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The maintenance and logistics support of aircraft are critical to the flight safety. The configuration and scheduling of air materials
are the basis of maintenance and logistics. This research establishes the model of air material scheduling problem and introduces
NSGA-II genetic algorithm with adaptive design to optimize the air material scheduling arrangement. This adaptive design
improves the local optimal solution problem of NSGA-II and makes the optimal scheduling of air materials more accurate. In
some cases, the improved NSGA-II algorithm is expressed to zero deviation, which is not achieved by other traditional
algorithms. The results of this research provide a solution with practical potential for aircraft material scheduling problem,
which is significantly superior to traditional methods.

1. Introduction

At present, civil aviation and transportation are important
driving forces to promote the economic and cultural devel-
opment of countries and regions. In recent years, the devel-
opment of my country’s aviation industry has also shown
the characteristics of high speed and high quality [1]. To
ensure the operational safety of the aviation industry and
further high-quality and rapid development, the advance-
ment of aviation logistics and maintenance is an extremely
important task [2]. When carrying out aircraft logistics sup-
port, unscientific air material configuration and scheduling
may lead to problems such as insufficient inventory,
increased maintenance costs, and reduced maintenance
quality. Therefore, how to further optimize air material
scheduling and reduce the occurrence of these problems
has been the focus of research in this field [3]. In order to
improve this problem and enhance the safety and mainte-
nance efficiency of aviation flight, this study studies the opti-
mization scheduling of air materials. For optimization
problems including aviation material scheduling problem,
genetic algorithm is a relatively mature optimization algo-
rithm. According to the characteristics of genetic inheritance
and evolution of biological genes, the algorithm encodes the
problems and elements that need to be optimized into DNA

and iterates continuously in a population until the optimal
solution is generated [4]. Genetic algorithms are faster and
more accurate than human computing for optimization
problems [5]. Based on the nature of genetic algorithm, this
research uses adaptive genetic algorithm to solve the optimi-
zation problem of air material scheduling, hoping to further
improve the efficiency of air material scheduling and reduce
costs.

2. Literature Review

In the maintenance and scheduling of aircraft and other air-
craft, a large number of researchers have explored from var-
ious aspects. Efthymiou et al. [6] introduced blockchain
technology into aircraft maintenance work. This research
increases data security through semistructured models and
optimizes the efficiency of data sharing and use. The value
of blockchain data storage is emphasized. Holkeri [7] con-
ducted a survey on the current outsourcing of aviation logis-
tics technology services and summarized the operation
status of related service providers in the aviation service out-
sourcing industry. The results show that the aviation logis-
tics technology service outsourcing industry is showing a
growing trend. The operator’s operating model proposes
proposals to improve efficiency and increase aviation safety.
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Qin et al. [8] studied the maintenance resource scheduling of
aircraft hangars and aircraft overhaul problems and pro-
posed a mixed integer linear programming model. It
describes the relationship between aircraft maintenance
and aircraft parking layout. The validity of the model tests
has shown that it provides a viable solution for large long-
running hangars. Wang et al. [9] developed a fault diagnosis
method using nonlinear mode decomposition technology
for the bearing fault diagnosis of aircraft engines under var-
iable speed scenarios. The experiment indicates that the
method adaptively estimate the instantaneous angular veloc-
ity according to the vibration signal of the aircraft engine,
and the estimation results are more reliable.

In the research and related applications of genetic algo-
rithm, there are many precedents for research and analysis.
Aiming at the phenomenon that there are few effective
methods for solving interval multiobjective optimization
problems, Gong et al. [10] created a solution that combined
ensemble GA. The researchers compared the solution with
the current mainstream solutions through an example of
car cab design and show that their solution is more efficient.
Researchers such as Aziz and Krichen [11] developed a task
scheduling algorithm suitable for the field of cloud comput-
ing. The algorithm is designed on the basis of GA to simulate
and optimize the task scheduling problem in the cloud com-
puting process. Their comparative experiment tells that the
ability of this genetic algorithm is higher than that of the task
scheduling algorithm commonly used before in this field.
Elbaz et al. [12] proposed a neural network system based
on genetic algorithm for the problem of life prediction and
replacement of shield machine parts. They optimized the
neural network structure through genetic algorithm, and
the system monitored various data of shield machine
through algorithm, which can predict the life of shield
machine parts with high accuracy. Kansal et al. [13] pro-
posed a cost-minimizing model for on-demand services
based on genetic algorithm to solve the question of current
cloud service pricing difficulties, which are difficult to fulfill
the users’ quests and the profitability of providers at the
same time. In the model, the genetic algorithm is used for
optimal evaluation of user requests and provider cases to
minimize costs. Experiment indicates that the model is more
efficient than existing pricing models. Among the many
applications of genetic algorithm, some researchers use it
for facility location optimization. In order to improve the
speed and quality of prehospital medical care in the medical
field, Golmakani and Eskandar [14] developed a location
selection system based on nondominated sorting GA for
the location of emergency centers. It helps to improve the
medical quality of emergency patients. Through literature
review, it is found that genetic algorithm has been applied
to optimization problems in various fields. This research
optimizes the main defects of genetic algorithm and
improves the performance and practicability of the algo-
rithm. At the same time, genetic algorithm is not widely used
in the field of air material scheduling, so it has potential
application. This research will introduce genetic algorithm
into this field and expand a new direction for the research
in this field.

3. Construction of Adaptive Genetic Algorithm
Applied to Optimal Scheduling of
Aviation Materials

3.1. Construction of an Improved Nondominated Sorting
Genetic Algorithm. Figure 1 is the operation flow of the
genetic algorithm. The principle is to encode the variable
space of the problem as chromosomes and to iteratively
evolve and finally obtain the optimal solution. First of all,
the genetic algorithm needs to perform a population initial-
ization operation. In this process, an initial population will
be randomly generated within the parameter range of the
problem space, and then the individual fitness of the popula-
tion is calculated. The fitness is expressed in the form of a
function and is generated by the objective function of solv-
ing the problem. The function of the fitness function is to
determine whether the individuals in the current population
have high fitness [15]. Population selection refers to leaving
individuals with higher fitness after the fitness function judg-
ment, simulating the process of fittest survivor in the process
of genetic evolution. After that, cross-mutation is performed,
the parental genes are combined and new individuals are
generated, and some gene values of the individuals are chan-
ged. In this process, the population will continue to evolve,
and the search will be biased towards better areas in the
space, and finally an optimal population will be calculated.
When solving the optimal solution problem, the individual
with the highest fitness function evaluation is the
answer [16].

At present, there are many optimization algorithms
under the category of genetic algorithms, among which the
nondominated sorting genetic algorithm II (NSGA-II) is a
mainstream algorithm, and NSGA-II is also used as the core
in the aviation material optimization scheduling model. The
main reason for choosing this algorithm is that it has good
convergence and fast convergence speed and is more effi-
cient in practical applications [17]. However, the NSGA-II
algorithm also has defects. The genetic step of the algorithm
uses fixed parameters, that is, the genetic parameters are
invariable, which leads to insufficient search performance
of the genetic algorithm, and it is often plagued by local
optima [18]. About the problem of insufficient search of
NSGA-II, an adaptive optimization scheme is proposed.
This optimization scheme adds an adaptive adjustment
mechanism to the crossover and mutation probability of
the NSGA-II algorithm, so that the probabilities can change
with the evolution process and the number of iterations,
thereby enhancing the search performance. The schematic
diagram of the crossover operator of NSGA-II under binary
coding is shown in Figure 2. The genetic algorithm com-
pletes the exchange of genes by randomly performing a cer-
tain number of crossover operations in the coding string.

The adaptive crossover operator in the genetic algorithm
generally adopts the strategy that the population evolution is
smaller in the early stage and becomes larger in the later.
This is because a small crossover probability can assure the
diversity of the population in the early stage. A small cross-
over probability in the later stage will lead to the population
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diversity. The individual differences are not obvious, so the
crossover probability needs to be increased. The adjustment
formula of crossover probability is shown in [19].

FC = ε −
2e−n/N•FC
e−n/N + 1 : ð1Þ

In Formula (1), FC is the fixed crossover probability of
the genetic algorithm, in which n is the current iteration
number, and N means the possible max iteration number.
FC is a parameter, and the value is set to 1.5 here. After
the crossover probability is adjusted, the mutation probabil-
ity is adjusted. A suitable mutation operator can avoid pre-
mature convergence of the algorithm and maintain
population diversity. Traditional NSGA-II generally uses a
small mutation probability. Therefore, in the early stage,
increasing the mutation probability of evolution can increase
the search speed of the genetic algorithm, and in the later
stage, the method of reducing the mutation probability can
be used to keep the population at a high quality for a long
time and higher the algorithm convergence speed. The
mathematical expression of the adaptive mutation operator
is shown in

FM = ε −
2e−n/N•FM
e−n/N + 1 : ð2Þ

Formula (2) is FM, the fixed mutation probability of the
genetic algorithm. In traditional NSGA-II, real number
encoding is performed by the analog binary crossover
method, which is an imitation of the single-point crossover
in binary encoding. The mathematical expression of the ana-
log binary crossover method is shown in

a1,j =
1
2 p2,j 1 − αð Þ + p1,j 1 + αð Þ
h i

,

a2,j =
p1,j 1 − αð Þ + p2,j 1 − αð Þ
h i

2 :

8>>><
>>>:

ð3Þ

In Formula (3), a1,j sum a2,j is the progeny chromosome,
p1,j and sum p2,j is the parent chromosome. α is a random

variable, and its value rule is shown in

α =
rand ∗ 2ð Þ1/1+η, rand ≤ 0:5

2 − rand ∗ 21/1+η
À Á−1, rand > 0:5

8<
: : ð4Þ

In Formula (4), rand means a random number. The
number is uniformly distributed in the range of greater than
0 and less than 1, η is representing a constant. After integra-
tion, the simulated binary crossover method can be
expressed as

a1/2 =
p1,j + p2,j
� �

± α p1,j − p2,j
� �

2 : ð5Þ

The search space of the simulated binary crossover
method is relatively small, so the local optimum problem is
prone to occur. In order to solve this problem, an evolution-
ary strategy formula is added to the simulated binary cross-
over method, and its expression is shown in [20].

y = σN 0, 1ð Þ + x: ð6Þ

In Formula (6), x is the current individual, y is the new
individual generated after processing, σ is the search step,
and Nð0, 1Þ indicates a random number that follows a stan-
dard normal distribution. By substituting the search step size
into the expression of the simulated binary crossover
method, the crossover operator combined with the evolution
strategy can be obtained, and its expression is shown in

a1/2 =
p1,j + p2,j
� �

± β p1,j − p2,j
� �

2 N 0, 1ð Þj j: ð7Þ

β in Formula (7) is a parameter. The relationship
between β and the parameter α is shown in

α = β• N 0, 1ð Þj j: ð8Þ

At the beginning of the improved cross-case crossover

Chaos initialization
population Encoded as chromosome Calculate fitness

Selection, crossover,
variationCalculate fitness

Decoding optimal
chromosome

Are the final conditions met?

Gen+1

Y

N

Figure 1: The running process of the genetic algorithm.
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process, a random number that is uniformly distributed
between 0 and 1 needs to be generated, and the operation
is carried out according to the size of the random number.
The operation process is shown in

a1,j =
p1,j + p2,j
� �

+ β p1,j − p2,j
� �

2 N 0, 1ð Þj j

a2,j =
p1,j + p2,j
� �

− β p1,j − p2,j
� �

2 N 0, 1ð Þj j

8>>>><
>>>>:

, rand ≤ 0:5,

a1,j =
p1,j + p2,j
� �

− β p1,j − p2,j
� �

2 N 0, 1ð Þj j

a2,j =
p1,j + p2,j
� �

+ β p1,j − p2,j
� �

2 N 0, 1ð Þj j

8>>>><
>>>>:

, rand ≤ 0:5:

ð9Þ

So far, the optimization of the NSGA-II genetic algo-
rithm has been completed. The optimization algorithm has
made improvements in search efficiency and optimization
ability.

3.2. Construction of Optimal Scheduling Model for Aviation
Materials. After completing the construction of the genetic
algorithm, the research must construct the optimal schedul-
ing model of aviation materials and its objective function. As
an important component of aircraft maintenance resources,
aviation material scheduling has a high priority in mainte-
nance support. In fact, aviation material scheduling mainly
deals with the allocation problem and the transportation
assignment problem, and these two problems’ nature could
be considered as finding the optimal answer. Therefore, it
is appropriate to use the genetic algorithm as the core algo-
rithm of the aviation material optimal scheduling model.
From the perspective of demand, the main elements of avia-
tion material scheduling tasks include the quantity, type, and
time of aviation materials. The demand analysis of aviation
material scheduling is shown in Figure 3.

Tasks such as aircraft maintenance have specific require-
ments on the quantity, type, and time of aviation materials.
The scheduling of aviation materials should prearrange the
storage of aviation materials and reasonably plan transporta-
tion problems according to the needs [21]. In actual opera-
tion, it is difficult to completely avoid the conflict of

aviation material requirements from different locations, but
it is still necessary to minimize the negative impact of con-
flicts and conflicts through scientific scheduling. In order
to minimize the negative impact of aviation material con-
flicts, aviation material scheduling issues need to follow spe-
cific principles and requirements. The relevant principles
and requirements of the aviation material scheduling prob-
lem are shown in Figure 4.

The requirement of aviation material scheduling is
essentially to combine the configuration and deployment of
aviation materials. This operation method allows managers
to configure aviation materials from a global perspective,
and the management composition of aviation materials can
be more easily subdivided. At present, the airfreight industry
is expanding, and the fleet size is also becoming larger and
more complex. An aviation material management model
that combines the configuration and deployment of aviation
materials is necessary. Managers need to pay attention to the
real-time update and replenishment of aviation material
inventory, the limitation of transportation conditions, and
the ability to respond to emergency missions [22]. When
building the optimal scheduling model for aviation mate-
rials, three limiting rules are designed according to the actual
situation. First, in a scheduling cycle, each aviation material
warehouse can only achieve one-way transportation, and
there are no restrictions on the types of aviation materials
to be transported. Secondly, an aviation material transporta-
tion must be able to be completed within a scheduling cycle.
Finally, different cost levels are designed in the cost calcula-
tion. The management costs, transportation costs, and
downtime costs at different maintenance points of different
aviation material warehouses should be calculated according
to different levels. In the problem of aviation material sched-
uling, the most basic principle is the principle of minimum
cost of aviation material configuration, that is, under the
premise of not affecting the quality and speed of work, the
storage and transportation costs of aviation materials should
be minimized. Therefore, the objective function is first con-
structed according to the principle of minimum cost, and the
mathematical expression of the objective function is shown
in [23].

C =min ωj 〠
T

t=1
〠
M

i=1
〠
N

k=1
TtViRk + F + 〠

M

i=1
〠
N

l=1
〠
N

k=1
〠
T

t=1
TtViRk ∗ ylk 〠

T

t=1
Ttxlk

 ! !" #
:

ð10Þ

Multi point crossover

Single point crossover

Figure 2: Crossover operator under binary coding.
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In Formula (10), N represents the total number of ware-
houses storing aviation materials, M is the total number of
types of aviation materials, and T represents the scheduling
cycle of aviation materials. In addition, ωj is the matrix ele-
ment of aviation material management cost, TtViRk is the
matrix element of aviation material scheduling, ylk is the cost
matrix element of transportation distance, Ttxlk is the judg-
ment matrix element of aviation material scheduling, and F
represents the aviation material penalty function. The func-
tion of the penalty function is to generate huge downtime
costs and implement a preset penalty mechanism when the
time window requirements of the scheduling task cannot
be fulfilled. Here the penalty function is represented by lin-
ear, and its mathematical expression is shown in [24].

F =
0 , TtVki ≤ TtHkh

A TtVki − TtHkhð Þ , TtVki > TtHkh

(
: ð11Þ

In Formula (11), TtVki represents the time Tt from the
warehouse k to the task location of the aviation material in
the scheduling period, TtHkh represents the execution time
of the scheduling task of the aviation material, and A is the
penalty coefficient for the delay of the task time. After defin-
ing the objective function and penalty coefficient of the avi-
ation material scheduling model, it is also necessary to define
the aviation material warehouse supply, aviation material
demand, and scheduling matrix of the model. See Formula
(12) for the supply matrix of aviation materials.

S =

SV11 SV12 ⋯ SV1N

SV21 SV22 ⋯ SV2N

⋯ ⋯ ⋯ ⋯

SVM1 SVM2 ⋯ SVMN

0
BBBBB@

1
CCCCCA: ð12Þ

In Formula (12), SVmn represents the quantity of avia-
tion material types in the n aviation material storage ware-
house m. In the actual operation of the aviation material

warehouse, the maintenance tasks of different warehouses
are different, so the mathematical description of the aviation
material demand matrix is carried out in one warehouse as a
unit, and its expression is shown in

HaV =

HV11 HV12 ⋯ HV1N

HV21 HV22 ⋯ HV2N

⋯ ⋯ ⋯ ⋯

HVM1 HVM2 ⋯ HVMN

0
BBBBB@

1
CCCCCA: ð13Þ

In Formula (13), HVmn represents the demand for the
types of aviation materials n in the maintenance tasks in
the aviation m materials warehouse a. Based on the demand
matrix and actual statistical data, the demand quantity of a
maintenance point for a specific aviation material can be
described as

ASVan = 〠
M

m=1
HVmn: ð14Þ

In Formula (14), ASVan is the meaning in the a demand
statistics of aviation material types by the aviation material
warehouse n. Finally, it is necessary to complete the estab-
lishment of the scheduling matrix of the aviation material
scheduling model. Scheduling refers to the act of urgently
deploying and transporting aviation materials between ware-
houses in order to allocate aviation materials from ware-
houses with sufficient supplies to warehouses with
shortages. When the demand of the aviation material ware-
house exceeds the supply, there will be a shortage of mate-
rials. Figure 5 is the aviation material scheduling matrix in
a three-dimensional matrix form.

The three-dimensional matrix TtVnRam represents the
dispatch quantity of the aviation material types n trans-
ported m from the aviation material warehouse to the avia-
tion material warehouse in the scheduling a period t.
According to the three-dimensional matrix of aviation
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Figure 3: Demand analysis diagram of aviation material scheduling.
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material scheduling, the statistical expression of the number
t of aviation material types after the scheduling period n is
shown in

〠
M

m

TtVnRam = TtBSVan: ð15Þ

In Formula (15), TtBSVan represents the total number of
aviation material types t in the aviation material warehouse
a after the end of the first scheduling cycle n.

4. Performance Test and Analysis of Adaptive
Genetic Algorithm for Optimal Scheduling of
Aviation Materials

To comprehensively evaluate the aviation material schedul-
ing model, it is necessary to start from the performance of
the genetic algorithm and the performance of the aviation
material scheduling model in practical applications. The
improved NSGA-II genetic algorithm is the core of the avi-
ation material scheduling model, and its performance
directly affects the results of the aviation material scheduling
operation. First, the algorithm is evaluated from the adaptive
situation of the improved crossover and mutation operators
of NSGA-II. The results are shown in Figure 6.

Figure 6(a) is the crossover probability adaptive function
curve of the improved NSGA-II algorithm, and Figure 6(b)
is the mutation probability adaptive function curve. Observ-
ing the change of the crossover probability with the number
of iterations, the crossover probability takes a small value at
the initial stage of the algorithm, which is 0.401, and shows a
gradually increasing trend with the increase of the number
of iteration steps. This change shows the adaptive ability of
the crossover operator. The crossover probability is small

to maintain the diversity at first, and in the later stage, the
crossover probability is increased to increase the individual
differences. Observing the similarity coefficient, it is found
that the observation coefficient takes a value below 0.4 in
the first five iterations, and then fluctuates in the interval
of 0.4 to 0.8. This situation occurs because the population
at the early stage of the iteration has not been crossed and
changed, and the similarity is low. With the increasing iter-
ation number, the similarity also increases rapidly and
shows a certain decrease with the increase of the crossover
probability. Observing the variation of mutation probability
and stagnation coefficient with the number of iteration steps,
the results show that the stagnation phenomenon will evolve
within five times in the first 32 iterations, indicating that the
adaptive design of the mutation operator has a good effect,
and the population is in the mutation calculation. Under
the influence of subinfluence, it can break through the bot-
tleneck stage of the algorithm at a faster speed. After evalu-
ating the performance of adaptive crossover and genetic
operators, the next step is to test the fitness changes of the
algorithm in iterations. The test results are shown in
Figure 7.

Figure 7 shows the fitness change of the improved
NSGA-II algorithm with the increase of iteration steps.
The figure includes the fitness curve and average fitness
curve of the optimal individual in the population. In addi-
tion, the adaptation of the traditional NSGA-II algorithm
is also added in degree curve for comparison. Since the
improved NSGA-II is used for aircraft material scheduling,
the ordinate is based on the cost of scheduling, and the lower
the index, the better the algorithm fitness. The optimal indi-
vidual fitness of the improved NSGA-II algorithm is signifi-
cantly better than the fitness of traditional NSGA-II
algorithm, and the optimal individual fitness of the
improved algorithm reaches the global optimal solution in
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Figure 4: Schematic diagram of aviation material scheduling requirements.
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the eleventh iteration. The optimal solution of the improved
algorithm is 27.3, and the optimal solution obtained by the
traditional algorithm is 33.9. From the average fitness curve,
the average fitness curve of the improved NSGA-II shows an
obvious convergence trend, and the average fitness of the
improved NSGA-II algorithm is better than the optimal
individual fitness of the traditional NSGA-II algorithm.
Approximation, combined with the optimal fitness of the
improved algorithm, is not difficult to see that the overall fit-
ness of the improved algorithm is significantly higher than
that of the traditional algorithm. Among the factors affecting
the performance of the genetic algorithm, the population
size of the algorithm is more important. The time-
consuming and optimization accuracy of the algorithm will
change greatly with the change of the population size. There-
fore, the performance of the algorithm under different pop-
ulation sizes is tested and determined. An optimum
population size is necessary. The performance changes of
the algorithm under different population sizes are shown
in Figure 8.

Figure 8(a) is the variation of the error accuracy with the
population size of the algorithm, and Figure 8(b) is the var-
iation of the algorithm simulation time with the population
size. In this test, the traditional NSGA-II algorithm is also
used as a comparison. From the perspective of error accu-
racy, the optimization accuracy of the improved NSGA-II
shows a certain fluctuation, but overall it increases when
the population size increases. When the population size is
40, the optimization accuracy reaches 0.0236. The minimum
error accuracy of the improved algorithm is 0.0135, and the
population size is 25. In comparison, the error accuracy of
the improved algorithm is always lower than traditional
algorithm error accuracy under the same scale, which shows
that the improved algorithm has smaller error than tradi-
tional algorithm. From the perspective of simulation time,
the time required for simulation also increases with the
increase of the scale. When the population size is 5, the sim-
ulation time of the improved is 27.8 seconds, which is the
shortest. Considering the error accuracy and simulation
time, the performance of the improved algorithm is more
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Figure 5: Schematic diagram of the three-dimensional matrix of aviation material scheduling.
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suitable when the population size is 20. Finally, the perfor-
mance of the improved NSGA-II genetic algorithm is com-
prehensively tested through the performance of the
algorithm in the actual optimization case. The test results
are shown in Figure 9.

Figure 9(a) is the comparison of the running time of dif-
ferent algorithms, Figure 9(b) is the evolution iterations of
the two algorithms, and Figure 9(c) is the deviation of the
two algorithms. It can be figured that the completion time
and deviation of the improved NSGA-II have obvious
advantages against the traditional NSGA-II. In case 1 and
case 2, the deviation degree of the improved NSGA-II is 0.
In other cases, the deviation degree of the improved
NSGA-II is also significantly smaller than the degree of tra-

ditional NSGA-II, which again shows the improvement
against the traditional algorithm, and the optimization per-
formance of the NSGA-II algorithm has been greatly
improved. The completion time of the improved algorithm
in each case is less than that of the traditional algorithm,
and the difference between the two is the largest in case 4.
The completion time of the improved algorithm is 66 sec-
onds, which is 13 seconds less than the traditional algorithm.
This shows that while the optimization ability is improved,
the calculation speed of the improved algorithm also has cer-
tain advantages. After testing the performance of the
improved NSGA-II genetic model, the practical application
of the aircraft material optimization scheduling model is
tested. The research selects 11 aviation material scheduling
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tasks and conducts simulation tests through the improved
MSGA-II algorithm. The results are shown in Figure 10.

Figure 10 tests the optimal scheduling model of aviation
materials based on the adaptive genetic algorithm with the
probability of occurrence of downtime of aircraft mainte-
nance work as the measurement index. In addition, the anal-
ysis is carried out using the occurrence of actual downtime
incidents in the corresponding event as a comparison. The
simulation results of the aviation material optimization

scheduling model are better than the actual processing
results of the events in all events, which shows that the
model has better scheduling ability than the current avia-
tion material scheduling model, and this advantage is rel-
atively stable. The aircraft material optimization
scheduling model based on adaptive genetic algorithm
has a minimum occurrence rate of downtime accidents
of 0.06%, while the actual occurrence probability in the
same event is 0.14%.
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Figure 10: The performance of the aviation material optimization scheduling model in practical applications.
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5. Conclusion

In the process of aviation material scheduling, when the
inventory of aviation materials is insufficient or cannot be
transported in time, it may lead to serious losses. Aiming
at this problem, this study proposes an optimized scheduling
model for aviation materials based on improved NSGA-II
genetic model and analyzes NSGA-II which is adaptively
designed. The performance test results of the aviation mate-
rial scheduling model indicates that the improved NSGA-II
as the core obtains an optimal solution of 27.3 in the test,
while the traditional algorithm is 33.9, and the improved
algorithm has advantages. In the actual optimization case,
the deviation degree of the improved NSGA-II genetic is at
least 0. Besides, the algorithm’s deviation degree in all cases
is smaller than that of conventional algorithm. In the practi-
cal application experiment of the aviation material optimiza-
tion scheduling model, the aviation material optimization
scheduling model based on the adaptive genetic algorithm
has the lowest occurrence rate of downtime accidents of
0.06%, while the actual occurrence probability in the current
aviation material scheduling model is 0.14%. From the
results, this research improved the local optimal solution
problem of the traditional NSGA-II genetic algorithm by
introducing an adaptive mechanism and improved its per-
formance. The improved algorithm is applied to the air
material scheduling problem. The algorithm shows relatively
reliable performance and effectively optimizes the correct-
ness and efficiency of air material scheduling. There is still
room for improvement in this study. The single task of the
aviation material optimization scheduling model based on
the adaptive genetic algorithm is only in one scheduling
cycle. If the possibility of a single task spanning multiple
cycles is taken into account in the scheduling model, the
scheduling results of the model can be further optimized,
which is the direction of further research.
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