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An irreversible conversion process is a dynamic process on a graph where a one-way change of state (from state 0 to state 1) is
applied on the vertices if they satisfy a conversion rule that is determined at the beginning of the study. The irreversible
k-threshold conversion process on a graph G = ðV , EÞ is an iterative process which begins by choosing a set S0 ⊆ V , and for
each step tðt = 1, 2,⋯,Þ,St is obtained from St−1 by adjoining all vertices that have at least k neighbors in St−1. S0 is called
the seed set of the k-threshold conversion process, and if St =VðGÞ for some t ≥ 0, then S0 is an irreversible k-threshold
conversion set (IkCS) of G. The k-threshold conversion number of G (denoted by (CkðGÞ) is the minimum cardinality of all
the IkCSs of G: In this paper, we determine C2ðGÞ for the circulant graph Cnðf1, rgÞ when r is arbitrary; we also find C3ðCn
ðf1, rgÞÞ when r = 2, 3. We also introduce an upper bound for C3ðCnðf1, 4gÞÞ. Finally, we suggest an upper bound for C3ðCn
ðf1, rgÞÞ if n ≥ 2ðr + 1Þ and n ≡ 0ðmod 2ðr + 1ÞÞ.

1. Introduction

As usual, n = jV j and m = jEj denote the numbers of vertices
and edges at a graph GðV , EÞ, respectively. Let deg ðvÞ be the
degree of a vertex v; a graph is t-regular if all of its vertices
are of degree t. The open neighborhood of a vertex v is
NðvÞ = fu ∈ V : uv ∈ Eg while the closed neighborhood of
v is N½v� =NðvÞ ∪ fvg. For any undefined term in the
paper, we refer to Harary [1]. An irreversible k-threshold
conversion process on a graph G = ðV , EÞ is the process
of finding the least number of vertices we need to initially
convert in step t = 0 in order to spread the conversion to
all the remaining vertices of the graph according to a con-
version rule. This iterative process starts by choosing a
seed set S0 ⊆ V , and for each step tðt = 1, 2,⋯,Þ,St is
obtained from St−1 by adjoining all vertices that have at
least k neighbors in St−1. S0 is called the seed set of the
k-threshold conversion process, and if St = VðGÞ for some
t ≥ 0, then S0 is an irreversible k-threshold conversion set
(IkCS) of G. The k-threshold conversion number of G
(denoted by (CkðGÞ) is the minimum cardinality of all
the IkCSs of G. Therefore, 1 ≤ k ≤ ΔðGÞ and C1ðGÞ = 1
for connected graphs. The first graph model of the irre-
versible k-threshold conversion problem was presented by

Dreyer and Roberts in [2] where they determined the
value of C2 for paths and cycles: For further information
on the irreversible k-threshold conversion problem on
graphs, see [2–6]: The circulant graph CnðSÞ with the con-
nection set S ⊆ f1, 2,⋯, ng is an undirected graph with the
vertex set V = fv1, v2,⋯, vng where two vertices vi, vj are
adjacent if ji − jj ∈ S. Therefore, the circulant graph Cnð1Þ
is a cycle, and the circulant graph Cnðf1, 2,⋯, bn/2cgÞ
forms the complete graph Kn. It is obvious that the circu-
lant graph Cnðf1, rgÞ is 4-regular when 1 < r ≤ bðn − 1Þ/2c.
Through this paper, we will denote the vertex set by V =
fvij i = 1,⋯, ng taking into consideration that we exchange
the subscript of the vertex v0 by vn. For further information
on the circulant graph, see [7].

Proposition 1 (see [2]).

C2 Pnð Þ = n + 1
2

� �
: ð1Þ

Proposition 2 (see [2]).

C2 Cnð Þ = n
2

l m
: ð2Þ
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Proposition 3 (see [2]). If G is a k-regular graph, then S is
a k-conversion set of G if and only if V − S is independent.

Note 1: in every figure of this article, we assign the black
color to the converted vertices and the white color to uncon-
verted ones:

2. Main Results

In this paper, we determine C2ðGÞ for the circulant graph
Cnðf1, rgÞ for arbitrary r; we also find C3ðCnðf1, rgÞÞ when
r = 2, 3. We also introduce an upper bound for C3ðCnðf1,
4gÞÞ. Then we suggest an upper bound for C3ðCnðf1, rgÞÞ
if n ≥ 2ðr + 1Þ and n ≡ 0ðmod 2ðr + 1ÞÞ. Let Cnðf1, rgÞ be
a circulant graph on which an irreversible k-threshold con-
version process is being studied. Since Cnðf1, rgÞ is 4-regu-
lar, we define the k-unconvertable set of G (denoted by U)
as follows:

U ⊆V − S0 and for every x ∈U then N xð Þ ∩Uj j ≥ 4 − k + 1:
ð3Þ

which means each vertex of U is unconverted and is adja-
cent to at least 4 − k + 1 vertices of U at t = 0; therefore,
the conversion cannot reach any vertex of U during any
step of the process unless at least one of its vertices is con-
verted at t = 0. Figure 1 shows a 3-unconvertable set on
Cnðf1, 2gÞ:

Note 2: let Cnðf1, rgÞ be a circulant graph, and let the
conversion threshold be k = 2: We will define a conversion
generating path (CGP) as a series of r consecutive vertices
(a path) on Cnðf1, rgÞ such as (vi, vi+1,⋯, vi+r−1), so that
when all of these vertices are converted in a step t = l, they
can spread the conversion to the entire graph by converting
two new (unconverted) vertices at every following step. The
process goes as follows:

t = l : the conversion reaches all vertices of the CGP
which are vi, vi+1,⋯, vi+r−1

t = l + 1 : since vi, vi+r−1 are adjacent to both vi−1, vi+r ,
then conversion spreads to vi−1, vi+r , and the converted ver-
tices are vi−1, vi+1,⋯, vi+r−1, vi+r

t = l + 2 : since vi−1, vi+r are adjacent to both vi−2, vi+r+1,
then conversion spreads to vi−2, vi+r+1

The conversion process continues until all vertices of V
are converted. This goal is achieved on step t = l + dðn − r
−mÞ/2e where m represents the number of converted verti-
ces of V − VðCGPÞ at t = l.

If n − r −m is even, then the last two unconverted vertices
are converted at the last step, which is t = l + ððn − r −mÞ/2Þ:

If n − r −m is odd, then at the next to last step t = l +
dðn − r −mÞ/2e − 1 ; two unconverted vertices are con-
verted, and then only one unconverted vertex remains to
be converted in the last step which is t = l + dðn − r −mÞ/2e.
Figure 2 illustrates a 5-vertex CGP on C12ðf1, 5gÞ.

C2 Cn 1, rf gð Þð Þ: ð4Þ

In this subsection, we determine C2ðCnðf1, rgÞÞ for arbi-
trary r when 1 < r ≤ bðn − 1Þ/2c.

Theorem 4. For n ≥ 5,C2ðCnðf1, 2gÞÞ = 2:

Proof. We know by definition that for any graph G, CkðGÞ
≥ k, which means that C2ðCnðf1, 2gÞÞ ≥ 2. Let S0 = fv1, v2g
be the seed set of the conversion process. S0 forms a CGP
on Cnðf1, 2gÞ with l = 0, and the process goes as follows:

t = 0: we convert v1, v2
t = 1: the conversion spreads to v3, vn
t = 2: the conversion spreads to v4, vn−1

The process continues, spreading the conversion to two
new (unconverted) vertices each step. If n is even, the pro-
cess ends in step t = n/2 − 1 when the last two unconverted
vertices (vðn/2Þ+1, vðn/2Þ+2) are converted.

If n is odd, at the next to last step t = dðn − 2Þ/2e − 1 =
ðn − 3Þ/2, there are three unconverted vertices left which
are (vdn/2e, vdn/2e+1, vdn/2e+2). Two of them (vdn/2e, vdn/2e+2)
are converted in t = ðn − 3Þ/2 while the last unconverted
vertex (vdn/2e+1) is converted in the last step t = dðn − 2Þ/2e =
ðn − 1Þ/2:

We conclude that S0 is an I2CS of Cnðf1, 2gÞ which
means C2ðCnðf1, 2gÞÞ ≤ 2; therefore,C2ðCnðf1, 2gÞÞ = 2,
and we prove the requested.

Theorem 5. For n ≥ 7,C2ðCnðf1, 3gÞÞ = 2:

Proof. Since C2ðCnðf1, 3gÞÞ ≥ 2, we need to prove that C2
ðCnðf1, 3gÞÞ ≤ 2. Let S0 = fv1, v3g be the seed set. The pro-
cess goes as follows:

t = 0: we convert S0 = fv1, v3g
t = 1: since v2 adj v1, v3 the conversion spreads to v2:

Similarly, v4 adj v1, v3, and we also have vn adj v1, v3 which
means S1 = fv1, v2, v3, v4, vng. Each of the sets fv1, v2, v3g,
fv2, v3, v4g, and fv1, v2, vng forms a CGP on Cnðf1, 3gÞ with
l = 1.

t = 2: the conversion spreads to v5, vn−1
t = 3: the conversion spreads to v6, vn−2

The process continues similarly to Theorem 4 until the
graph is successfully converted at step t = ðn − 5Þ/2 + 1 if n
is odd, or at step t = dðn − 5Þ/2e + 1 if n is even.

We conclude that S0 = fv1, v3g is an I2CS of Cnðf1, 3gÞ
which means C2ðCnðf1, 3gÞÞ ≤ 2; then C2ðCnðf1, 3gÞÞ = 2,
and the requested is proven.

Theorem 6. C2ðCnðf1, 4gÞÞ =
2 for 9 ≤ n ≤ 11 ;
3 otherwise:

(

v
i+2

v
i+1

v
i

Figure 1: X = fvi, vi+1, vi+2g is 3-unconvertable on Cnðf1, 2gÞ.
C12ðf1, 5gÞ. C12ðf1, 5gÞ.J2,m.
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Proof. We consider the following cases:

Case 1. n = 9. Let S0 = fv1, v6g be the seed set. The process
goes as follows:

t = 0: we convert S0 = fv1, v6g
t = 1: since v2 adj v1, v6 the conversion spreads to v2:

Similarly, v5 adj v1, v6, and we also have S1 = fv1, v2, v5, v6g
t = 2: the conversion spreads to v7, v9 ; therefore, S2 =

fv1, v2, v5, v6, v7, v9g
t = 3: the conversion spreads to v3, v4, v8 ; therefore, S3 =

VðC9ðf1, 4gÞÞ
We conclude that C2ðC9ðf1, 4gÞÞ = 2.

Case 2. n = 10. Let S0 = fv1, v6g be the seed set. The process
goes as follows:

t = 0: we convert S0 = fv1, v6g
t = 1: the conversion spreads to v2:v5, v7, v10 which

means S1 = fv1, v2, v5, v6, v7, v10g
t = 2: the conversion spreads to v3:v4, v8, v9 which means

S2 =VðC10ðf1, 4gÞÞ
We conclude that C2ðC10ðf1, 4gÞÞ = 2.

Case 3. n = 11. Let S0 = fv1, v6g be the seed set. The process
goes as follows:

t = 0: we convert S0 = fv1, v6g
t = 1: the conversion spreads to v2, v5; therefore, S1 =

fv1, v2, v5, v6g
t = 2: the conversion spreads to v9 which means S2 =

fv1, v2, v5, v6, v9g
t = 3: the conversion spreads to v8, v10; therefore, S3 =

fv1, v2, v5, v6, v8, v9, v10g
t = 4: the conversion spreads to v3:v4, v7, v11 which

means S4 = VðC11ðf1, 4gÞÞ
We conclude that C2ðC11ðf1, 4gÞÞ = 2.

Case 4. n ≥ 12. We start by proving that C2ðCnðf1, 4gÞÞ > 2
for n ≥ 12. We consider the following subcases:

Case 4.a. S0 = fv1, v2g; since Nðv1Þ ∩Nðv2Þ =∅, then
S1 = S0, and the conversion does not spread after the initial
step t = 0, which means the process fails. Without loss of
generality, the same argument can be applied for any S0 =
fvi, vi+1 : 1 ≤ i ≤ ng.

Case 4.b. S0 = fv1, v3g; since Nðv1Þ ∩Nðv3Þ = fv2g, then
at step t = 1, we get S1 = fv1, v2, v3g. However, Nðv1Þ ∩N
ðv2Þ ∩Nðv3Þ =∅ which means S2 = S1 and the spread
stops at the end of step t = 1. Without loss of generality,
this applies to any S0 = fvi, vi+2 : 1 ≤ i ≤ ng.

Case 4.c. S0 = fv1, v4g. In a similar way to the previous
two cases, S1 = fv1, v4, v5, vng, S2 = S1 which means the
spread stops at the end of step t = 1, and without loss of gen-
erality; this applies to any S0 = fvi, vi+3 : 1 ≤ i ≤ ng.

Case 4.d. S0 = fv1, v5g; then S1 = S0, and the process fails
at the end of step t = 0. Without loss of generality, this
applies to any S0 = fvi, vi+4 : 1 ≤ i ≤ ng.

Case 4.e. S0 = fv1, v6g; then S1 = fv1, v2, v5, v6g, but S2 =
S1 and the spread stops at the end of step t = 1. Without loss
of generality, this applies to any S0 = fvi, vi+5 : 1 ≤ i ≤ ng.

Case 4.f. S0 = fv1, vl : l ≥ 7g. Since Nðv1Þ ∩NðvlÞ =∅,
then S1 = S0, and the conversion does not spread after the
initial step t = 0, which means the process fails. Without loss
of generality, the same argument can be applied for any
S0 = fvi, vi+l : 1 ≤ i ≤ n and l ≥ 7g.

From subcases 4.a to 4.f, we conclude that

C2 Cn 1, 4f gð Þð Þ > 2: ð5Þ

Now, let S0 = fv1, v3, v4g be the seed set; then at t = 1,
the conversion spreads to v2, v5, vn which makes S1 = fv1,
v2, v3, v4, v5, vng. We notice that each set of four consecutive
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Figure 2: ðv1, v2, v3, v4, v5Þ form a CGP on C12ðf1, 5gÞ.
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vertices of S1 forms a CGP on Cnðf1, 4gÞ with l = 1 and
m = 2. The process goes as follows:

t = 0: we convert S0 = fv1, v3, v4g
t = l =1: S1 = fv1, v2, v3, v4, v5, vng
t = 2 :S2 = fv1, v2, v3, v4, v5, v6, vn−1, vng
The process continues converting two new vertices each

step until it ends at t = ðn − 4Þ/2 if n is even, or at t = ðn −
3Þ/2 if n is odd. We conclude that S0 = fv1, v3, v4g is an
I2CS of Cnðf1, 4gÞ. Therefore

C2 Cn 1, 4f gð Þð Þ ≤ 3: ð6Þ

From (5) and (6), we conclude that C2ðCnðf1, 4gÞÞ = 3
for n ≥ 12.

From Cases 1–4, we conclude the requested.

Theorem 7. For r ≥ 4,C2ðCnðf1, rgÞÞ = dðr + 1Þ/2e:

Proof. Since a CGP is a path of length r, and by Proposition
1, C2ðPnÞ = dðn + 1Þ/2e ; therefore, Y = fv1, v3,⋯, vm : m =
r if r is odd,m = r + 1 if r is eveng can be an I(dðr + 1Þ/2e)CS
of Cnðf1, rgÞ. This means

C2 Cn 1, rf gð Þð Þ ≤ r + 1
2

� �
: ð7Þ

Figure 3 illustrates an I2CS of 5 vertices on C24ðf1, 8gÞ.

We now consider the following cases for r:

Case 1. r is odd. Let S0 = fv1, v3,⋯, vr−2g be a conversion
seed set of cardinality dðr + 1Þ/2e − 1 = ðr − 1Þ/2. The process
goes as follows:

t = 0: we convert S0 = fv1, v3,⋯, vr−4, vr−2g
t = 1: S1 = fv1, v2, v3, v4 ⋯ , vr−3, vr−2g
t = 2: S2 = fv1, v2, v3, v4 ⋯ , vr−3, vr−2g = S1. The process

stops at the end of step t = 1. Without loss of generality,
the process applies to all configurations of S0 on the vertices
of fv1, v2, v3, v4 ⋯ , vr−1, vrg. Therefore, S0 cannot produce a
CGP on Cnðf1, rgÞ, and since we need to convert at least
dðr + 1Þ/2e = ðr + 1Þ/2 vertices of the path fv1, v2, v3, v4 ⋯ ,
vr−1, vrg in order to convert it entirely, it is impossible
to convert Cnðf1, rgÞ if we initially convert less than
ðr + 1Þ/2 vertices at t = 0, which means C2ðCnðf1, rgÞÞ
> dðr + 1Þ/2e − 1.

Case 2. r is even. Let S0 = fv1, v3,⋯, vr−1g be a conversion
seed set of cardinality dðr + 1Þ/2e − 1 = r/2. The process goes
as follows:

t = 0: we convert S0 = fv1, v3,⋯, vr−3, vr−1g
t = 1: S1 = fv1, v2, v3, v4 ⋯ , vr−2, vr−1g
t = 2: S2 = fv1, v2, v3, v4 ⋯ , vr−2, vr−1g = S1
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Figure 3: An I2CS of 5 vertices on C24ðf1, 8gÞ.
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The process stops at the end of step t = 1. Without loss of
generality, the process applies to all configurations of S0 on
the vertices of fv1, v2, v3, v4 ⋯ , vr−1, vrg. Therefore, S0 can-
not produce a CGP on Cnðf1, rgÞ, and since we need to con-
vert at least dðr + 1Þ/2e = ðr + 1Þ/2 vertices of the path
fv1, v2, v3, v4 ⋯ , vr−1, vrg in order to convert it entirely, it
is impossible to convert Cnðf1, rgÞ if we initially convert less
than ðr + 1Þ/2 vertices at t = 0, which means C2ðCnðf1, rgÞÞ
> dðr + 1Þ/2e − 1.

From Case 1 and Case 2, we conclude that

C2 Cn 1, rf gð Þð Þ > r + 1
2

� �
− 1: ð8Þ

From (7) and (8), we conclude that C2ðCnðf1, rgÞÞ =
dðr + 1Þ/2e.

C3 Cn 1, rf gð Þð Þ: ð9Þ

In this subsection, we determine C3ðCnðf1, rgÞÞ for r =
2, 3. Then, we introduce an upper bound for C3ðCnðf1, 4gÞÞ.
Finally, we introduce an upper bound for C3ðCnðf1, rgÞÞ if
n ≥ 2ðr + 1Þ and n ≡ 0ðmod 2ðr + 1ÞÞ.

Theorem 8. For n ≥ 5, C3ðCnðf1, 2gÞÞ =

bn/3c + 1 if n ≡ 0, 1ðmod 3Þ,
dn/3e + 1 if n ≡ 2ðmod 3Þ:

(

Proof. We have C3ðCnðf1, 2gÞÞ ≥ 3, and we consider the fol-
lowing cases:

Case 1. n ≡ 0ðmod 3Þ:
Let S0 = fv3l : 1 ≤ l ≤ n/3g ∪ fv1g be the seed set of the

conversion process. It is obvious that S0 is of cardinality
ðn/3Þ + 1. The process goes as follows:

t = 0: we convert S0 = fv3l : 1 ≤ l ≤ n/3g ∪ fv1g
t = 1: we notice that jNðv2Þ ∩ S0j = jNðvn−1Þ ∩ S0j = 3

which means that the conversion spreads to fv2, vn−1g mak-
ing S1 = fv3l : 1 ≤ l ≤ n/3g ∪ fv1, v2, vn−1g

t = 2: we notice that jNðv4Þ ∩ S1j = jNðvn−2Þ ∩ S1j = 3 ;
therefore, the conversion spreads to fv4, vn−2g, which
makesS2 = fv3l : 1 ≤ l ≤ n/3g ∪ fv1, v2, v4, vn−2, vn−1g

The process goes on, and with each step, two new
(unconverted) vertices fvm, vn−dg are converted, where 5 ≤
m ≤ dn/2e and m ≢ 0(mod 3). Similarly, 4 ≤ d ≤ dn/2e and
m ≢ 0(mod 3). Which means, the next to last step is t = ðn/
3Þ − 1, and Sðn/3Þ−1 is defined as:

t = n
3 − 1 : Sn/3−1 =

V − vn/2+1f gif n is even ;
V − v n

2d e
n o

if n is odd:

8<
: ð10Þ

t = n/3: the conversion spreads to the last remaining ver-
tex vðn/2Þ+1 (or vdn/2e) if n is odd (or even), respectively, and
then the conversion is spread to all vertices of Cnðf1, 2gÞ
which makes S0 an I3CS of Cnðf1, 2gÞ. Therefore

C3 Cn 1, 2f gð Þð Þ ≤ n
3 + 1 if n ≡ 0 mod 3ð Þ: ð11Þ

Let vi, vi+1, vi+2 be three consecutive unconverted vertices
of Cnðf1, 2gÞ. At any step of the process, in order to convert
any of these three vertices, it needs to be adjacent to three
converted vertices. However, this is impossible since each
one of them is adjacent to the other two and they are all
unconverted, which means X = fvi, vi+1, vi+2g is 3-
unconvertable if X ∩ S0 =∅. We imply that any seed set of
cardinality n/3 on Cnðf1, 2gÞ should be distributed as one
of the following:

D0 = v3l : 1 ≤ l ≤
n
3

n o
,

B0 = v3l+1 : 0 ≤ l ≤
n
3 − 1

n o
,

E0 = v3l+2 : 0 ≤ l ≤
n
3 − 1

n o
:

ð12Þ

Let us assume that D0 is the seed set. The conversion
process goes as follows:

t = 0: we convert D0 = fv3l : 1 ≤ l ≤ n/3g
t = 1 : with the absence of any unconverted vertex that is

adjacent to three vertices of D0, then D1 =D0 which means
the spread stops at the end of step t = 0. Therefore, the pro-
cess fails. Without loss of generality, the same result can be
obtained if the seed set was B0 or E0, then:

C3 Cn 1, 2f gð Þð Þ > n/3 if n ≡ 0 mod 3ð Þ ð13Þ

From (11) and (13), we conclude that C3ðCnðf1, 2gÞÞ =
n/3 + 1 if n ≡ 0ðmod 3Þ:

Case 2. n ≡ 1ðmod 3Þ:
Similarly to Case 1, a seed set of cardinality bn/3c is not

enough to convert Cnðf1, 2gÞ: Let the seed set be S0 = fv3l :
1 ≤ l ≤ ðn − 1Þ/3g ∪ fvng. It is obvious that jS0j = ðn − 1Þ/3
+ 1 = bn/3c + 1. The process goes (similarly to Case 1) as
follows:

t = 0: we convert S0 = fv3l : 1 ≤ l ≤ ðn − 1Þ/3g ∪ fvng
t = 1: since jNðv1Þ ∩ S0j = jNðvn−2Þ ∩ S0j = 3, the conver-

sion spreads to fv2, vn−2g, whichmakesS1 = fv3l : 1 ≤ l ≤ ðn −
1Þ/3g ∪ fv1, vn−2, vng

t = 2: since jNðv2Þ ∩ S1j = jNðvn−3Þ ∩ S1j = 3, the conver-
sion spreads to fv2, vn−3g, whichmakes S2 = fv3l : 1 ≤ l ≤
ðn − 1Þ/3g ∪ fv1, v2, vn−3, vn−2, vng

The process goes on, and with each step, two new
(unconverted) vertices fvm, vn−dg are converted, where 4 ≤

5Journal of Applied Mathematics



m ≤ dn/2e and m ≢ 0(mod 3). Similarly, 5 ≤ d ≤ dn/2e and
m ≢ 0(mod 3), which means the next to last step is t = bn/3c
− 1, and Sbn/3c−1 is defined as:

t = n
3

j k
− 1 : S n

3b c−1 =
V − v n

2b c−1, v n
2b c+1

n o
if n is odd ;

V − vn/2−1, vn/2f gif n is even: 

8<
:

ð14Þ

t = bn/3c: the conversion spreads to the last two uncon-
verted vertices vdn/2e, vdn/2e+1 if n is odd, or vðn/2Þ−1, vðn/2Þ if n
is even. Either way, the process ends successfully at the end
of t = bn/3c which means S0 is an I3CS of Cnðf1, 2gÞ and C3
ðCnðf1, 2gÞÞ ≤ bn/3c + 1: However, since C3ðCnðf1, 2gÞÞ >
bn/3c, we conclude that C3ðCnðf1, 2gÞÞ = bn/3c + 1 if n ≡
1ðmod3Þ:

Case 3. n ≡ 2ðmod 3Þ:
Similarly to Case 1 and Case 2, C3ðCnðf1, 2gÞÞ > bn/3c

and in order to avoid getting any version of X on Cnðf1,
2gÞ, the seed set must take one of the following forms:

D0 = v3l : 1 ≤ l ≤ n/3b cf g ∪ x : x ∈ v1, vnf gf g,
B0 = v3l+1 : 0 ≤ l ≤

n
3

j k
− 1

n o
∪ x : x ∈ vn−2, vn−1f gf g,

E0 = v3l+2 : 0 ≤ l ≤
n
3

j k
− 1

n o
∪ x : x ∈ vn−1, vnf gf g:

ð15Þ

Let D0 be the seed set (of cardinality bn/3c + 1 = dn/3e).
The process goes as follows:

t = 0: we convert D0 = fv3l : 1 ≤ l ≤ bn/3cg ∪ fx : x ∈ fv1,
vngg. Whether x = v1 or x = vn, the conversion does not
spread to any vertex from V −D0 because no vertex of V −
D0 is adjacent to three vertices of D0

t = 1: D1 =D0, and the process fails. Without loss of
generality, the same result is obtained if the seed set was B0

or E0; therefore

C3 Cn 1, 2f gð Þð Þ > n
3

j k
+ 1 if n ≡ 2 mod 3ð Þ: ð16Þ

Let S0 = fv3l : 1 ≤ l ≤ bn/3cg ∪ fvn−1, vng be seed set of
cardinality bn/3c + 1 = dn/3e + 1. The process goes as follows:

t = 0: we convert S0 = fv3l : 1 ≤ l ≤ bn/3cg ∪ fvn−1, vng
t = 1: the conversion spreads to v1, vn−3
t = 2: the conversion spreads to v2, vn−4
Similarly to Case 1 and Case 2, by the end of each step,

two new (unconverted) vertices are converted, and the pro-
cess continues until the last step t = bn/3c when the last
two unconverted vertices which are fvn/2, vðn/2Þ−2g (in case
n is even), and fvbn/2c, vbn/2c−1g (in case n is odd) get con-
verted and then the conversion process reaches the entire
graph. We conclude that:

C3 Cn 1, 2f gð Þð Þ ≤ n
3

l m
+ 1 if n ≡ 2 mod 3ð Þ: ð17Þ

From (16) and (17), we conclude that C3ðCnðf1, 2gÞÞ =
dn/3e + 1 if n ≡ 2ðmod 3Þ:

From all the previous cases, we conclude the requested.

Proposition 9. A set of r + 1 consecutive unconverted vertices
in Cnðf1, rgÞ is 3-unconvertable.

Proof. Let there be a conversion process on Cnðf1, rgÞ, and
at the initial step t = 0, let the set X = fvi, vi+1, vi+r−1, vi+rg
be a set of r + 1 unconverted vertices. Every vertex of X is
of degree 4 and is adjacent to two other vertices of X. Since
k = 3, it is impossible for any of these vertices to satisfy the
conversion condition at any step of the conversion process
even if all the vertices of V − X get converted, which means
X is 3-unconvertble.

Theorem 10. For n ≥ 7 we have:

Proof.
Let S0 be the seed set of the conversion process. We

implied in Proposition 9 that the process fails if V − S0 con-
tains four (or more) consecutive vertices, which means S0
contains at least bn/4c vertices. Let D0, E0, L0, B0 be the fol-
lowing sets:

D0 = v4l : 1 ≤ l ≤
n
4

j kn o
,

E0 = v4l+1 : 0 ≤ l ≤
n
4

j k
− 1

n o
,

L0 = v4l+2 : 0 ≤ l ≤
n
4

j k
− 1

n o
,

B0 = v4l+3 : 0 ≤ l ≤
n
4

j k
− 1

n o
:

ð19Þ

In order to avoid having four consecutive unconverted
vertices, S0 must contain either D0, E0, L0, orB0. We assume
that D0 ⊆ S0; we notice that the vertices of D0 divide Cnðf1,

C3 Cn 1, 3f gð Þð Þ = 3n/8 ; n ≡ 0 mod 8ð Þ,/ n/4b c + n/8b c + 1 ; n ≡ 0, 1, 2 mod 4ð Þ and n ≢ 0, 1, 2 mod 8ð Þ;
:/ 3 n/8b c + 1 ; n ≡ 1, 2, 3 mod 8ð Þ,/ n/4b c + n/8b c + 2 ; n ≡ 3 mod 4ð Þ and n ≢ 3 mod 8ð Þ:ð Þ

�
ð18Þ
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3gÞ into bn/4c subgraph, each of which consists of four consec-
utive vertices, and only one of these vertices is converted at t
= 0. We denote these subgraphs by SGi : 1 ≤ i ≤ bn/4c, when:

SG1 = v1, v2, v3, v4f g,
SG2 = v5, v6, v7, v8f g,

⋮

SG n
2b c = vn−m−3, vn−m−2, vn−m−1, vn−mf g:

ð20Þ

We take into consideration that m ∈ f0, 1, 2, 3g if n ≡ 0, 1,
2, 3ðmod 4Þ, respectively. The last m vertices form a minis-
ubgraph of 1,2, and 3 vertices if n ≡ 1, 2, 3ðmod 4Þ, respec-
tively. We imply that for S0 =D0, the conversion does not
spread to any vertex of V − S0 because none of them is

adjacent to three vertices of S0 which means S1 = S0 =D0,
and the process fails. This means D0 ⊂ S0: Let Y = fvi, vi+1
, vi+2, vi+3, vi+4g be a set of five consecutive vertices where
the middle vertex vi+2 is the only converted vertex of Y ;
then the four unconverted vertices of Y form a 3-
unconvertable set on Cnðf1, 3gÞ and that is because each
of them is adjacent to two other unconverted vertices of
Y , which means there cannot be a step t when any of these
four vertices satisfies the conversion rule (being adjacent to
three or more converted vertices). We conclude that there
cannot be two consecutive subgraphs SGi, SGi+1, of the sub-
graphs identified previously, or else, a version of Y will be
created consisting of the last two vertices of SGi and the
first three vertices of SGi+1; this means that we need to
add at least one converted vertex to one of every two con-
secutive subgraphs. Therefore

We consider the following cases for n:

Case 1. n ≡ 0ðmod 4Þ. We consider two subcases:
Case 1.a. n ≡ 0ðmod 8Þ.
In this subcase, we have an even number of subgraphs

on Cnðf1, 3gÞ and m = 0. Let M0 be the following set:
M0 = fv2+8l : 0 ≤ l ≤ ðn/8Þ − 1g. Let S0 =D0 ∪M0 be the
seed set. It is obvious that jS0j = 3n/8. The conversion pro-
cess goes as follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ n/4g ∪ fv2+8l : 0 ≤ l ≤
ðn/8Þ − 1g

t = 1: the conversion spreads to fv1+8l, v3+8l, v5+8l, v7+8l
: 0 ≤ l ≤ ðn − 8Þ − 1g

t = 2: the conversion spreads to fv6+8l : 0 ≤ l ≤ ðn/8Þ − 1g
By the end of step t = 2, the conversion reaches all verti-

ces of Cnðf1, 3gÞ; therefore, S0 is an I3CS of Cnðf1, 3gÞ and
C3ðCnðf1, 3gÞÞ ≤ 3n/8, and from (21), we conclude that C3
ðCnðf1, 3gÞÞ = 3n/8 when n ≡ 0ðmod 8Þ.

Case 1.b. n ≡ 0ðmod 4Þ and n ≢ 0ðmod 8Þ.
This subcase is similar to subcase 1.a with the only differ-

ence of having an odd number of subgraphs. This means we
need to convert one additional vertex ðvn−2Þ. The conversion
process goes as follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fvn−2g

t = 1: the conversion spreads to fv1+8l, v3+8l, v5+8l, v7+8l
: 0 ≤ l ≤ bn/8c − 1gfvn−1g

t = 2: the conversion spreads to the remaining vertices
which are fv6+8l : 0 ≤ l ≤ bn/8c − 1g

Therefore, S0 is an I3CS of Cnðf1, 3gÞ and since jS0j =
bn/4c + bn/8c + 1, according to (21), we conclude that C3

ðCnðf1, 3gÞÞ = bn/4c + bn/8c + 1 if n ≡ 0ðmod 4Þ and n ≢ 0
ðmod 8Þ. Figure 4 illustrates an I3CS of 8 vertices on C20
ðf1, 3gÞ.

Case 2. n ≡ 1ðmod 4Þ. We consider two subcases:
Case 2.a. n ≡ 1ðmod 8Þ.
In this subcase, we have an even number of subgraphs

on Cnðf1, 3gÞ and m = 1. Let D0 and M0 be the same sets
identified in subcase 1.a. Let the seed set be N0 =D0 ∪M0.
In a similar process to the one in subcase 1.a, all vertices
of V − fvn−3, vn−2, vn−1, vn, v1g by the end of step t = 2. How-
ever, the five consecutive vertices vn−3, vn−2, vn−1, vn, v1 form
a version of Y which was identified in Theorem 8 as con-
taining a 3-unconvertable set. In addition to that, since tak-
ing out any vertex from D0 ∪M0 results in a version of
either X orY on Cnðf1, 3gÞ, we conclude that C3ðCnðf1,
3gÞÞ > 3bn/8c in this subcase. Let S0 =D0 ∪M0 ∪ fv1g be
the seed set of cardinality 3bn/8c + 1; the process goes as
follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fv1g

t = 1: the conversion spreads to fv1+8l, v3+8l : 1 ≤ l ≤ bn/
8c − 1g ∪ fv5+8l, v7+8l : 0 ≤ l ≤ bn/8c − 1g ∪ fvn−2g

t = 2: the conversion spreads to fv6+8l : 0 ≤ l ≤ bn/8c − 1g
which means vn−3 is converted at this step as well

t = 3: the conversion spreads to fv3, vng
By the end of step t = 3, the conversion reaches all verti-

ces of Cnðf1, 3gÞ; therefore, S0 is an I3CS of Cnðf1, 3gÞ, and
since jS0j = 3bn/8c + 1, we conclude that C3ðCnðf1, 3gÞÞ = 3
bn/8c + 1 if n ≡ 1ðmod 8Þ.

Case 2.b. n ≡ 1ðmod 4Þ and n ≢ 1ðmod 8Þ.

C3 Cn 1, 3f gð Þð Þ ≥
3 n

8
j k

if n ≡ 0, 1, 2, 3 mod 8ð Þ ;
n
4

j k
+ n

8
j k

+ 1 if n ≡ 0, 1, 2, 3 mod 4ð Þ and n ≢ 0, 1, 2, 3 mod 8ð Þ:

8><
>: ð21Þ
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This subcase is similar to subcase 2.a with the only differ-
ence of having an odd number of SGs. This means that sim-
ilarly to subcase 1.b, we need to convert one additional
vertex from this last subgraph ðvn−3Þ; the process goes as
follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fv1g

t = 1: the conversion spreads to fv1+8l, v3+8l : 1 ≤ l ≤ bn/
8c − 1g ∪ fv5+8l, v7+8l : 0 ≤ l ≤ bn/8c − 1g ∪ fvn−2g

t = 2: the conversion spreads to fv6+8l : 0 ≤ l ≤ bn/8c − 1g
t = 3: the conversion spreads to fv3, vn−4g
t = 4: the conversion spreads to fvn−3, vng
By the end of step t = 4, the conversion reaches all verti-

ces of Cnðf1, 3gÞ. Therefore, S0 is an I3CS of Cnðf1, 3gÞ, and
since jS0j = bn/4c + bn/8c + 1, this means C3ðCnðf1, 3gÞÞ =
bn/4c + bn/8c + 1 if n ≡ 1ðmod 4Þ and n ≢ 1ðmod 8Þ.

Case 3. n ≡ 2ðmod 4Þ. We consider two subcases:
Case 3.a. n ≡ 2ðmod 8Þ.
In this subcase, we have an even number of subgraphs on

Cnðf1, 3gÞ and m = 2. Let D0 and M0 be the same sets iden-
tified in subcase 1.a. Let the seed set be N0 =D0 ∪M0. In a
similar process to the one in subcase 1.a, all vertices of V
− fvn−4, vn−3, vn−1, vn, v1g by the end of step t = 2. However,
the five consecutive vertices vn−4, vn−3, vn−2, vn−1, vn form a
version of Y , and since taking out any vertex from D0 ∪
M0 results in a version of either X orY , we conclude that
C3ðCnðf1, 3gÞÞ > 3bn/8c in this subcase as well. Let S0 =D0
∪M0 ∪ fvng be the seed set of cardinality 3bn/8c + 1; the
process goes as follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fvng

t = 1: the conversion spreads to fv1+8l, v3+8l, v5+8l, v7+8l
: 0 ≤ l ≤ bn/8c − 1g ∪ fvn−1g which means v1,vn−3, vn−1 are
converted in this step

t = 2: the conversion spreads to fv6+8l : 0 ≤ l ≤ bn/8c − 1g
which means vn−4 is converted at this step

By the end of step t = 2, the conversion reaches all verti-
ces of Cnðf1, 3gÞ; therefore, S0 is an I3CS of Cnðf1, 3gÞ, and
since jS0j = 3bn/8c + 1, we conclude that C3ðCnðf1, 3gÞÞ = 3
bn/8c + 1 if n ≡ 2ðmod 8Þ.

Case 3.b. n ≡ 2ðmod 4Þ and n ≢ 2ðmod 8Þ.
By following the same argument in subcase 1.b and sub-

case 3.a, let S0 =D0 ∪M0 ∪ fvn−4g be the seed set of cardi-
nality bn/4c + bn/8c + 1; the process goes as follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fvn−4g

t = 1: the conversion spreads to the vertices fv1+8l, v5+8l,
v7+8l : 0 ≤ l ≤ bn/8c − 1g ∪ fv3+8l : 1 ≤ l ≤ bn/8c − 1g ∪ fvn−5,
vn−3, vn−1g which means v1,vn−5, vn−3, vn−1 are converted in
this step

t = 2: the conversion spreads to the vertices fv6+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fvng

t = 3: the conversion spreads to the last unconverted ver-
tex v3, and the entire graph is converted

We conclude that C3ðCnðf1, 3gÞÞ = bn/4c + bn/8c + 1 if
n ≡ 2ðmod 4Þ and n ≢ 2ðmod 8Þ.

Case 4. n ≡ 3ðmod 4Þ.
We consider two subcases:
Case 4.a. n ≡ 3ðmod 8Þ.
In this subcase, we have an even number of subgraphs on

Cnðf1, 3gÞ and m = 3. Let D0 and M0 be the same sets iden-
tified in subcase 1.a. Let the seed set be N0 =D0 ∪M0. In a
similar process to the one in subcase 1.a, all vertices of V
− fv1, v3, vn−5, vn−4, vn−2, vn−1, vng by the end of step t = 2.
However, the five consecutive vertices vn−5, vn−4, vn−3, vn−2,
vn−1 form a version of Y , and since taking out any vertex
from D0 ∪M0 results in a version of either X orY , we con-
clude that C3ðCnðf1, 3gÞÞ > 3bn/8c in this subcase as well.
Let S0 =D0 ∪M0 ∪ fvn−1g be the seed set of cardinality 3bn
/8c + 1; the process goes as follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fvn−1g

t = 1: vertices fv5+8l, v7+8l : 0 ≤ l ≤ bn/8c − 1g ∪ fv1+8l,
v3+8l : 1 ≤ l ≤ bn/8cg are converted, which means vn−4 is con-
verted at this step

t = 2: the conversion spreads to fv6+8l : 0 ≤ l ≤ bn/8c − 1g
which means vn−5 is converted at this step

t = 3: v3, vn−2 are converted
t = 4: v1, vn are converted
By the end of step t = 4, the conversion reaches all verti-

ces of Cnðf1, 3gÞ; therefore, S0 is an I3CS of Cnðf1, 3gÞ, and
since jS0j = 3bn/8c + 1, we conclude that C3ðCnðf1, 3gÞÞ = 3
bn/8c + 1 if n ≡ 3ðmod 8Þ.

Case 4.b. n ≡ 3ðmod 4Þ and n ≢ 3ðmod 8Þ. We consider
two subcases:

Case 4.b.1:n = 7.
This proof is equivalent to proving that C3ðC7ðf1, 3gÞÞ

= 3: It is obvious by definition that C3ðC7ðf1, 3gÞÞ ≥ 3. Let
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Figure 4: An I3CS of 8 vertices on C20ðf1, 3gÞ.
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S0 be a seed set of cardinality 3 and defined as S0 = fv1, v3,
v6g. The process goes as:

t = 0 : S0 = v1, v3, v6f g:
t = 1 : S1 = S0 ∪ v2, v7f g:
t = 2 : S2 = S1 ∪ v4, v5f g = V C7 1, 3f gð Þð Þ

ð22Þ

whichmeansC3ðC7ðf1,3gÞÞ≤3; therefore,C3ðC7ðf1,3gÞÞ=3:
Case 4.b.2:n ≥ 11.
Let S0 =D0 ∪M0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l ≤

bn/8c − 1g; then that would make the following nine vertices
vn−9, vn−8, vn−6, vn−5, vn−4, vn−2, vn−1, vn, v1 unconverted which
means creating several versions of A1, and the process fails.
Now let S0 =D0 ∪M0 ∪ fvxg be the seed set. We consider
the following options for vx :

(i) If vx ∈ fvn−9, vn−8, vn−6, vn−5g, then vn−2, vn−1, vn, v1
are four consecutive unconverted vertices; therefore,
they form a version of A1, and the process fails.
However, we notice that

(ii) If vx ∈ fvn−4, vn−2, vn−1, vn, v1g, then (vn−9, vn−8, vn−7,
vn−6, vn−5) form a version of Y , and since Y is 3-
unconvertable, then the process fails

(iii) If vx ∉ fvn−9, vn−8, vn−6, vn−5, vn−4, vn−2, vn−1, vn, v1g,
then vn−2, vn−1, vn, v1 form a version of A1,
(vn−9, vn−8, vn−7, vn−6, vn−5) form a version of Y ,
and the process fails

We conclude D0 ∪M0 ∪ fvxg cannot be a I3CS of Cnðf1,
3gÞ when n ≡ 3ðmod 4Þ and n ≢ 3ðmod 8Þ which means that
C3ðCnðf1, 3gÞÞ > bn/4c + bn/8c + 1 if n ≡ 2ðmod 4Þ and n ≢
2ðmod 8Þ.

Now let S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l ≤ bn/8c
− 1g ∪ fvn−5, vn−1g be the seed set of cardinality bn/4c + bn
/8c + 2; the process goes as follows:

t = 0: we convert S0 = fv4l : 1 ≤ l ≤ bn/4cg ∪ fv2+8l : 0 ≤ l
≤ bn/8c − 1g ∪ fvn−5, vn−1g

t = 1: the conversion spreads to fv1+8l, v3+8l : 1 ≤ l ≤ bn/
8c − 1g ∪ fv5+8l, v7+8l : 0 ≤ l ≤ bn/8c − 1g ∪ fvn−6, vn−4, vn−2g

t = 2: the conversion spreads to fv6+8l : 0 ≤ l ≤ bn/8c − 1g
∪ fv1g

t = 3 : the last two unconverted vertices v3, vn get con-
verted which means the entire graph is converted at the
end of this step

We conclude that S0 is an I3CS, and therefore, C3ðCnðf1,
3gÞÞ = bn/4c + bn/8c + 2 if n ≡ 3ðmod 4Þ and n ≢ 3ðmod 8Þ.

From all cases and subcases, we conclude the requested.

Theorem 11. For n ≥ 9:

C3 Cn 1, 4f gð Þð Þ ≤

2
n
5

j k
+ 2 if n ∈ 9; 14; 19f g ;

2
n
5

j k
if n ≡ 0, 5, 6, 7 mod 10ð Þ and n ∉ 16, 17f g ;

2
n
5

j k
+ 1 otherwise:

8>>>>><
>>>>>:

ð23Þ

Proof. We implied in Proposition 9 that the conversion pro-
cess fails if there are five consecutive unconverted vertices on
Cnðf1, 4gÞ at t = 0, which means the conversion seed set S0
cannot consist of less than bn/5c vertices. Let D0 = fv5l : 1
≤ l ≤ bn/5cg ; we assume that D0 ⊆ S0, and we notice that
the vertices of D0 divide the first 5bn/5c vertices of VðCn
ðf1, 4gÞÞ into bn/5c subgraphs, each of which consists of
four consecutive unconverted vertices followed by one con-
verted vertex. We denote them by SGi : 1 ≤ i ≤ bn/5c. The
two adjacent subgraphs SG3, SG4 together have two con-
verted vertices {v15, v20} and eight unconverted vertices
which are fv11, v12, v13, v14, v16, v17, v18, v19g. We notice that
the set U = fv12, v13, v16, v17g consists of four unconverted
vertices each of which is adjacent to two vertices of U which
means U is 3-unconvertable. Therefore, the process fails if
S0 =D0, Without loss of generality, the same argument
applies to any SGi, SGi+1 : 1 ≤ i ≤ bn/5c − 1. Let us now try
to find a configuration of converted vertices that prevents
having any unconvertable sets and at the same time guaran-
tees total conversion of SG3, SG4. We imply that converting
fv13, v15, v17, v20g and applying this configuration to the
neighboring subgraphs SG1, SG2, SG5, SG6 achieves the
requested for SG3, SG4 as shown in Figure 5.

Therefore, we apply this configuration to every two adja-
cent subgraphs. As for the remaining n − 10bn/10c, we will
need to convert additional vertices in order to convert them.
In that regard, we consider the following cases of n:

Case 1. n ≡ 0ðmod 10Þ:
Let S0 = fv3+10l, v5+10l, v7+10l, v10+10l : 0 ≤ l ≤ ðn/10Þ − 1g

be the seed set. The process goes as follows:
t = 0: we convert S0 = fv3+10l, v5+10l, v7+10l, v10+10l : 0 ≤ l

≤ ðn/10Þ − 1g
t = 1: the conversion spreads to fv1+10l, v4+10l, v6+10l,

v9+10l : 0 ≤ l ≤ ðn/10Þ − 1g
t = 2: the remaining unconverted vertices which are

fv2+10l, v8+10l : 0 ≤ l ≤ bn/8c − 1g get converted

By the end of step t = 2, the entire graph’s vertex set is
converted. We conclude that S0 is an I3CS of cardinality 2
n/5, which means C3ðCnðf1, 4gÞÞ ≤ 2n/5 if n ≡ 0ðmod 10Þ.
Figure 6 illustrates that C20ðf1, 4gÞ ≤ 8.

Case 2. n ≡ 1ðmod 10Þ:
Let S0 = fv3+10l, v5+10l, v7+10l, v10+10l : 0 ≤ l ≤ bn/10c − 1g

Ufv1g be the seed set. The process goes as follows:

t = 0 : S0 = v3+10l , v5+10l, v7+10l , v10+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
U v1f g,

t = 1 : S1 = S0 ∪
n
v1+10j, v4+10l , v6+10l, v9+10l : 1 ≤ j

≤
n
10

j k
, 0 ≤ l ≤

n
10

j k
− 1

o
U vnf g,

t = 2 : S2 = S1 ∪
n
v2+10l , v8+10d : 0 ≤ l ≤

n
10

j k
− 1, 1 ≤ d

≤
n
10

j k
− 1

o
U v4f g,

t = 3 : S3 = S2 ∪ v8, vn−2f g = V Cn 1, 4f gð Þð Þ:
ð24Þ
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Therefore, S0 is I3CS of Cnðf1, 4gÞ which means C3ðCn
ðf1, 4gÞÞ ≤ 2bn/5c + 1 if n ≡ 1ðmod 10Þ.

Case 3. n ≡ 2ðmod 10Þ:
Let S0 = fv3+10l, v5+10l, v7+10l, v10+10l : 0 ≤ l ≤ bn/10c − 1g

Ufvng be the seed set. The process goes as follows:

t = 0 : S0 = v3+10l, v5+10l , v7+10l, v10+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
U vnf g,

t = 1 : S1 = S0 ∪
n
v1+10j, v4+10l , v6+10l, v9+10t : 1 ≤ j ≤

n
10

j k
, 0 ≤ l

≤
n
10

j k
− 1, 0 ≤ t ≤

n
10

j k
− 2

o
,

t = 2 : S2 = S1 ∪ v2+10l, v8+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
,

t = 3 : S3 = S2 ∪ v1, vn−3f g = V Cn 1, 4f gð Þð Þ:
ð25Þ

Therefore, S0 is I3CS of Cnðf1, 4gÞ which means C3ðCn
ðf1, 4gÞÞ ≤ 2bn/5c + 1 if n ≡ 2ðmod 10Þ.

Case 4. n ≡ 3ðmod 10Þ:
Let S0 = fv3+10l, v5+10l, v7+10l, v10+10l : 0 ≤ l ≤ bn/10c − 1g

Ufvng be the seed set. The process goes as follows:

t = 0 : S0 = v3+10l, v5+10l , v7+10l, v10+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
U vnf g,

t = 1 : S1 = S0 ∪ v1+10l, v4+10l , v6+10l, v9+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
,

t = 2 : S2 = S1 ∪ v2+10l, v8+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
,

t = 3 : S3 = S2 ∪ vn−2, vn−1f g = V Cn 1, 4f gð Þð Þ:
ð26Þ

Therefore, C3ðCnðf1, 4gÞÞ ≤ 2bn/5c + 1 if n ≡ 3ðmod 10Þ.

Case 5. n ≡ 4ðmod 10Þ:
We consider the following subcases:
Case 5.a. n = 14.
Let the seed set be S0 = fv1, v4, v7, v9, v11, v13g which is of

cardinality 2bn/5c + 2. Then

t = 0 : S0 = v1, v4, v7, v9, v11, v13f g,
t = 1 : S1 = S0 ∪ v3, v5, v8, v14f g,
t = 2 : S2 = S1 ∪ v10, v12f g,
t = 3 : S3 = S2 ∪ v2, v6f g = V C14 1, 4f gð Þð Þ:

ð27Þ

Therefore, C3ðC14ðf1, 4gÞÞ ≤ 2bn/5c + 2.
Case 5.b. n ≥ 24 and n ≡ 4ðmod 10Þ:
Let the seed set be S0 = fv3+10l, v5+10l, v7+10l, v10+10l : 0 ≤

l ≤ bn/10c − 1gUfvn−2g. The process goes as follows:

t = 0 : S0 = v3+10l, v5+10l, v7+10l, v10+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
U vn−2f g,

t = 1 : S1 = S0 ∪
n
v1+10j, v4+10d , v6+10l, v9+10t : 1 ≤ j ≤

n
10

j k
, 1 ≤ d

≤
n
10

j k
− 1, 0 ≤ l ≤

n
10

j k
− 1, 0 ≤ t ≤

n
10

j k
− 2

o
,

t = 2 : S2 = S1 ∪ v2+10l , v8+10d : 0 ≤ l ≤
n
10

j k
− 1, 1 ≤ d ≤

n
10

j k
− 1

n o
,

t = 3 : S3 = S2 ∪ v1, v8, vn−5f g,
t = 4 : S4 = S3 ∪ v4, vn−1f g,
t = 5 : S5 = S4 ∪ vnf g =V Cn 1, 4f gð Þð Þ:

ð28Þ
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Figure 5: A configuration to convert SG3, SG4 starting with 8 converted vertices at t = 0.
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Figure 6: C20ðf1, 4gÞ ≤ 8.
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Therefore, C3ðCnðf1, 4gÞÞ ≤ 2bn/5c + 1 if n ≥ 24 and
n ≡ 4ðmod 10Þ.

Case 6. n ≡ 5ðmod 10Þ.
Let S0 = fv3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p ≤ bn/10c, 0 ≤

l ≤ bn/10c − 1g be the seed set. The process goes as follows:

t = 0 : S0 =
n
v3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p

≤
n
10

j k
, 0 ≤ l ≤

n
10

j k
− 1

o
:

t = 1 : S1 = S0 ∪
n
v1+10j, v4+10p, v6+10l, v9+10l : 1 ≤ j

≤
n
10

j k
, 0 ≤ p ≤

n
10

j k
, 0 ≤ l ≤

n
10

j k
− 1

o
:

t = 2 : S2 = S1 ∪ v2+10l, v8+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
:

t = 3 : S3 = S2 ∪ v1, vn−3f g =V Cn 1, 4f gð Þð Þ,
ð29Þ

which means C3ðCnðf1, 4gÞÞ ≤ 2n/5 if n ≡ 5ðmod 10Þ.

Case 7. n ≡ 6ðmod 10Þ:
We consider the following subcases:
Case 7.a. n = 16.
Let the seed set be S0 = fv3, v5, v7, v10, v13, v15, v16g which

is of cardinality 2bn/5c + 1. The process involves the follow-
ing steps:

t = 0 : S0 = v3, v5, v7, v10, v13, v15, v16f g,
t = 1 : S1 = S0∪ = v1, v4, v6, v9, v11, v14f g,
t = 2 : S2 = S1 ∪ v2, v8, v12f g =V C16 1, 4f gð Þð Þ:

ð30Þ

Therefore, C3ðC16ðf1, 4gÞÞ ≤ 2bn/5c + 1.
Case 7.b. n ≥ 26 and n ≡ 6ðmod 10Þ:
Let S0 = fv3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p ≤ bn/10c, 0 ≤

l ≤ bn/10c − 1g be the seed set. The process goes as follows:

t = 0 : S0 =
�
v3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p ≤ n/10b c, 0

≤ l ≤ n/10b c − 1
�
,

t = 1 : S1 = S0 ∪
n
v1+10j, v4+10j, v6+10l, v9+10l : 1 ≤ j

≤
n
10

j k
, 0 ≤ l ≤

n
10

j k
− 1

o
:

t = 2 : S2 = S1 ∪
n
v2+10l, v8+10d : 0 ≤ l ≤

n
10

j k
− 1, 1

≤ d ≤
n
10

j k
− 1

o
:

t = 3 : S3 = S2 ∪ v1, v8, vn−4f g:
t = 4 : S4 = S3 ∪ v4, vnf g =V Cn 1, 4f gð Þð Þ:

ð31Þ

We conclude that C3ðCnðf1, 4gÞÞ ≤ 2bn/5c if n ≥ 26 and
n ≡ 6ðmod 10Þ.

Case 8. n ≡ 7ðmod 10Þ. We consider the following subcases:

Case 8.a. n = 17.
Let the seed set be S0 = fv3, v5, v7, v10, v13, v15, v16g which

is of cardinality 2bn/5c + 1. The process involves the follow-
ing steps:

t = 0 : S0 = v3, v5, v7, v10, v13, v15, v17f g,
t = 1 : S1 = S0∪ = v4, v6, v9, v11, v14, v16f g,
t = 2 : S2 = S1 ∪ v1, v2, v8, v12f g =V C17 1, 4f gð Þð Þ:

ð32Þ

Therefore, C3ðC17ðf1, 4gÞÞ ≤ 2bn/5c + 1.
Case 8.b. n ≥ 27 and n ≡ 7ðmod 10Þ:
Let S0 = fv3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p ≤ bn/10c, 0 ≤

l ≤ bn/10c − 1g be the seed set. The process goes as follows:

t = 0 : S0 =
n
v3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p ≤

n
10

j k
, 0

≤ l ≤
n
10

j k
− 1

o
,

t = 1 : S1 = S0 ∪
n
v1+10j, v4+10j, v6+10l, v9+10l : 1 ≤ j ≤

n
10

j k
, 0

≤ l ≤
n
10

j k
− 1

o
,

t = 2 : S2 = S1 ∪
n
v2+10l, v8+10d : 0 ≤ l ≤

n
10

j k
− 1, 1

≤ d ≤
n
10

j k
− 1

o
,

t = 3 : S3 = S2 ∪ v1, v8, vn−5f g,
t = 4 : S4 = S3 ∪ v4, vn−1f g,
t = 5 : S5 = S4 ∪ vnf g =V Cn 1, 4f gð Þð Þ:

ð33Þ

Therefore, C3ðCnðf1, 4gÞÞ ≤ 2bn/5c if n ≥ 27 and n ≡ 7
ðmod 10Þ:

Case 9. n ≡ 8ðmod 10Þ. Let S0 = fv3+10p, v5+10p, v7+10l, v10+10l
: 0 ≤ p ≤ bn/10c, 0 ≤ l ≤ bn/10c − 1gUfvng be the seed set.
The process goes as follows:

t = 0 : S0 =
n
v3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p ≤

n
10

j k
, 0

≤ l ≤
n
10

j k
− 1

o
U vnf g,

t = 1 : S1 = S0 ∪
n
v1+10p, v4+10p, v6+10l, v9+10l : 0 ≤ p ≤

n
10

j k
, 0

≤ l ≤
n
10

j k
− 1

o
U vn−1f g,

t = 2 : S2 = S1 ∪ v2+10l, v8+10l : 0 ≤ l ≤
n
10

j k
− 1

n o
,

t = 3 : S3 = S2 ∪ vn−6, vn−2f g =V Cn 1, 4f gð Þð Þ:

ð34Þ

Therefore, C3ðCnðf1, 4gÞÞ ≤ 2bn/5c + 1 if n ≡ 8ðmod 10Þ.
Figure 7 illustrates that C28ðf1, 4gÞ ≤ 11.

Case 10. n ≡ 9ðmod 10Þ. We consider the following subcases:
Case 10.a. n = 9.
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Let the seed set be S0 = fv1, v3, v6, v8g which is of cardi-
nality 2bn/5c + 2. The process involves the following steps:

t = 0 : S0 = v1, v3, v6, v8f g,
t = 1 : S1 = S0∪ = v2, v7, v9f g,
t = 2 : S2 = S1 ∪ v4, v5f g = V C9 1, 4f gð Þð Þ:

ð35Þ

Therefore, C3ðC9ðf1, 4gÞÞ ≤ 2bn/5c + 2.
Case 10.b. n = 19.
Let the seed set be S0 = fv1, v3, v5, v7, v10, v13, v15, v17g

which is of cardinality 2bn/5c + 2. The process goes as
follows:

t = 0 : S0 = v1, v3, v5, v7, v10, v13, v15, v17f g,
t = 1 : S1 = S0 ∪ v2, v6, v9, v11, v14, v16f g,
t = 2 : S2 = S1 ∪ v12, v18f g,
t = 3 : S3 = S2 ∪ v8, v19f g,
t = 4 : S4 = S3 ∪ v4f g =V C19 1, 4f gð Þð Þ:

ð36Þ

Therefore, C3ðC19ðf1, 4gÞÞ ≤ 2bn/5c + 2.
Case 10.c. n ≥ 29 and n ≡ 9ðmod 10Þ:
Let S0 = fv3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p ≤ bn/10c, 0

≤ l ≤ bn/10c − 1gUfv1g be the seed set. The process goes
as follows:

t = 0 : S0 =
n
v3+10p, v5+10p, v7+10l, v10+10l : 0 ≤ p

≤
n
10

j k
, 0 ≤ l ≤

n
10

j k
− 1

o
∪ v1f g,

t = 1 : S1 = S0 ∪
n
v1+10j, v4+10j, v6+10l, v9+10l : 1 ≤ j ≤

n
10

j k
, 0

≤ l ≤
n
10

j k
− 1

o
,

t = 2 : S2 = S1 ∪
n
v2+10l, v8+10d : 0 ≤ l ≤

n
10

j k
− 1, 1

≤ d ≤
n
10

j k
− 1

o
,

t = 3 : S3 = S2 ∪ v8, vn−7f g,
t = 4 : S4 = S3 ∪ v4, vn−3f g,
t = 5 : S5 = S4 ∪ vn−2, vnf g,
t = 6 : S6 = S2 ∪ vn−1f g =V Cn 1, 4f gð Þð Þ:

ð37Þ

Therefore, C3ðCnðf1, 4gÞÞ ≤ 2bn/5c + 1 if n ≥ 29 and
n ≡ 9ðmod 10Þ:

From all the previous cases and subcases, we conclude
the requested.

Theorem 12. For n ≥ 2ðr + 1Þ and n ≡ 0ðmod 2ðr + 1ÞÞ
:C3ðCnðf1, rgÞÞ ≤ nr/ð2ðr + 1ÞÞ.

Proof. Proposition 9 implies that the conversion process
fails if there are r + 1 consecutive unconverted vertices
on Cnðf1, 4gÞ at t = 0. We divide the vertices of VðCnðf1,
rgÞÞ into n/2ðr + 1Þ subgraphs denoted by SGi : 1 ≤ i ≤ n/2
ðr + 1Þ. Now we try to find a configuration of converted
vertices of a random subgraph (SGi) at t = 0 so that when
applied to all the subgraphs, it results in converting all of
VðCnðf1, rgÞÞ: We consider the following cases for r:

Case 1. r is even. Let the configuration of converted vertices
we apply to SG1 at t = 0 be fvð1+2lÞ, vðr+4+2mÞ : 0 ≤ l ≤ r/2, 0
≤m ≤ ðr − 4Þ/2g. This means we convert r vertices from
each subgraph. As shown in Figure 8, in step t = 1, the con-
version spreads to fv2l : 0 ≤ l ≤ r/2, 0 ≤m ≤ ðr − 2Þ/2g. In the
following step t = 2, the conversion spreads to v2r+2. In step
t = 3, the conversion spreads to vr+2. In step t = 4, the config-
uration converts SG1 entirely.

Without loss of generality, by applying the same configura-
tion to all subgraphs, we form an I3CS of cardinality nrð2ðr
+ 1ÞÞ. We denote it by S0, and the process goes as follows:

t = 0 : S0 =
n
v 1+2lð Þ+i 2r+2ð Þ, v r+4+2mð Þ+i 2r+2ð Þ : 0 ≤ i ≤

n
2 r + 1ð Þ

− 1, 0 ≤ l ≤
r
2 , 0 ≤m ≤

r − 4
2

o
,

t = 1 : S1 = S0 ∪
n
v2l+i 2r+2ð Þ, vr+3+2m+i 2r+2ð Þ : 0 ≤ i ≤

n
2 r + 1ð Þ

− 1, 2 ≤ l ≤
r
2 , 0 ≤m ≤

r − 2
2

o
,

t = 2 : S2 = S1 ∪ vi 2r+2ð Þ : 1 ≤ i ≤
n

2 r + 1ð Þ
� �

,

t = 3 : S3 = S2 ∪ v r+2ð Þ+i 2r+2ð Þ : 0 ≤ i ≤
n

2 r + 1ð Þ − 1
� �

,

t = 4 : S4 = S3 ∪ v2+i 2r+2ð Þ : 0 ≤ i ≤
n

2 r + 1ð Þ − 1
� �

=V Cn 1, rf gð Þð Þ:
ð38Þ
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Figure 7: An I3CS of 11 vertices on C28ðf1, 4gÞ.
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Therefore, S0 is an I3CS which means C3ðCnðf1, rgÞÞ ≤
nr/2ðr + 1Þ if n ≡ 0ðmod 2ðr + 1ÞÞ and r is even.

Case 2. r is odd. Let the seed set be S0 = fv2l+ið2r+2Þ : 0 ≤ i ≤
n/2ðr + 1Þ − 1, 1 ≤ l ≤ rg. The process goes as follows:

t = 0 : S0 = v2l+i 2r+2ð Þ : 0 ≤ i ≤
n

2 r + 1ð Þ − 1, 1 ≤ l ≤ r
� �

,

t = 1 : S1 = S0 ∪ v 1+2lð Þ+i 2r+2ð Þ : 0 ≤ i ≤
n

2 r + 1ð Þ − 1, 0 ≤ l ≤ r
� �

,

t = 2 : S2 = S1 ∪ v2r+2+i 2r+2ð Þ : 0 ≤ i ≤
n

2 r + 1ð Þ
� �

= V Cn 1, rf gð Þð Þ:
ð39Þ

Therefore, S0 is an I3CS which means C3ðCnðf1, rgÞÞ
≤ nr/2ðr + 1Þ if n ≡ 0ðmod 2ðr + 1ÞÞ and r is odd.
Figure 9 illustrates how converting S0 at t = 0 results in
converting SG1 entirely at the end of step t = 2, taking into
consideration that vn−r+1 ∈ VðSGn/2ðr+1ÞÞ ∩ S0 and v1+3r ∈ V
ðSG1Þ ∩ S0.

Without loss of generality, the same argument applies to
all subgraphs. From Case 1 and Case 2, we conclude the
requested.

Data Availability

No data was used to support this study.
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Figure 8: A configuration to convert SG1 starting with r converted vertices when r is even.
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Figure 9: A configuration to convert SG1 starting with r converted vertices when r is odd.
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