Conclusion

The potential of applying nonstationary hierarchical Bayes-
ian spatio-temporal models in PM10 prediction with a large
number of missing values is presented in this paper. The
predicting model is developed by comparing the Gaussian
predictive processes (GPP) with Gaussian processes (GP),
autoregressive (AR) Bayesian models, and non-Bayesian
generalized additive model (GAM) models using the data-
sets from the state of Qatar. The numerical results show that
the GPP model outperforms other alternative models pro-
viding forecasting with good accuracy and interpretability.
We applied the disaggregating technique and simulated a
daily spatio-temporal PM10 data using the available and col-
lected data. Then, we used the Markov chain Monte Carlo
with Gibbs sampler to impute the missing data in real col-
lected data. We believe that our statistical data analysis
approach will give similar results for future available real
data. In many applications, the support vector machine
(SVM) algorithm has shown a superior forecasting perfor-
mance compared with several evolutionary algorithms. This
could be an interesting possible extension to this article
where further research can be done by comparing the per-
formance of the SVM algorithms with Bayesian models in
predicting the daily average PM10 concentration levels.

Appendix

Full Conditional Distributions for
Gibbs Sampling

In order to fit the model, we use Gibbs sampling [27] by
repeatedly simulating the missing observations and parame-
ter models from the full conditional distribution:

(1) Sampling of missing valuesz⋆ from its conditional
distribution N ðxℓt′β + ~ηℓt , σ2

εÞ, ℓ = 1, 2,⋯, r, t = 1, 2,
⋯, Tℓ at each iteration

(2) Samplingσ2
ε, σ2

η and σ2
ℓ from the conditional Inverse

Gamma distribution so that

1
2
εσ

~ Γ
N
2 + a, b + 1

2〠
r

ℓ=1
〠
Tℓ

t=1
Zℓt − Yℓtð Þ′ Zℓt − Yℓtð Þ

 !
,

1
σ2η

~ Γ
mN
2 + a, b + 1

2〠
r

ℓ=1
〠
Tℓ

t=1
η⋆ℓt − ρη⋆ℓt−1ð Þ′Σ−1

η⋆ η⋆ℓt − ρη⋆ℓt−1ð Þ
 !

,

1
σ2ℓ

~ Γ
m
2 + a, b + η⋆′ℓ0H

−1
0 η⋆ℓ0
2

 !
, ℓ = 1,⋯, r:

ðA:1Þ
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(3) Sampling of0 < ρ < 1 from the full conditional dis-
tribution ρ ~N ðΛχ,ΛÞ where

Λ−1 = 〠
r

ℓ=1
〠
Tℓ

t=1
η⋆t−1′ Σ−1

η⋆ η
⋆
ℓt−1 + 10−4I, χ = 〠

r

ℓ=1
〠
Tℓ

t=1
η⋆t−1′ Σ−1

η⋆ η
⋆
ℓt , ðA:2Þ

where the sample values is restricted in the interval
ð0, 1Þ.

(4) Sampling of β from the full conditional distribution
β ~N ðΛχ,ΛÞ where

Λ−1 = 1
σ2ε

〠
r

ℓ=1
〠
T

i=1
Xℓt′Xℓt + 10−4I, χ = 1

σ2
ε

〠
r

ℓ=1
〠
T

i=1
Xℓt′ Zℓt − ~ηℓtð Þ:

ðA:3Þ

(5) Sampling of η⋆ℓt from the full conditional distribu-
tion η⋆ℓt ~N ðΛℓtχℓt ,ΛℓtÞ, where

For 1 ≤ t ≤ Tℓ − 1,

Λ−1
ℓt =

1
σ2ε

A′A + 1 + ρ2
� �

Σ−1
η⋆ ,

χℓt =
1
σ2ε

A′ Zℓt −Xℓtβð Þ + ρΣ−1
η⋆ η⋆ℓt−1 + η⋆ℓt+1f g:

ðA:4Þ

For t = Tℓ,

Λ−1
ℓt =

1
σ2ε

A′A + Σ−1
η⋆ , andχℓt =

1
σ2
ε

A′ Zℓt −Xℓtβð Þ + ρΣ−1
η⋆ η

⋆
ℓt−1,

ðA:5Þ

where A = C⋆H−1
η⋆ .

(6) Sampling of η⋆ℓ0 from the full conditional distribu-
tion η⋆ℓ0 ~N ðΛℓχℓ,ΛℓÞ, where

Λ−1
ℓ = ρ2Σ−1

η⋆ + Σ−1
0 , andχℓ = ρΣ−1

η⋆ η
⋆
ℓ1 + μℓΣ

−1
0 1m,
ðA:6Þ

where 1m is a unit vector of dimension m.

(7) Sampling ofϕ. The full conditional distribution of ϕ
is calculated based on Metropolis-Hastings algo-
rithm from the prior and likelihood terms involving
ϕ which is given by

log p ϕ ∣ ϕ −1ð Þ
� �n o

= −
1
2 H η⋆
�� �� − 1

2σ2η
〠
r

ℓ=1
〠
Tℓ

t=1
Yℓt − ϑℓtð Þ′

�H−1
η⋆ Yℓt − ϑℓtð Þ + log p ϕð Þð Þ,

ðA:7Þ

where ϑℓt =Xℓtβ + ~ηℓt and ϕð−1Þ denotes all the data
and parameters except for ϕ. We adopt the

Metropolis-Hastings algorithm to obtain the sample
from (A.7) by considering the proposal distribution
qðϕðpÞÞjϕðcÞÞ as the normal distribution on the log-
scale for ϕ with the mean at the current value ϕðcÞ

and the variance σ2p with an acceptance rate between
15% and 40% as suggested by Gelman et al. [28]. The
sample value ϕðpÞ is accepted with probability

α ϕ pð Þ, ϕ cð Þ
� �

=min 1,
p ϕ pð Þ ∣ ϕ −1ð Þ
� �

q ϕ cð Þ
� �

ϕ pð Þ�� �
p ϕ cð Þ ∣ ϕ −1ð Þ
� �

q ϕ pð Þ
� �

ϕ cð Þ�� �
8<
:

9=
;:

ðA:8Þ
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