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In this paper, we construct and analyze a theoretical, deterministic 5D mathematical model of Limnothrissa miodon with
nutrients, phytoplankton, zooplankton, and Hydrocynus vittatus predation. Local stability analysis results agree with the
numerical simulations in that the coexistence equilibrium is locally stable provided that certain conditions are satisfied. The
coexistence equilibrium is globally stable if certain conditions are met. Existence, stability, and direction of Hopf bifurcations
are derived for some parameters. Bifurcation analysis shows that the model undergoes Hopf bifurcation at the coexistence
point for the zooplankton growth rate with periodic doubling leading to chaos.

1. Introduction

Hydrocynus vittatus (Castelnau, 1861), also referred to as
tigerfish, is the major predator of Limnothrissa miodon
(Boulenger, 1906), also referred to as kapenta in Lake Kariba
[1]. It is therefore important to investigate mathematically
the role that tigerfish plays in the dynamics of Limnothrissa
miodon. This paper begins by formulating and analyzing a
deterministic Limnothrissa miodon model. The model has
5 classes, and these are as follows: concentration of nutrients,
population density of phytoplankton, zooplankton popula-
tion density, density of the Limnothrissa miodon population,
and population density of tigerfish. The densities in each
class are functions of time and are denoted by NðtÞ, PðtÞ,
ZðtÞ, LðtÞ, and RðtÞ, respectively. The model is analyzed to
determine the effect of predation on the population density
of Limnothrissa miodon using qualitative techniques.

Numerical simulations are done to illustrate the dynamics
of the Limnothrissa miodon model.

Mathematical modeling of the Limnothrissa miodon
model with tigerfish predation will give us an insight into
the dynamics of the kapenta fishery in Lake Kariba. A
deterministic model that involves nutrients, phytoplankton,
zooplankton, Limnothrissa miodon, and tigerfish has not
been formulated and analyzed. In this paper, we formulate
and analyze a deterministic, continuous, dynamical system
which consists of ordinary differential equations that
describe the dynamics of Limnothrissa miodon in the pres-
ence of nutrients, phytoplankton, and zooplankton and with
tigerfish predation. The Limnothrissa miodon model will
help in our understanding of the dynamics of the aquatic
ecosystem in the kapenta fishery in Lake Kariba.

The major predator in Lake Kariba is tigerfish [2, 3], and
after the introduction of Limnothrissa miodon into Lake
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Kariba, they became a major prey item for tigerfish. Since
kapenta inhabit deeper pelagic waters, tigerfish are now also
found in that habitat close to the surface. According to Bell-
Cross [4], the tigerfish is an efficient and extremely active
predator which preys on fish of up to 40% its length. A num-
ber of studies have been done to assess the diet of Hydrocynus
vittatus [5–8]. Results from the study by Mhlanga [7] showed
that Limnothrissa miodon is the dominant food item in the
diet of the piscivorous Hydrocynus vittatus. Stable isotope
analysis by Marufu et al. [8] showed that Limnothrissa miodon
is still the dominant food item consumed by tigerfish.
Mhlanga [9] obtained a natural, fishing, total mortality, and
exploitation rate of 0.66, 0.335, 0.995, and 0.337, respectively,
of tigerfish from the Bumi Basin of Lake Kariba and the
Ume River. Balon [10] obtained an instantaneous mortality
coefficient for the inshore tigerfish of 0.52, which was similar
to the one obtained by Langerman [11] of 0.58. Marshall
[12] obtained a correlation of r = 0:89 between the abundance
of Limnothrissa miodon and Hydrocynus vittatus. Takano and
Subramaniam [13] concluded in their study that tigerfish pre-
dation and increased fishing pressure are the major factors
contributing to the natural mortality of Limnothrissa miodon.

Pal and Chatterjee [14] showed the existence of Hopf
bifurcations for the phytoplankton growth rate, phytoplankton
carrying capacity, time delay, and fish mortality rate, in a
plankton-fish model. According to Raw et al. [15], a stable
interior point, period-one limit cycles, multiple-period cycles,
and chaotic attractors were observed for the zooplankton
growth rate bifurcation parameter in a plankton-fish model.
They suggested that chaos in plankton-fish dynamics is a result
of an excess of predation rate. A hopf bifurcation was observed
for the phytoplankton growth rate and harvesting effort [15].
Panja and Jana [16] investigated a plankton-fish model and
found that zooplankton consumption rate, fish harvesting rate,
and half saturation significantly alter the model stability
through a Hopf bifurcation as the parameters are varied.

Dynamical systems have not been used to understand
how tigerfish predation describes and influences the dynam-
ics of kapenta fish populations in Lake Kariba. By formulat-
ing a mathematical model and analyzing it, we will be able to
qualitatively explain the impact of predation on the levels of
kapenta fish. The qualitative behavior of the solutions of the
dynamical system is investigated for a set of parameters
through bifurcation analysis.

The remainder of this paper presents the materials and
methods which describe the study area, data collection in
Section 2; model formulation, positivity, and existence of
solutions in Section 3; equilibrium states and their stability
in Section 4; and bifurcation analysis in Section 5. Numer-
ical simulations are presented in Section 6, and concluding
remarks in Section 7.

2. Materials and Methods

2.1. Study Area. Lake Kariba (277 km long; about 5364 km 2

in surface area; 160 km3 capacity; 29m mean depth; and
120m maximum depth) is located in a tropical area with
seasonal rainfall on the Zambezi River between latitudes
1628′ to 1804′S and longitudes 2642′ to 2903′E [17] and was

formed by damming the Zambezi River at the Kariba gorge
in 1958 and was filled in 1963 [18]. Lake Kariba has an average
width of 19.4 km, although the widest portion is 40km, and is
486 m above sea level, and the shoreline is approximately
2164km [19]. The lake is almost equally shared by the two
riparian countries, Zambia and Zimbabwe, and its catchment
area covers 663817km2 extending over parts of Angola, Zam-
bia, Namibia, Botswana, and Zimbabwe [20]. The offshore
single-species pelagic kapenta fishery is highly mechanized
and performed by light attraction and lift nets from pontoon
rigs and is licence-controlled [21].

2.2. Data Collection. The data used in this study was
obtained from the Lake Kariba Fisheries Research Institute
(LKFRI) and the University of Zimbabwe Lake Kariba
Research Station (UZLKRS). The Lake Kariba Fisheries
Research Institute collects data on catch, effort in the exper-
imental gillnet, inshore artisanal, and offshore kapenta fish-
eries. The catch data is measured in metric tonnes (wet
weight), and fishing effort is the number of nights fished.
The CPUE is the kapenta catch that is landed by a boat after
a night of fishing and is measured in tonnes/boat/night. It is
an important parameter in fisheries management as it is an
indicator of fish abundance and economic performance of
the fishery [22]. The University of Zimbabwe Lake Kariba
Research Institute collects data on water quality of the lake.
Figure 1 shows the monthly average time series of kapenta
catch and tigerfish bycatch in tonnes in the Lake Kariba
kapenta fishery from 1974 to 2018.

The predator-prey relationship between the tigerfish and
kapenta is shown in Figure 1. From Figure 1, it is apparent
that the tigerfish bycatch and kapenta catch show cyclical
behavior and that the tigerfish bycatch generally tracks the
peaks in the kapenta catch.

3. Model Formulation

The model has 5 classes: N denoting the concentration of
nutrients, P is the population density of phytoplankton, Z
is the zooplankton population density, L is the density of
the Limnothrissa miodon population, and R is the density
of the Hydrocynus vittatus population. The densities in each
class are functions of time and are denoted by NðtÞ, PðtÞ,
ZðtÞLðtÞ, and RðtÞ, respectively. The Limnothrissa miodon
model [23] is developed to include predation by Hydrocynus
vittatus. It is assumed that nutrients enter the water body at
the rate a, where a > 0 is a constant and the nutrients are
depleted naturally at a constant rate μ0: The nutrients are
depleted by phytoplankton at a rate of σ1NP: The growth
rate of phytoplankton is γ1NP: It is assumed that the deple-
tion rate of phytoplankton caused by mortality is propor-
tional to P: Phytoplankton is depleted by zooplankton at a
rate σ2PZ: The depletion of phytoplankton per unit time
by zooplankton is given by σ2PZ and is the modified Hol-
ling’s type I response [24], which refers to the change in den-
sity of the phytoplankton per unit time per zooplankton as
the phytoplankton population density changes. The growth
rate of zooplankton is γ2PZ: It is assumed that the depletion
rate of zooplankton caused by mortality is proportional to Z:
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The functional response of zooplankton to the Limnothrissa
miodon given by σ3ZL is of the modified Holling’s type I
response, which refers to the change in density of the zoo-
plankton per unit time per Limnothrissa miodon as the zoo-
plankton population density changes. The growth rate of
Limnothrissa miodon is γ3ZL: It is assumed that the deple-
tion rate of Limnothrissa miodon caused by mortality is pro-
portional to L and its rate of depletion caused by crowding is
proportional to L2: Kapenta are harvested at a rate qEL,
where q is the catchability coefficient and E is the effort mea-
sured as boat nights. Tigerfish search and feed on kapenta;
therefore, we use Holling’s type II functional response. The
feeding rate saturates at the maximum feeding rate σ4. The
feeding rate is half maximal at L = d. The response f ðLÞ =
ðσ4L/d + LÞ [25] models the fact that the consumption of
kapenta is limited by satiation of tigerfish, handling time (kill-
ing and eating) and time spent hunting kapenta. The growth

rate of Limnothrissa miodon is γ4LR/d + L: The tigerfish are
harvested at a rate κηR, where κ is the catchability coefficient
and η is the effort. The nonlinear dynamical system is

dN
dt

= a − μ0N − σ1NP,

dP
dt = γ1NP − μ1P − σ2PZ,

dZ
dt

= γ2PZ − μ2Z − σ3ZL,

dL
dt

= γ3ZL − μ3L − σ30L
2 − qEL −

σ4LR
d + L

,

dR
dt

= γ4LR
d + L

− κηR − μ4R,
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Figure 1: Time series plot of kapenta and tigerfish catch.
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with initial condition

N 0ð Þ = ψ1 0ð Þ, P 0ð Þ = ψ2 0ð Þ,
Z 0ð Þ = ψ3 0ð Þ, L 0ð Þ = ψ4 0ð Þ,
R 0ð Þ = ψ5 0ð Þ, ψi 0ð Þ > 0, i = 1, 2, 3, 4, 5:

8>><
>>:

ð2Þ

and define

Ω = N , P, Z, L, Rð Þ ∈ℝ5 N ≥ 0, P ≥ 0, Z ≥ 0, L ≥ 0, R ≥ 0j� �
,

ð3Þ

to be the mathematically feasible region. The coefficient
σ30 is a positive constant for the crowding of the Limnothrissa
miodon population. σ1, σ2, σ3, σ4 are positive constants of
proportionality. The μi’s for i = 0, 1, 2, 3, 4 are the depletion
rate coefficients.

3.1. Positivity of Solutions. Model system (1) describes the
dynamics of an ecosystem and it is necessary to prove
that the concentrations of nutrients, and the densities of
phytoplankton, zooplankton, and kapenta are positive for
all time. For positive initial data for the ecosystem model
(1), we prove that the solutions will remain positive ∀t
≥ 0.

Theorem 1. Let the initial data be NðtÞ ≥ 0, PðtÞ ≥ 0, ZðtÞ
≥ 0, LðtÞ ≥ 0, RðtÞ ≥ 0. Then, solutions of NðtÞ, PðtÞ, ZðtÞ, L
ðtÞ, RðtÞ of system (1) are positive ∀t ≥ 0.

Proof. Considering the variable NðtÞ in ½0, T�, from the first
equation of model (1), it follows that

_N tð Þ ≥ −μ0N tð Þ − σ1N tð ÞP tð Þ,∀t ∈ 0, T½ �: ð4Þ

Hence, we obtain

N tð Þ ≥N 0ð Þ exp
ðt
0
−μ0 − σ1P sð Þð Þds ≥ 0,∀t ∈ 0, T½ �: ð5Þ

From the second equation of model (1), it follows that

_P tð Þ ≥ −μ1P tð Þ − σ2P tð ÞZ tð Þ,∀t ∈ 0, T½ �: ð6Þ

Direct integration of (6) results in

P tð Þ ≥ P 0ð Þ exp
ðt
0
−μ1 − σ2Z sð Þð Þds ≥ 0,∀t ∈ 0, T½ �: ð7Þ

From the third equation of model (1), it follows that

_Z tð Þ ≥ −μ2Z tð Þ − σ3Z tð ÞL tð Þ,∀t ∈ 0, T½ �: ð8Þ

Direct integration of (8) results in

Z tð Þ ≥ Z 0ð Þ exp
ðt
0
−μ2 − σ3L sð Þð Þds ≥ 0,∀t ∈ 0, T½ �: ð9Þ

Considering the variable LðtÞ in ½0, T�, from the fourth
equation of model (1), it follows that

_L tð Þ ≥ − μ3 + qE + σ30L tð Þ + σ4R tð Þ
d + L tð Þ

� �
L tð Þ,∀t ∈ 0, T½ �:

ð10Þ

Direct integration of (10) results in

L tð Þ ≥ L 0ð Þ exp −
ðt
0

μ3 + qE + σ30L sð Þ + σ4R sð Þ
d + L sð Þ

� �
ds

� �

≥ 0,∀t ∈ 0, T½ �:
ð11Þ

From the fifth equation of model (1), it follows that

_R tð Þ ≥ − μ4 + κηð ÞR tð Þ,∀t ∈ 0, T½ �: ð12Þ

Direct integration of (12) results in

R tð Þ ≥ R 0ð Þ exp − μ4 + κηð Þtð Þ ≥ 0,∀t ∈ 0, T½ �: ð13Þ

Therefore, the solutions of system (1) with initial condi-
tion (2) remains positive ∀t ≥ 0:

3.2. Existence of Solutions

Theorem 2. A solution of model system (1) is feasible.

Proof. It is necessary to show that system (1) is dissipative;
that is, all feasible solutions are uniformly bounded in Ω ⊂
ℝ5. Let fðNðtÞ, PðtÞ, ZðtÞ, LðtÞ, RðtÞÞ ∈ℝ5g be any solution
of system (1) with nonnegative initial conditions.

Let AðtÞ =NðtÞ + PðtÞ + ZðtÞ + LðtÞ + RðtÞ, then

dA
dt

= a − μ0N − σ1NP + γ1NP − μ1P − σ2PZ + γ2PZ − μ2Z

− σ3ZL + γ3ZL − μ3L − σ30L
2 − qEL −

σ4LR
d + L

+ γ4LR
d + L

− κηR − μ4R, = a − μ0N − μ1P − μ2Z − μ3 + qEð ÞL
− σ30L

2 − κηR − μ4R + γ1 − σ1ð ÞNP + γ2 − σ2ð ÞPZ
+ γ3 − σ3ð ÞZL + γ4 − σ4ð Þ LR

d + L
, ≤ a − μ0N − μ1P

− μ2Z − μ3 + qEð ÞL − κη + μ4ð ÞR, ≤ a − uA tð Þ,
ð14Þ

where u =min fðμ0, μ1, μ2, μ3 + qE, κη + μ4Þg. Thus,

dA tð Þ
dt

+ uA tð Þ ≤ a: ð15Þ

The solution to Equation (15) is

0 < A N , P, Z, L, Rð Þ ≤ a
u

1 − e−ut
� 	

+ A N0, P0, Z0, L0, R0ð Þe−ut ,
ð16Þ
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as t ⟶∞, (16) becomes

0 < A N , P, Z, L, Rð Þ ≤ a
u
: ð17Þ

Therefore, all solutions of the system (1) enter the feasi-
ble region,

Ω = N tð Þ, P tð Þ, Z tð Þ, L tð Þ, R tð Þð Þ ∈ℝ5
+ : A ≤

a
u
+ ς,∀ς > 0

n o
:

ð18Þ

This completes the proof of the theorem.

4. Equilibria and Stability Analysis

Model (1) has 6 equilibria:

(a) The trivial equilibrium is

E0 = 0, 0, 0, 0, 0ð Þ: ð19Þ

(b) The phytoplankton free equilibrium is

E1 = N∗
1 , 0, 0, 0, 0ð Þ = a

μ0
, 0, 0, 0, 0

� �
: ð20Þ

(c) The zooplankton free equilibrium is

E2 = N∗
2 , P∗

2 , 0, 0, 0ð Þ, = μ1
γ1

, aγ1 − μ1μ0
σ1μ1

, 0, 0, 0
� �

: ð21Þ

E2 is obtained when phytoplankton is taking part in the
ecosystem, and zooplankton and Limnothrissa miodon are
not taking part in the ecosystem. The phytoplankton popu-
lation is not enough to support the zooplankton population.
E2 exists provided that

aγ1 > μ1μ0: ð22Þ

Rearranging the inequality (22), we obtain ða/μ0Þ > ðμ1/
γ1Þ, and this means that N∗

1 >N∗
2 . The nutrients will reach

the value a/μ0 at equilibrium in the absence of phytoplank-
ton, which is reduced to the steady state value of μ1/γ1 in
the presence of phytoplankton.

(d) The Limnothrissa miodon free equilibrium is

E3 = N∗
3 , P∗

3 , Z∗
3 , 0, 0ð Þ,

E3 =
a

μ0 + σ1P
∗
3
, μ2
γ2

, γ1N
∗
3 − μ1
σ2

, 0, 0
� �

:
ð23Þ

The zooplankton population is insufficient to support
the population of Limnothrissa miodon. When the Limno-
thrissa miodon population is not present in the ecosystem
and both phytoplankton and zooplankton are present, E3 is
attained. E3 exists if N∗

3 > μ1/μ1, i.e. N∗
3 >N∗

2 . In order to
support the zooplankton population, more nutrients are
needed in the ecosystem. From (23),

E3 =
aγ2

γ2μ0 + μ2σ1
, μ2
γ2

, aγ1γ2 − μ1 γ2μ0 + μ2σ1ð Þ
σ2 γ2μ0 + μ2σ1ð Þ , 0, 0

� �
:

ð24Þ

E3 exists on condition that

aγ1 − μ0μ1
σ1μ1

> μ2
γ2

: ð25Þ

Inequality (25) can be rearranged to give P∗
2 > P∗

3 , mean-
ing that the phytoplankton equilibrium is reduced in the
presence of zooplankton.

(e) The tigerfish free equilibrium E4 = ðN∗
4 , P∗

4 , Z∗
4 , L∗4 , 0Þ

is obtained by solving the equations:

a − μ0N − σ1NP = 0, ð26Þ

ϕ1σ1N − μ1 − σ2Z = 0, ð27Þ
ϕ2σ2P − μ2 − σ3L = 0, ð28Þ

ϕ3σ3Z − μ3 − eq − σ30L = 0: ð29Þ
Solving for N , P, Z, and L in (26), (27), (28), and (29)

gives

σ1σ2σ3σ30 L∗4ð Þ2 + σ1σ2σ3 μ3 + eqð Þ + σ1σ2μ2σ30ð
+ μ0σ2γ2σ30 + μ1σ1σ3γ3ÞL∗4 + μ0μ1γ2γ3
+ μ1σ1μ2γ3 + μ0σ2γ2 μ3 + eqð Þ
+ σ1σ2μ2 μ3 + eqð Þ − aγ1γ2γ3 = 0:

ð30Þ

Equation (31) will have a unique positive root if the
expression (32) is positive,

L∗4 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 − 4σ1σ2σ3σ30A2

p
− A1

2σ1σ2σ3σ30
> 0, ð31Þ

where

A1 = σ1σ2σ3 μ3 + eqð Þ + σ1σ2μ2σ30 + μ0σ2γ2σ30 + μ1σ1σ3γ3,

A2 = μ0μ1γ2γ3 + μ1σ1μ2γ3 + μ0σ2γ2 μ3 + eqð Þ
+ σ1σ2μ2 μ3 + eqð Þ − aγ1γ2γ3:

ð32Þ

(31) can be written as

A2
1 − 4σ1σ2σ3σ30A2 > A2

1,
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σ1σ2σ3σ30A2 < 0,
σ1σ2σ3σ30ð Þ μ0μ1γ2γ3 + μ1σ1μ2γ3 + μ0σ2γ2 μ3 + eqð Þð
+ σ1σ2μ2 μ3 + eqð Þ − aγ1γ2γ3Þ < 0,

σ2 μ3 + eqð Þ μ0γ2 + σ1μ2ð Þ < γ3 aγ1γ2 − μ0μ1γ2 + μ1μ2σ1ð Þð Þ,
μ3 + eq
γ3

< aγ1γ2 − μ0μ1γ2 + μ1μ2σ1ð Þ
σ2 μ0γ2 + σ1μ2ð Þ ,

μ3 + eq
γ3

< Z∗
3 : ð33Þ

Therefore, L∗4 exists whenever

Z∗
3 >

μ3 + eq
γ3

: ð34Þ

The tigerfish free equilibrium is

N∗
4 =

μ3 + eqð Þσ1σ2σ3 − μ2σ1σ2σ30 − μ0σ2σ30γ2 + μ1σ1σ3γ3 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A3 + A2

4
p

2σ1σ3γ1γ3
,

P∗
4 =

− μ3 + eqð Þσ1σ2σ3 + μ2σ1σ2σ30 − μ0σ2σ30γ2 − μ1σ1σ3γ3 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A3 +A2

4
p

2σ1σ2σ30γ2
,

Z∗
4 =

μ3 + eqð Þσ1σ2σ3 − μ2σ1σ2σ30 − μ0σ2σ30γ2 − μ1σ1σ3γ3 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A3 + A2

4
p

2σ1σ2σ3γ3
,

L∗4 =
− μ3 + eqð Þσ1σ2σ3 − μ2σ1σ2σ30 − μ0σ2σ30γ2 − μ1σ1σ3γ3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A3 + A2

4
p

2σ1σ2σ3σ30
,

R∗
4 = 0,

ð35Þ

where

A3 = aσ1σ2σ3σ30γ1γ2γ3,
A4 = μ3 + eqð Þσ1σ2σ3 − σ2σ30 μ2σ1 + μ0γ2ð Þ + μ1σ1σ3γ3:

ð36Þ

From equation array (35), it follows that

N∗
4 =

μ3 + eqð Þσ1σ2σ3 − μ2σ1σ2σ30 − μ0σ2σ30γ2 + μ1σ1σ3γ3 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A3 + A2

4
p

2σ1σ3γ1γ3
,

P∗
4 =

γ1σ3γ3N
∗
4 − μ3 + eqð Þσ2σ3 + μ2σ2σ30 − μ1σ3γ3

σ2σ30γ2
,

Z∗
4 =

σ30γ2P
∗
4 + μ3 + eqð Þσ3 − μ2σ30

σ3γ3
,

L∗4 =
γ3Z

∗
4 − μ3 + eqð Þ

σ30
,

R∗
4 = 0:

ð37Þ

(f) The positive interior equilibrium of system (1) is the
one of biological interest. For some set of parameter
values, model (1) has a unique positive interior equi-
librium, E∗ = ðN∗, P∗, Z∗, L∗, R∗Þ which is obtained
by solving the equations:

a − μ0N − σ1NP = 0, ð38Þ

γ1N − μ1 − σ2Z = 0, ð39Þ
γ2P − μ2 − σ3L = 0, ð40Þ

γ3Z − μ3 − σ30L − qE −
σ4R
d + L

= 0, ð41Þ

γ4L
d + L

− κη − μ4 = 0: ð42Þ

Solving for N , P, Z, L, and R in (38), (39), (40), (41), and
(42) gives the positive interior equilibrium

Remark 3. For some given set of parameter values, the model
(1) has no equilibrium points.

Theorem 4. The trivial equilibrium is always stable.

Proof. The auxilliary equation of the jacobian matrix at E0 is

λ + μ0ð Þ λ + μ1ð Þ λ + μ2ð Þ κ + λ + μ4ð Þ eq + λ + μ3ð Þ = 0: ð44Þ

The eigenvalues of (44) are λ1 = −μ0, λ2 = −μ1, λ3 = −μ2,
λ4 = −κ − μ4, and λ5 = −eq − μ3. All the eigenvalues are
negative; therefore, E0 is stable.

N∗ = aγ2 −γ4 + κη + μ4ð Þ
γ2μ0 + μ2σ1ð Þ −γ4 + κη + μ4ð Þ − dσ1σ3 κη + μ4ð Þ ,

P∗ = μ2 − dσ3 κη + μ4ð Þ/−γ4 + κη + μ4
γ2

,

Z∗ = −γ4 + κη + μ4ð Þ aγ1γ2 − μ1 γ2μ0 + μ2σ1ð Þð Þ + dμ1 σ1σ3 κη + μ4ð Þ
σ2 γ2μ0 + μ2σ1ð Þ −γ4 + κη + μ4ð Þ − d σ1σ3 κη + μ4ð Þð Þ ,

L∗ = d κη + μ4ð Þ
γ4 − κη + μ4ð Þ ,

R∗ = γ4d γ2μ0 + μ2σ1ð Þ −γ4 + κη + μ4ð Þ − dσ1σ3 κη + μ4ð Þð Þ −γ4 + κη + μ4ð Þ γ3μ1 + σ2 eq + μ3ð Þð Þ − dσ2 σ30 κη + μ4ð Þð Þ − aγ1γ2γ3 −γ4 + κη + μ4ð Þ2� 	
σ2σ4 −γ4 + κη + μ4ð Þ2 γ2μ0 + μ2σ1ð Þ −γ4 + κη + μ4ð Þ − dσ1σ3 κη + μ4ð Þð Þ :

ð43Þ
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Theorem 5. The phytoplankton free equilibrium is locally
asymptotically stable if aγ1 < μ0μ1.

Proof. The auxilliary equation of the jacobian matrix at E1 is

λ + μ0ð Þ −λ + aγ1 − μ0μ1
μ0

� �
λ + μ2ð Þ λ + eq + μ3ð Þ

� λ + κ + μ4ð Þ = 0:
ð45Þ

The eigenvalues are λ1 = −μ0, λ2 = ðaγ1 − μ0μ1/μ0Þ, λ3 =
−μ2, λ4 = −eq − μ3, λ5 = −κ − μ4:E1 is asymptotically stable
if ða/μ0Þ < ðμ1/γ1Þ, meaning that N∗

1 <N∗
1 for stability of

E1.

Theorem 6. The zooplankton free equilibrium is locally
asymptotically stable if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2γ21 − 4aγ1μ

2
1 + 4μ0μ

3
1

p
> 0, ðγ2ða

γ1 − μ0μ1Þ/μ1σ1Þ < ðμ2/γ2Þ, and aγ1 > μ0μ1.

Proof. The auxilliary equation of the Jacobian matrix at E2 is

−κ − λ − μ4ð Þ −eq − λ − μ3ð Þ γ2 aγ1 − μ0μ1ð Þ/μ1σ1ð Þ − λ − μ2ð Þ
� aγ21λμ1σ1 + aγ21μ

2
1σ1 + γ1λ

2μ21σ1 − γ1μ0μ
3
1σ1

� 	
= 0:

ð46Þ

The eigenvalues are λ1 = −eq − μ3, λ2 = −κ − μ4, λ3 = ð
γ2ðaγ1 − μ0μ1Þ/μ1σ1Þ − μ2, λ4 = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2γ21 − 4aγ1μ21 + 4μ0μ31

p
− aγ1/2μ1 and λ5 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2γ21 − 4aγ1μ21 + 4μ0μ31

p
− aγ1/2μ1.

Hence, E2 is locally asymptotically stable ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2γ21 − 4aγ1μ21 + 4μ0μ31

p
> 0, ðγ2ðaγ1 − μ0μ1Þ/μ1σ1Þ < ðμ2/

γ2Þ, and aγ1 > μ0μ1:

Theorem 7. The Limnothrissa miodon free equilibrium is
locally asymptotically stable if the conditions in (50) are
satisfied.

Proof. The auxilliary equation of the jacobian matrix at E3 is

−κ − λ − μ4ð Þ −b1b2γ1λσ1 − b2b3γ2λσ2 − b2b3γ2μ0σ2ð
− b22b3γ2σ1σ2 − b2λ

2σ1 − λ3 − λ2μ0
	

� b3γ3 − eq − λ − μ3ð Þ = 0,
ð47Þ

where b1 = ðaγ2/γ2μ0 + μ2σ1Þ, b2 = μ2/γ2, and b3 = ðaγ1γ2 −
μ1ðγ2μ0 + μ2σ1Þ/σ2ðγ2μ0 + μ2σ1ÞÞ. The characteristic Equa-
tion (47) can be written as follows:

Δ λð Þ = a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ + a5 = 0, ð48Þ

where

a0 = 1,

a1 = b2σ1 + eq + κ + μ0 + μ3 + μ4 − b3γ3,

a2 = b2σ1 b1γ1 + eq + κ + μ3 + μ4ð Þ
+ b3 b2γ2σ2 − γ3 b2σ1 + κ + μ0 + μ4ð Þð Þ
+ κ + μ4ð Þ eq + μ3ð Þ + μ0 eq + κ + μ3 + μ4ð Þ,

a3 = μ0 b2b3γ2σ2 + κ + μ4ð Þ −b3γ3 + eq + μ3ð Þð Þ
+ b2 σ1 κ + μ4ð Þ −b3γ3 + eq + μ3ð Þðð
+ b1γ1 −b3γ3 + eq + κ + μ3 + μ4ð ÞÞ
+ b3γ2σ2 −b3γ3 + b2σ1 + eq + κ + μ3 + μ4ð ÞÞ,

a4 = −b2 b1γ1σ1 κ + μ4ð Þ −b3γ3 + eq + μ3ð Þð
+ b3γ2σ2 b2σ1 eq + κ + μ3 + μ4ð Þð
− b3γ3 b2σ1 + κ + μ0 + μ4ð Þ + κ + μ4ð Þ eq + μ3ð Þ
+ μ0 eq + κ + μ3 + μ4ð ÞÞÞ,

a5 = b2b3γ2σ2 κ + μ4ð Þ b2σ1 + μ0ð Þ −b3γ3 + eq + μ3ð Þ: ð49Þ

By the Routh-Hurwitz criterion, it follows that all eigen-
values of the characteristic Equation (48) have negative real
parts if

a0 > 0, a1 > 0, a1a2 − a0a3 > 0, a3 a1a2 − a0a3ð Þ − a21a4 > 0,

a1a3a4a2 + a0a3a5a2 − a21a
2
4 − a20a

2
5 − a0a

2
3a4 + 2a0a1a4a5

− a1a5a
2
2 > 0, a5 > 0:

ð50Þ

Theorem 8. The tigerfish free equilibrium is locally asymptot-
ically stable if the conditions in (54) are satisfied.

Proof. The auxilliary equation of the jacobian matrix at E4 is

λ5 + λ4 −A1 − A2 − A4ð Þ + λ3 A1A2 + A4A2 + A1A4ð
+ b4b5γ1σ1 + b5b6γ2σ2 + b6b7γ3σ3Þ + λ2 −A4b4b5γ1σ1ð

− A4b5b6γ2σ2 − A4b6b7γ3σ3 − A2b4b5γ1σ1
− A1b5b6γ2σ2 − A2b5b6γ2σ2 − A1b6b7γ3σ3 − A1A2A4Þ
+ λ A2A4b4b5γ1σ1 + A1A2b5b6γ2σ2 + A1A4b5b6γ2σ2ð
+ A2A4b5b6γ2σ2 + A1A4b6b7γ3σ3 + b4b5b6b7γ1γ3σ3σ1Þ
− A1A2A4b5b6γ2σ2 − A4b4b5b6b7γ1γ3σ1σ3 = 0,

ð51Þ

where b4 =N∗
4 , b5 = P∗, b6 = Z∗, b7 = L∗, A1 = −b5σ − μ0, A2

= b6γ3 − 2b7σ30 − eq − μ3, A3 = −ðb7σ4/b7 + dÞ, and A4 = ð
b7γ4/b7 + dÞ − κ − μ4. The characteristic Equation (51) can
be written as follows:

Δ λð Þ = a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ + a5 = 0, ð52Þ
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where

a0 = 1,

a1 = −A1 − A2 − A4,

a2 = A1A2 + A4A2 + A1A4 + b4b5γ1σ1 + b5b6γ2σ2 + b6b7γ3σ3,

a3 = −A4b4b5γ1σ1 − A4b5b6γ2σ2 − A4b6b7γ3σ3 − A2b4b5γ1σ1
− A1b5b6γ2σ2 − A2b5b6γ2σ2 − A1b6b7γ3σ3 − A1A2A4,

a4 = A2A4b4b5γ1σ1 + A1A2b5b6γ2σ2 + A1A4b5b6γ2σ2
+ A2A4b5b6γ2σ2 + A1A4b6b7γ3σ3 + b4b5b6b7γ1γ3σ3σ1,

a5 = −A1A2A4b5b6γ2σ2 − A4b4b5b6b7γ1γ3σ1σ3: ð53Þ

By the Routh-Hurwitz criterion, it follows that all eigen-
values of the characteristic Equation (52) have negative real
parts if

a0 > 0, a1 > 0, a1a2 − a0a3 > 0, a3 a1a2 − a0a3ð Þ − a21a4 > 0,

a1a3a4a2 + a0a3a5a2 − a21a
2
4 − a20a

2
5 − a0a

2
3a4 + 2a0a1a4a5

− a1a5a
2
2 > 0, a5 > 0:

ð54Þ

Theorem 9. If the equilibrium E∗ = ðN∗, P∗, Z∗, L∗, R∗Þ
exists, then, it is locally-asymptotically stable if the conditions
in (60) are satisfied.

Proof. Evaluating the variational matrix at E∗ gives

JE∗
=

−μ0 − c5σ1 −c4σ1 0 0 0
c5γ1 0 −c5σ2 0 0
0 c6γ2 0 −c6σ3 0

0 0 c7γ3 −eq + c6γ3 − μ3 −
c8σ4
d + c7

+ c7c8σ4
d + c7ð Þ2

− 2c7σ30 −
c7σ4
d + c7

0 0 0 c8γ4
d + c7

−
c7c8γ4
d + c7ð Þ2 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

,

ð55Þ

where c4 =N∗, c5 = P∗, c6 = Z∗, c7 = L∗, and c8 = R∗. (55)
simplifies to

JE∗
=

B1 − λ −c4σ1 0 0 0
c5γ1 −λ −c5σ2 0 0
0 c6γ2 −λ −c6σ3 0
0 0 c7γ3 B2 − λ B3

0 0 0 B4 −λ

0
BBBBBBBB@

1
CCCCCCCCA
, ð56Þ

where B1 = −c5σ1 − μ0, B2 = c6γ3 − ðc8σ4/c7 + dÞ + ðc7c8σ4/
ðc7 + dÞ2Þ − 2c7σ30 − eq − μ3, B3 = −ðc7σ4/c7 + dÞ, and B4 = ð

c8γ4/c7 + dÞ − ðc7c8γ4/ðc7 + dÞ2Þ. The eigenvalues of (56) are
the roots of the auxiliary equation

det JE∗
� 	

= 0: ð57Þ

The characteristic Equation (57) can be written as
follows:

Δ λð Þ = a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ + a5 = 0, ð58Þ

where

a0 = 1,
a1 = −B1 − B2,

a2 = B1B2 − B3B4 + c4c5γ1σ1 + c5c6γ2σ2 + c6c7γ3σ3,
a3 = −B2c4c5γ1σ1 − B1c5c6γ2σ2 − B2c5c6γ2σ2 − B1c6c7,

a4 = −B3B4c4c5γ1σ1 + B1B2c5c6γ2σ2 − B3B4c5c6γ2σ2 + c4c5c6c7γ1γ3σ3σ1,
a5 = B1B3B4c5c6γ2σ2:

ð59Þ

By the Routh-Hurwitz criterion, it follows that all eigen-
values of the characteristic Equation (58) have negative real
parts if

a0 > 0, a1 > 0, a1a2 − a0a3 > 0, a3 a1a2 − a0a3ð Þ − a21a4 > 0,
a1a3a4a2 + a0a3a5a2 − a21a

2
4 − a20a

2
5 − a0a

2
3a4 + 2a0a1a4a5 − a1a5a

2
2 > 0, a5 > 0:

ð60Þ

Remark 10. If the conditions for E∗ in (60) are not satisfied
for a given set of parameter values, then the respective steady
state will be unstable, and there is a possibility of oscillatory
behavior for model (1).

Theorem 11. The equilibrium E∗ is globally-asymptotically
stable if the conditions in (63) are satisfied for the Lyapunov
function in (61).

Proof. The proof follows Lyapunov’s second method. Let N
−N∗ > 0, P − P∗ > 0, Z − Z∗ > 0, L − L∗ > 0, R − R∗ > 0. Let
VðN , P, Z, L, RÞ be a positive Lyapunov function [26, 27],
such that VðN∗, P∗, Z∗, L∗, R∗Þ = 0 by,

V N , P, Z, L, Rð Þ = β1 N −N∗ −N∗ ln N
N∗

� �

+ β2 P − P∗ − P∗ ln P
P∗

� �

+ β3 Z − Z∗ − Z∗ ln Z
Z∗

� �

+ β4 L − L∗ − L∗ ln L
L∗

� �
,

+β5 R − R∗ − R∗ ln R
R∗

� �
,

ð61Þ
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where βi
′s, i = 1, 2, 3, 4, 5 are positive constants. V is a posi-

tive definite function in the set Ψ, except at E∗ where it is
zero. The rate of change of V along the solution of system
(1) is given by

_V = β1 N −N∗ð Þ
_N
N

+ β2 P − P∗ð Þ
_P
P
+ β3 Z − Z∗ð Þ

_Z
Z

+ β4 L − L∗ð Þ
_L
L
+ β5 R − R∗ð Þ

_R
R
,

= −β1 N −N∗ð Þ μ0 + σ1P −
a
N

h i
− β2 P − P∗ð Þ

� μ1 + σ2Z − γ1N½ � − β3 Z − Z∗ð Þ μ2 + σ3L − γ2P½ �
− β4 L − L∗ð Þ μ3 + qE + σ30L +

σ4R
d + L

− γ3Z
� �

− β5 R − R∗ð Þ κη + μ4 −
γ4L
d + L

� �
,

= −β1 N −N∗ð Þ μ0 + σ1P −
a
N

− μ0 − σ1P
∗ + a

N∗

h i
− β2 P − P∗ð Þ μ1 + σ2Z − γ1N − μ1 − σ2Z

∗ + γ1N
∗½ �

− β3 Z − Z∗ð Þ μ2 + σ3L − γ2P − μ2 − σ3L
∗ + γ2P

∗½ �
− β4 L − L∗ð Þ μ3 + qE + σ30L +

σ4R
d + L

− γ3Z − μ3 − qE
�

− σ30L
∗ −

σ4R
∗

d + L∗
+ γ3Z

∗
�

− β5 R − R∗ð Þ κη + μ4 −
γ4L
d + L

− κη − μ4 +
γ4L

∗

d + L∗

� �
,

_V ≤ −
β1a
NN∗ N −N∗ð Þ2 − N −N∗ð Þ P − P∗ð Þ β1σ1 − β2γ1½ �
− P − P∗ð Þ Z − Z∗ð Þ β2σ2 − β3γ2½ � − Z − Z∗ð Þ L − L∗ð Þ
� β3σ3 − β4γ3½ � − β4σ30 L − L∗ð Þ2 − d L − L∗ð Þ R − R∗ð Þ
� β4σ4 − β5γ4½ �:

ð62Þ

Then, _V ≤ 0 if

β1σ1 ≥ β2γ1, β2σ2 ≥ β3γ2,
β3σ3 ≥ β4γ3, β4σ4 ≥ β5γ4:

ð63Þ

Thus, in the region bounded by all points (N >N∗, P >
P∗, Z > Z∗, L > L∗, R > R∗) in (63),

E∗ is globally-asymptotically stable.

The stability of the periodic solutions is discussed in the
bifurcation analysis section.

5. Bifurcation Analysis

The 5D system (1) is written as

_x = F x, ηð Þ, x ∈ℝ5, F ∈ C∞, ð64Þ

where η is a bifurcation parameter. Bifurcation analysis of

model (64) is done using the Hopf bifurcation theorem by
Guckenheimer and Holmes [28].

Theorem 12. Assume that model (64) has the following
characteristics

(1) The model has a smooth equilibria curve

F x∗ ηð Þ, ηð Þ = 0: ð65Þ

(2) The auxiliary equation

Q5 λð Þ = λ5 + ζ1λ
4 + ζ2λ

3 + ζ3λ
2 + ζ4λ + ζ5 = 0, ð66Þ

has complex conjugate roots (nonhyperbolicity condition)

λ1,2 = λ ηcð Þ, �λ ηcð Þ� 	
= i

ffiffiffiffi
ω

p
,−i

ffiffiffiffi
ω

p� 	
, ω > 0, ð67Þ

and if the condition

Ψ = ζ3 − ζ1ζ2ð Þ ζ5ζ2 − ζ3ζ4ð Þ − ζ5 − ζ1ζ4ð Þ2 = 0, ð68Þ

with

ω = ζ5 − ζ1ζ4
ζ3 − ζ1ζ2

> 0, ð69Þ

is satisfied, and there are no other roots with zero real
parts and λiði = 3, 4, 5:Þ have nonzero real parts if

ζ3 − ζ1ω ≠ 0, ð70Þ

and have negative real parts if

ζ1 > 0, ζ3 − ζ1ζ2 < 0, ζ3 − ζ1ω > 0: ð71Þ

(3) The transversality condition

dΨ ηð Þ
dη

����
η=ηc

≠ 0, ð72Þ

is satisfied, and then, there is a Poincare′-Andronov-Hopf
bifurcation.

6. Numerical Simulations

Numerical simulations of the model system (1) are carried
out to investigate the dynamics of the Limnothrissa miodon
model for the main bifurcation parameter γ2, using the
default parameter values in Equation (73)
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Figure 2: Continued.
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a = 20:3, μ0 = 0:0096, σ1 = 0:3, γ1 = 0:3, μ1 = 0:032, σ2 = 0:18, γ2 = 0:005,
μ2 = 0:08, σ3 = 0:3, σ30 = 0:01, γ3 = 0:36, μ3 = 0:05, q = 0:00027999, E = 500,

κη = 0:16, σ4 = 0:4, γ4 = 0:4, d = 2, and μ4 = 0:018:
ð73Þ

The parameter values in Equation (73) are obtained
from published data and others are estimates. A fourth-
order Runge-Kutta numerical scheme coded in Wolfram
Mathematica is used for the numerical simulations. For
model system (1), the units of the variables N , P, Z, L, and
R are μgl−1.

6.1. Parameter σ4. There is no bifurcation for varying σ4, but
a Hopf bifurcation exists for varying σ4 with γ4 = σ4. The

predation rate of tigerfish on kapenta is varied from 0:4 to
0:9 with γ4 = σ4: Figures 2 and 3(a) show the bifurcation dia-
grams for the bifurcation parameter σ4.

The Hopf bifurcation value is 0:63076 for the control
parameter σ4 and is shown in Figure 3(b). From the coeffi-
cient criteria in Theorem 12, we obtain σ4 = σ4,c = 0:63076:
Equation (69) gives ω = 0:225435,λ1,2 = ±i ffiffiffiffi

ω
p = ±0:4748i,

and T = ð2π/ωÞ = 27:8714 days. From Theorem 12, Equation
(71), we obtain ζ1 = 18:8633, ζ3 − ζ1ζ2 = −79:8152 and ζ3 −
ζ1ω = 0:37348: The coefficient criteria in Equation (71) are
satisfied and therefore showing existence of a simple Hopf
bifurcation at the critical value σ4,c of the bifurcation param-
eter σ4. The transversality condition in Equation (72) of
Theorem 12 is satisfied since dΨðσ4Þ/dσ4jσ4=σ4,c = −246:512.
The eigenvalues at σ4,c are f−18:6363,−0:113515 − 0:08458i,
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Figure 2: Bifurcation diagram for parameter σ4 versus (a) nutrients; (b) phytoplankton; (c) zooplankton; and (d) Limnothrissa miodon for
model system (1) with assumed initial condition: Nð0Þ = 10, Pð0Þ = 7, Zð0Þ = 4, Lð0Þ = 2, Rð0Þ = 0:5 using the default parameter values.
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Figure 3: (a) Bifurcation diagram for tigerfish versus σ4. (b) Plot of real part of eigenvalues of the Jacobian matrix of model (1) for 0:4
≤ σ4 ≤ 0:9:
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−0:113515 + 0:084586i,−0:4748i,+0:4748ig. The Hopf bifur-
cation is supercritical since as the bifurcation parameter σ4 is
varied with γ4 = σ4 the stable positive interior point loses its
stability and a stable periodic orbit simultaneously appears.

Figure 3 shows the effect of varying σ4 for 0:4 ≤ σ4 ≤ 0:9
with σ4 = γ4: The bifurcation results show that there is a
decrease in kapenta population density for 0:4 ≤ σ4 <
0:63076: Further increase of σ4 for 0:63076 < σ4 ≤ 0:9 results
in a period orbit of period 1 with increasing amplitude. Inef-
ficient tigerfish predation on kapenta results in a decrease in
the co-existence equilibrium value for kapenta, and efficient
predation increases the chance of periodic behavior in the
dynamical system. Therefore, the predation rate σ4, together
with the tigerfish growth rate γ4, significantly determines the
nature of the predator-prey relationship between tigerfish
and kapenta. Simulation results show no chaotic behavior
for the bifurcation control parameter σ4.

6.2. Parameter γ2. The interior equilibrium, E∗ = ð
0:602831,112:216,0:82694,1:6036,0:825832Þ for model (1),
with damped oscillations for the set of default parameters
are shown in Figure 4(a) for Limnothrissa miodon and 5(a)
for zooplankton, Limnothrissa miodon, and tigerfish.

The positive interior equilibrium E∗ for model system
(1) is permanent for the set of default parameter values.
For the main bifurcation parameter, model (1) bifurcates
into a limit cycle of period 1 at γ2,c = 0:00818058. Time series
plots and phase portraits for γ2 = 0:0095 are shown in
Figures 4(b) and 5(b). Time series plots and phase portraits
for γ2 = 0:075 are shown in Figures 4(c) and 5(c). The phase
portraits show periodic doubling. Time series plots and
phase portraits for γ2 = 0:16 are shown in Figures 4(d) and
5(d). The phase portraits show a chaotic attractor at γ2 =
0:16. Varying the zooplankton growth rate γ2 results in
some interesting dynamics for model (1). The stability of
model (1) changes from a stable coexistence equilibrium into
a stable periodic orbit and then periodic doubling enroute to
chaos. Therefore, we can conclude that γ2 plays an impor-
tant role in the dynamics of model (1). The trajectories in
Figures 4 and 5 are aperiodic as they are showing erratic
behavior. The irregular fluctuations can be attributed to the
nonlinearity of the model (1). By visual inspection of the
phase portraits in Figures 4(d) and 5(d) and from the mag-
nitude of the maximal Lyapunov exponent, 0.107838, it
can be seen that the trajectories are sensitive to initial

5

4

3

2

1

0
0 100 200

Day
300 400 500

L
(t
)

(a)

6

5

4

3

2

1

0
0 100 200

Day
300 400 500

L
(t
)

(b)

30

25

20

15

10

5

0
0 100 200

Day
300 400 500

L
(t
)

(c)

80

60

40

20

0
0 100 200

Day
300 400 500

L
(t
)

(d)

Figure 4: Time series plot of Limnothrissa miodon for (a) γ2 = 0:005; (b) γ2 = 0:0095; (c) γ2 = 0:075; and (d) γ2 = 0:16 for model (1) with
assumed initial condition: Nð0Þ = 9:8, Pð0Þ = 6:8, Zð0Þ = 3:8, Lð0Þ = 1:8, Rð0Þ = 0:3; Nð0Þ = 10, Pð0Þ = 7, Zð0Þ = 4, Lð0Þ = 2, Rð0Þ = 0:5; Nð0Þ
= 10:2, Pð0Þ = 7:2, Zð0Þ = 4:2, Lð0Þ = 2:2, Rð0Þ = 0:7, using the default parameter values.
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conditions and, therefore, it is impossible to predict the
long-term behavior of model system (1) for γ2 = 0:16. The
trajectories are random and bounded in phase space and
they converge to a strange attractor, which has a complex
(fractal) geometric structure.

We use the Hopf bifurcation theorem by Guckenheimer
and Holmes [28] together with conditions by Douskos and
Markellos [29] to characterize the bifurcation of the 5D
model (1). For the main control bifurcation parameter γ2,
we obtain the auxiliary equation
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Figure 5: Phase portrait of zooplankton, Limnothrissa miodon and tigerfish (a) γ2 = 0:005, (b) γ2 = 0:0095, (c) γ2 = 0:075, and (d) γ2 = 0:16
for model (1) with assumed initial condition: Nð0Þ = 9:8, Pð0Þ = 6:8, Zð0Þ = 3:8, Lð0Þ = 1:8, Rð0Þ = 0:3 (time series with blue color); Nð0Þ =
10, Pð0Þ = 7, Zð0Þ = 4, Lð0Þ = 2, Rð0Þ = 0:5 (time series with magenta color); Nð0Þ = 10:2, Pð0Þ = 7:2, Zð0Þ = 4:2, Lð0Þ = 2:2, Rð0Þ = 0:7 (time
series with purple color), using the default parameter values.
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Q5 λð Þ = λ5 + ζ1λ
4 + ζ2λ

3 + ζ3λ
2 + ζ4λ + ζ5 = 0, ð74Þ

where ζ1 = A1/A0; ζ2 = A2/A0; ζ3 = A3/A0; ζ4 = A4/A0; and
ζ5 = A5/A0, and

A0 = −1:γ52 − 70:1351γ42 − 1844:6γ32 − 21561:9γ22 − 94515:4γ2,

A1 = 564:448γ52 + 29688:γ42 + 520444:γ32 + 3:03997
× 106γ22 − 17409:7γ2 − 15909:2,

A2 = −1086:15γ52 − 57143:6γ42 − 1:00231 × 106γ32 − 5:86456
× 106γ22 − 56805:4γ2 − 2166:84,

A3 = 200890:γ52 + 7:1036 × 106γ42 + 6:38216 × 107γ32
+ 1:79792 × 107γ22 − 1:06833 × 106γ2 + 1199:88,

A4 = −42672:5γ52 − 1:54096 × 106γ42 − 1:4681 × 107γ32
− 1:36957 × 107γ22 − 20141:7γ2 + 38:9047,
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Figure 6: Plots for parameter γ2 versus (a) ζ1; (b) ζ3 − ζ1ζ2; (c) ζ3 − ζ1ω; and (d) dΨðγ2Þ/dγ2 for model system (1) with assumed initial
condition: Nð0Þ = 10, Pð0Þ = 7, Zð0Þ = 4, Lð0Þ = 2, Rð0Þ = 0:5 using the default parameter values in (73).
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A5 = −428:171γ52 − 22520:4γ42 − 394799:γ32 − 2:30622
× 106γ22 + 10655:1γ2 − 7:61994:

ð75Þ

Using the coefficient criteria of Hopf bifurcations with-
out using eigenvalues and solving Equation (68) numerically
for the bifurcation parameter γ2 in Wolfram Mathematica
11, we obtain γ2 = γ2,c = 0:00818058: Equation (69) gives ω
= 0:385339,λ1,2 = ±i ffiffiffiffi

ω
p = ±0:620757i, and T = ð2π/ωÞ =

16:3056 days. From Theorem 5.8, Equation (71), we obtain
ζ1 = 20:4586, ζ3 − ζ1ζ2 = −71:7456, and ζ3 − ζ1ω = 0:251287:
The plots of γ2 versus ζ1, ζ3 − ζ1ζ2, and ζ5 are shown in
Figures 6(a)–6(c), respectively. The coefficient criteria in
Equation (71) are satisfied and therefore showing existence
of a simple Hopf bifurcation at the critical value γ2,c of the
bifurcation parameter γ2. The transversality condition is satis-
fied since dΨðγ2Þ/dγ2jγ2=γ2,c = −64347:8 and Figure 6(d) show
that for 0:005 ≤ γ2 ≤ 0:01, the condition in Equation (72) of
Theorem 5.9 is satisfied. The Hopf bifurcation is supercritical
since as the bifurcation parameter γ2 is varied, the stable pos-
itive interior point loses its stability, and a stable limit cycle
simultaneously appears.

Bifurcation diagrams for model (1) were plotted using
MATLAB R2016a code. ODE45 solver, which is based on
an explicit Runge-Kutta ((4), (5)) formula and the
Dormand-Prince method, was used for the numerical solu-
tion of the ordinary differential equations in (1). The bifur-
cation diagrams in Figures 7 and 8(a) show the change in
stability for model (1) from a positive interior equilibrium
into a limit cycle and period-doubling enroute to chaos for
the control parameter, 0 < γ2 ≤ 0:18: The zooplankton
growth rate parameter γ2, therefore, has a tremendous effect
on the dynamics of model system (1).

For the 5D system in Equation (64), a local Hopf bifur-
cation occurs at ðx∗ðηcÞ, ηcÞ if the Jacobian, J Fðx∗ðηcÞ,ηcÞ, has
a pair of imaginary roots. Using eigenvalues obtained from
J Fðx∗ðηcÞ,ηcÞ, we plot the real part (Re) of the eigenvalues ðλi

ði = 1, 2, 3, 4, 5:ÞÞ against the bifurcation parameter and find
the bifurcation point where the curve crosses the axis of the
bifurcation parameter as this is where the real part of an
eigenvalue of an equilibrium passes through zero. The set
of eigenvalues of J Fðx∗ðγ2,cÞ,γ2,cÞ are shown in the complex

plane in Figure 9(a). The Hopf bifurcation occurs at the
point where Re ðλÞ = 0: Using the FindRoot command in
Wolfram Mathematica 11, which searches for a numerical
root starting from some initial root, the bifurcation value
for the control parameter γ2 is 0.00818058 and is shown in
Figure 9(b). Model (1) loses its stability whenever γ2 >
0:00818058 for the default set of parameter values. The
coexistence equilibrium enters into a Hopf bifurcation at
γ2 = 0:00818058: The eigenvalues at γ2,c are f−20:2857,−
0:0864343 − 0:0701176i,−0:0864343 + 0:0701176i,−
0:620757i,+0:620757ig; therefore, the stable coexistence
equilibrium bifurcates into a stable periodic orbit.

The Lyapunov spectrum of model system (1) consists of
5 eigenvalues (λ j, j = 1, 2, 3, 4, 5) called Lyapunov exponents.
The rate of separation of infinitesimally close trajectories can
be characterized by λj. The Lyapunov spectrum for model
(1) is found using code in Wolfram Mathematica 11 and is
shown in Figures 10 and 11.

The Lyapunov exponents for model (1) with γ2 = 0:055
and γ2 = 0:095 are (-0.0256886, -0.0426366, -0.0563857,
-0.0809535, and -34.1637) and (0.000382075, -0.0373874,
-0.0946365, -0.103307, and -20.1639) which correspond to
the positive interior equilibrium and the limit cycle, respec-
tively. The largest Lyapunov exponent for the model with
γ2 = 0:055 is less than zero, indicating that nearby trajectories
converge, and therefore, the interior equilibrium is a stable fixed
point. For γ2 = 0:095, the maximal Lyapunov exponent is equal
to zero, meaning that nearby trajectories converge to a closed
orbit, and therefore, the periodic orbit (limit cycle) is stable.

The Lyapunov exponents for model (1) with γ2 = 0:16
are (0.107838, -0.0039426, -0.0135559, -0.190155, and
-5.87422). The maximal Lyapunov exponent is λ1 =
0:107838, and since λ1 > 0, this is an indication of

100

80

60

40

20

0

L
(t
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
𝛾
2

(d)

Figure 7: Bifurcation diagram for parameter γ2 versus (a) nutrients; (b) phytoplankton; (c) zooplankton; and (d) Limnothrissa miodon for
model system (1) with assumed initial condition: Nð0Þ = 10, Pð0Þ = 7, Zð0Þ = 4, Lð0Þ = 2, Rð0Þ = 0:5 using the default parameter values in
(73).
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divergence of nearby trajectories, and therefore, the dynam-
ical system (1) is unstable and chaotic at γ2 = 0:16. For the
dynamical system (1), a strange attractor exists in phase
space at γ2 = 0:16:

7. Conclusions

In this paper, we formulated and analyzed a Limnothrissa
miodon model with Hydrocynus vittatus predation. Positiv-

ity and existence of solutions for the model were shown.
Local stability analysis results agree with the numerical sim-
ulations in that the coexistence equilibrium is locally stable
provided that certain conditions are satisfied. The coexis-
tence equilibrium is globally stable if certain conditions are
met. In bifurcation analysis, the Hopf bifurcation theorem
together with certain conditions for a 5D system was used
to find the bifurcation point, angular frequency, period, pair
of imaginary eigenvalues, stability, and direction for a
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Figure 9: (a) Complex plane for 0:002 ≤ γ2 ≤ 0:18. (b) Plot of real part of the eigenvalue λ2 of the Jacobian matrix of model (1) for
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bifurcation control parameter. The eigenvalue method was
also used to find the bifurcation point of a bifurcation con-
trol parameter. Results from the Hopf bifurcation theorem
and from the eigenvalue method for the 5D system were
the same. Therefore, either method can be used to find the
bifurcation point for a given control parameter for the 5D
system. The model changes in stability from a positive inte-
rior equilibrium to a limit cycle and period-doubling enroute
to chaos for the zooplankton growth rate control parameter,
indicating that zooplankton growth rate has a tremendous
effect on the dynamics of the model. Therefore, a variation
in the zooplankton growth rate can significantly alter the
dynamics of Limnothrissa miodon in Lake Kariba. The
Lyapunov spectrum of exponents was used to show the con-
vergence or divergence of nearby trajectories and to check
for the existence of chaos in the aquatic environment. A
supercritical simple Hopf bifurcation exists for varying the
biological Hydrocynus vittatus predation on Limnothrissa
miodon parameter only if the parameter is equal to the
Hydrocynus vittatus growth rate coefficient. Hydrocynus vit-
tatus predation on Limnothrissa miodon changes a stable
coexistence equilibrium into a stable periodic orbit if the

predation rate coefficient is the same as the Hydrocynus
vittatus growth rate coefficient. We therefore conclude that
Hydrocynus vittatus predation on Limnothrissa miodon sig-
nificantly alters the dynamics of Limnothrissa miodon when-
ever the Hydrocynus vittatus predation rate coefficient is the
same as the Hydrocynus vittatus growth rate coefficient.
Hopf bifurcation for varying a predation rate coefficient
and the Hopf bifurcation leading to chaos for the zooplank-
ton growth rate control parameter is in agreement with find-
ings from other authors. The periodic orbit obtained in
bifurcation analysis reflects what actually happens in Lake
Kariba as evidenced from actual data shown in Figure 5.1,
which shows the cyclical behavior of the Hydrocynus vittatus
bycatch and Limnothrissa miodon catch. Therefore, the
Hopf bifurcation results reflect what really happens in the
Lake Kariba kapenta fishery. Bifurcation results show that
a higher zooplankton growth rate, which implies efficient
grazing on phytoplankton, increases the chance of chaos in
the dynamical system. Inefficient grazing of phytoplankton
by zooplankton implies a lower zooplankton growth rate
resulting in simple dynamics in the model system. There-
fore, the phytoplankton-zooplankton oscillations and the
nature of the zooplankton predation play an important role
in model dynamics. An increase in the parameter γ2 leads to
destabilization of the dynamical system (1). The chaotic
solutions for model system (1) for the bifurcation parameter
γ2 could not be validated with actual data for nutrients, phy-
toplankton, zooplankton, kapenta, and tigerfish from the
Lake Kariba kapenta fishery, since the sample size of the data
available is small and the data was collected at irregular time
intervals. Therefore, the unavailability of data is a limitation
in validating the deterministic chaos results for the bifurcation
control parameter γ2. In certain ecological systems, chaotic
dynamics are expected to contribute to the unpredictability
and irregularity of ecological time series [30]. It is debatable
whether or not this chaotic behavior observed in
Figures 4(d) and 5(d) occurs in the kapenta fishery. The fun-
damental issue stems from the fact that in most ecological
systems, there is a strong stochastic disturbance from envi-
ronmental factors such as temperature and weather, and this
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Figure 10: Lyapunov spectrum for model (1) for (a) γ2 = 0:055; (b) γ2 = 0:095 and other default parameter values and with assumed initial
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makes determining whether the irregular structure in the
data is due to chaotic dynamics or stochastic perturbations
difficult [30]. Phytoplankton dynamics usually show erratic
and eruptive “busts and blooms” and have similar character-
istics of deterministic chaos [31]. According to Stone and
Ezrati [32], it is reasonable to have oscillating and chaotic
dynamics in nonlinear deterministic ecological systems with
growth processes that are strong and without neglecting the
possibility of stochastic processes influencing the variability
which arises in nature. For future studies, we intend to model
the dynamics of Limnothrissa miodon with lake water
temperature.
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