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We provide sufficient conditions for the existence of periodic solutions for an idealized electrostatic actuator modeled by the Liénard-
type equation €x + FDðx, _xÞ + x = βV 2ðtÞ/ð1 − xÞ2, x ∈ �−∞,1½ with β ∈ℝ+,V ∈ Cðℝ/TℤÞ, and FDðx, _xÞ = κ _x/ð1 − xÞ3, κ ∈ℝ+ (called
squeeze film damping force), or FDðx, _xÞ = c _x, c ∈ℝ+ (called linear damping force). If FD is of squeeze film type, we have proven that
there exists at least two positive periodic solutions, one of them locally asymptotically stable. Meanwhile, if FD is a linear damping
force, we have proven that there are only two positive periodic solutions. One is unstable, and the other is locally exponentially
asymptotically stable with rate of decay of c/2. Our technique can be applied to a class of Liénard equations that model several
microelectromechanical system devices, including the comb-drive finger model and torsional actuators.

1. Introduction

This paper presents a mathematical study of the existence and
stability of periodic solutions of a Liénard-type equation that
describes the motions of the movable plate (movable elec-
trode) in an idealized parallel-plate electrostatic actuator, now-
adays known as the Nathanson model. This actuator is an
example of a large set of devices composed of microscale
(one or more of their dimensions are in the micrometers
range) mechanical and electronic elements integrated in a
common silicon substrate. This recent technology, known in
the literature as microsystem technology (MST) or microelec-
tromechanical systems (MEMS), has become very successful
in the commercial front (a complete and recent survey of
MEMS literature with applications can be found in [1]). Due
to their size, they can fit in several devices such as TVs, micro-
waves circuits, cardiac pacemakers, pressure sensors, acceler-
ometers and gyroscopes for automobiles, and wearable
electronic devices [2]. Examples of MEMS are the acceleration
sensor and scanner developed and produced by Bosch [3, 4].
The mathematical formulation of the Nathanson model was
initially presented in 1967 by the American electrical engineer
H. C. Nathanson et al. [5]. The study focuses on the structural

instability phenomenon which results from the variations in
voltage load and leads to a saddle-node bifurcation, called
pull-in. After more than 50 years, the Nathanson model con-
tinues to draw a lot of attention. Many researchers have been
devoted to its analytical and numerical study, mainly to under-
standing and characterizing the pull-in phenomenon through
different techniques and mathematical formulations (see for
instance [1, 2, 6–10]).

The fundamental configuration of the Nathanson model
assumes rectangular electrodes. One stationary and the other
are allowed to move. The electrodes can have any shape, but
for simplicity, rectangular electrodes are more commonly
used. If d is the initial distance between the electrodes and
both are biased by a voltage V , then an electrostatic force
will be generated which pulls the movable electrode.

If the schematic diagram of the Nathanson model is like
the one shown in Figure 1, the electrostatic force FEðτ, x̂Þ
acting on the movable electrode is expressed as

FE τ, x̂ð Þ = εAV2 τð Þ
2 d − x̂ð Þ2

, x̂ ∈ −∞, d� ½, ð1Þ
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where τ is an independent variable related to time, VðτÞ is
the potential difference between the two plates, A is the area
of the plate that is facing the other, ε is the dielectric con-
stant of the medium in between the plates, and x̂ is the posi-
tion of the movable electrode with respect to d. The other
forces involved are the restoring FRðx̂Þ and the damping
force F̂Dðx̂, x̂′Þ, where x̂′ represents the induced velocity of
the movable electrode. For the restoring force, we have con-
sidered a linear stiffness force, in such case FRðx̂Þ = kx̂ with
k > 0, and for the damping force, two types were considered:

F̂D x̂, x̂′
� �

=~cx̂′,  linear dampingð Þ, ð2Þ

F̂D x̂, x̂′
� �

= γ

d − x̂ð Þ3
x̂′,  squeeze film dampingð Þ, ð3Þ

with ~c, γ ∈ℝ+. The first comes from simplifying the problem
to a moving sphere in fluid at a velocity x̂′. The second cor-
responds to the most common and dominant dissipation
mechanism in MEMS, which is related to the study of the
damping force on a microstructure with a big surface that
traps a fluid in a small space. When the plates separate, the
inner pressure is smaller than the outer pressure as shown
in Figure 2(a). When the plates get closer, the opposite

occurs, as seen in Figure 2(b). This effect is called squeeze
film damping, and it is significantly present in parallel plate
actuators, which have a proportionally bigger surface area in
comparison with the distance in between the plates. For
more details on damping in MEMS, see [2] and the refer-
ences therein.

Under the previous considerations and from Newton’s
second law, the equation of motion of the movable electrode
is given by the following second order nonlinear differential
equation:

mx̂″ + F̂D x̂, x̂′
� �

+ kx̂ = ϵAV2 τð Þ
2 d − x̂ð Þ2 , ð4Þ

where x̂″ = x̂″ðτÞ, represents the induced acceleration of the
position x̂ = x̂ðτÞ. The gravitational force is not considered
because it is too small compared to the electrostatic force
in microstructures. In order to reduce the number of param-
eters, we can normalize x̂ with respect to d and τ with
respect to T =

ffiffiffiffiffiffiffiffi
m/k

p
. Therefore, our nondimensional vari-

ables x and t satisfies

x̂ = xd, τ = tT , ð5Þ

V (τ)
x̂

d

FR 
FD (x , x´)ˆ ˆ ˆ

 

Figure 1: Parallel plate capacitor with one movable plate.

(a)

(b)

Figure 2: Squeeze film damping on parallel plate capacitors.
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and the corresponding nondimensional equation from (4) is

€x + FD x, _xð Þ + x = βV 2 tð Þ
1 − xð Þ2 , x ∈ −∞, 1� ½, ð6Þ

with

FD x, _xð Þ = T 2

md
F̂D xd, _xd

T

� �
, V tð Þ =V tTð Þ, and β = εA

2kd3
:

ð7Þ

Throughout this document, we consider a DC-AC
voltage source V ðtÞ of the form

V tð Þ = v0 + δv tð Þ, ð8Þ

with v0 ∈ℝ+ (DC-voltage source) and vðtÞ ∈ Cðℝ/TℤÞ
with zero average. Voltage V will also be nonnegative;
therefore, from now on we assume δ ∈ ½0,−v0/vmin½ where

vmax ≔ max
t∈ 0,T½ �

v tð Þ, vmin ≔ min
t∈ 0,T½ �

v tð Þ: ð9Þ

When the damping force F̂D is given by (2) (namely,
the linear damping force), the authors in [7, 9] present a
rigorous analysis of the existence and stability of exactly
two positive T-periodic solutions of (6) for the non-
conservative (~c ≠ 0) and for the conservative case (~c = 0),
respectively. In both papers, classical functional and topo-
logical techniques were employed such as the upper and
lower solution method, Leray-Schauder degree, and the
topological index of a periodic solution. As far as we are
aware, no papers have been published regarding the study
of periodic solutions of (6) when the damping force is
given by (3). Hence, this paper pursues two goals: firstly,
to provide an alternative and accurate stability criteria
for the two periodic solutions of (6) with linear damping
force, and secondly, to present sufficient conditions for
the existence and linear stability of periodic solutions of
(6) with under squeeze film damping force. We remark
that the techniques and ideas in this document can be
applied to study periodic motions in other MEMS devices
and microstructures, for example, torsional actuators,
comb-drive devices, atomic force microscope microcantile-
vers (see [2]), and the recent graphene-based Nathanson
model (see [11]).

We have divided the document into four sections: fol-
lowing the introduction, in Section 2, we developed the main
tools for the proofs. Sections 3 and 4 are devoted to state and
prove the main results. In addition, numerical validations
are provided to illustrate the results applied to (4) using
explicit values of the parameters taken from the specialized
literature [2]. Finally, to provide a self-contained manu-
script, we included an appendix in which we established
well-known results about the method of lower and upper
solutions for second order differential equations and multi-
plicity and stability of periodic solutions of Liérnard
equations.

2. Preliminary Results

Different approaches can be used to study the existence of
solutions of the boundary value problem:

€x + f t, x, _xð Þ = 0,
x 0ð Þ = x Tð Þ,  _x 0ð Þ = _x Tð Þ,

ð10Þ

for f : D⟶ℝ continuous function, where D ⊆ℝ × �l1,
l2½ ×ℝ is an open connected set with −∞≤ l1 ≤ l2 ≤∞. Topo-
logical degree, averaging method, and lower and upper solu-
tions are perhaps the most common used tools from
nonlinear analysis to address this problem. In this section,
we use the lower and upper solution method to obtain exis-
tence results for Liénard type families of (10). It is worth to
mention that if f is a T-periodic function in the variable t, then
all the solutions of (10) would be also T-periodic.

Theorem 1. Let ζ, η ∈ C2ð½0, T�Þ be a lower and an upper
solution of the boundary value problem (10) such that η ≤ ζ.
Define

E≔ t, x, yð Þ ∈Djt ∈ 0, T½ �, η tð Þ ≤ x ≤ ζ tð Þf g: ð11Þ

ð†Þ Assume that there exists N ≥ 0 such that j∂y f ðt, x, yÞ
j ≤N for all ðt, x, yÞ in E. Then for any solution uðtÞ of (10)
such that ηðtÞ ≤ uðtÞ ≤ ζðtÞ on ½0, T�, there exists R≔ RðNÞ
> 0 such that −R ≤ _uðtÞ ≤ R for all t in ½0, T�.

ð††Þ If the assumption in (†) holds. Let

W ≔ t, x, yð Þ ∈ Ejt ∈ 0, T½ �,−R ≤ y ≤ Rf g, ð12Þ

and assume that there exists M ≥ 0 such that for all
ðt, x, yÞ in W

∂x f t, x, yð Þ ≤M ≤
π

T

� �2
, σ tð Þ ≤ L, N ≤H Lð Þ, ð13Þ

for some L ∈ ½M, ðπ/TÞ2� where

σ tð Þ≔
f t, ζ tð Þ, _ζ tð Þ
� �

− f t, η tð Þ, _η tð Þð Þ
ζ tð Þ − η tð Þ ,

H Lð Þ = L −Mð Þffiffiffi
L

p cot T
ffiffiffi
L

p

2

 !
:

ð14Þ

Then, the boundary value problem (10) has at least
one solution ψ such that

η tð Þ ≤ ψ tð Þ ≤ ζ tð Þ, ∀t ∈ 0, T½ �: ð15Þ

Proof. The existence of N ≥ 0 such that j∂y f ðt, x, yÞj ≤N
and Theorem 13 (see Appendix) lead us to the conclu-
sion that there exists R > 0 such that for any solution
u1 of (10) and any solution u2, u3 of

€x ≥ f t, x, _xð Þ, x 0ð Þ = x Tð Þ,  _x 0ð Þ = _x Tð Þ, ð16Þ
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€x ≤ f t, x, _xð Þ, x 0ð Þ = x Tð Þ,  _x 0ð Þ = _x Tð Þ, ð17Þ
respectively, with ðt, uiðtÞ, _uiðtÞÞ in E also satisfies j _uiðtÞj
< R for all t in ½0, T� and i = 1, 2, 3. This proves the first
statement ð†Þ. The second statement ð††Þ follows the
same lines of the proof of Theorem 3.2 of Chapter 5 in
[12] relative to W.

Now, we consider the family of boundary value prob-
lems

€x + c t, xð Þ _x + K xð Þ = F tð Þ
G xð Þ , x 0ð Þ = x Tð Þ,  _x 0ð Þ = _x Tð Þ:

ð18Þ

where c : ½0, T� × I ⟶ R, K : I ⟶ R, G : I ⟶ R, F : ½
0, T�⟶ R be continuous functions, I ⊂ R. Define

ϕ xð Þ = K xð ÞG xð Þ, and 
Fmax = max

t∈ 0,T½ �
F tð Þ, Fmin = min

t∈ 0,T½ �
F tð Þ: ð19Þ

Following the notation of (10), we have

f t, x, _xð Þ = c t, xð Þ _x + K xð Þ − F tð Þ/G xð Þ: ð20Þ

Regarding the existence of periodic solutions of (18), we
lead to the following results.

Theorem 2. Assume that Fmin, Fmax ∈ ϕðIÞ, GðxÞ > 0 and
ϕðxÞ is decreasing with isolated critical points in I. Then,
(18) admits unique constant lower and upper solution ζ
and η, respectively, such that ζ ≤ η satisfying

ϕ ζð Þ = Fmax and ϕ ηð Þ = Fmin: ð21Þ

Moreover, there exists a solution φðtÞ of (18) such that

ζ ≤ φ tð Þ ≤ η, ∀t ∈ 0, T½ �: ð22Þ

Proof. Since ϕ is decreasing with isolated critical points in
I and Fmin, Fmax ∈ ϕðIÞ, then there exist unique solutions ζ,
η, in I for

ϕ ζð Þ = Fmax, and ϕ ηð Þ = Fmin, ð23Þ

respectively. Moreover, ζ ≤ η. Additionally, notice that

K ηð ÞG ηð Þ = Fmin ≤ F tð Þ ≤ Fmax = K ζð ÞG ζð Þ, ∀t ∈ 0, T½ �,
ð24Þ

which implies

K ηð Þ − F tð Þ/G ηð Þ ≤ 0 and K ζð Þ − F tð Þ/G ζð Þ ≥ 0: ð25Þ

It is equivalent to

f t, η, 0ð Þ ≤ 0 and f t, ζ, 0ð Þ ≥ 0: ð26Þ

Therefore, ζ ≤ η, and they are lower and upper solu-
tions, respectively.

Let

E≔ 0, T½ � × ζ, η½ � ×ℝ and N = max
0,T½ �× ζ,η½ �

c t, xð Þj j: ð27Þ

Notice that for all ðt, x, v1Þ, ðt, x, v2Þ ∈ E, it follows

f t, x, v1ð Þ − f t, x, v2ð Þj j = c t, xð Þj j v1 − v2j j ≤N v1 − v2j j:
ð28Þ

Then, the positive function ρðsÞ =Ns +max
E

j f ðt, x, 0Þj
satisfiesð∞

0

s
ρ sð Þ ds =∞ and  f t, x, vð Þj j ≤ ρ vj jð Þ, ∀ t, x, vð Þ ∈ E:

ð29Þ

Hence, f satisfies the Nagumo condition and Theorem 12
(see Appendix); we can conclude that there exists a solution
φ of (18) such that

ζ ≤ φ tð Þ ≤ η, ∀t ∈ 0, T½ �: ð30Þ

Theorem 3. Let Î ⊂ℝ and c : ½0, T� × Î ⟶ℝ, K : Î ⟶ℝ,
G : Î ⟶ℝ be differentiable functions and F : ½0, T�⟶ℝ
continuous.

ð‡Þ Assume that Fmin, Fmax ∈ ϕðÎÞ, GðxÞ > 0, and ϕ′ðxÞ
≥ 0 with isolated critical points in Î. Then, (18) admits
unique constant reversed-ordered upper and lower solutions
η, ζ, respectively, such that ϕðηÞ = Fmin and ϕðζÞ = Fmax.

ð‡‡Þ If the assumptions in ð‡Þ holds, define

Ê = 0, T½ � × η, ζ½ � ×ℝ,

N =max
Ê

c t, xð Þj j, â =max N , max
Ê

K xð Þ − F tð Þ/G xð Þj j
� �

,

ð31Þ

and let R the unique positive solution of

R − ln R + 1ð Þ = â ζ − ηð Þ: ð32Þ

Assume that there exists M > 0 such that

max
W

∂
∂x

c t, xð Þ _x + K xð Þ − F tð Þ
G xð Þ

� �				 				 ≤M ≤
π

T

� �2
, ð33Þ

where

W = t, x, yð Þ ∈ Ê		y ∈ −R, R½ �
 �
, ð34Þ
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and there exists L ∈ ½M, ðπ/TÞ2� such that

N ≤H Lð Þ, with H Lð Þ = L −Mð Þffiffiffi
L

p cot T
ffiffiffi
L

p

2

 !
: ð35Þ

Then, the boundary value problem (18) has at least one
solution ψ such that

η ≤ ψ tð Þ ≤ ζ, ∀t ∈ 0, T½ �: ð36Þ

Proof. Suppose that GðxÞ > 0 and ϕ′ðxÞ ≥ 0 with isolated
critical points in Î. This implies that there exists only one
pair of values ζ, η in Î such that

ϕ ζð Þ = Fmax,
ϕ ηð Þ = Fmin:

ð37Þ

Notice that η ≤ ζ because ϕ is monotone non-decreasing
function and Fmin ≤ Fmax. Additionally η, ζ are upper and
lower solutions of (18) because

f t, ζ, 0ð Þ = K ζð ÞG ζð Þ − F tð Þ
G ζð Þ = Fmax − F tð Þ

G ζð Þ ≥ 0, ∀t ∈ R,

f t, η, 0ð Þ = K ηð ÞG ηð Þ − F tð Þ
G ηð Þ = Fmin − F tð Þ

G ηð Þ ≤ 0, ∀t ∈ R,

ð38Þ

which proves part ð‡Þ. In order to prove part ð‡‡Þ, first
notice that

∂y f t, x, yð Þ		 		 = c t, xð Þj j ≤max
Ê

c t, xð Þj j =N , ∀ t, x, yð Þ ∈ Ê:
ð39Þ

with

Ê = 0, T½ � × η, ζ½ � × R: ð40Þ

Then, by Theorem 1 part ð†Þ, there exists R > 0 such
that for any solution uðtÞ of (18) such that η ≤ uðtÞ ≤ ζ
on ½0, T�, we have −R ≤ _uðtÞ ≤ R on ½0, T�, and following
Theorem 13 and its remark, the value R is the unique pos-
itive solution of

R − ln R + 1ð Þ = â ζ − ηð Þ: ð41Þ

Notice that by the mean value theorem:

σ tð Þ≔ f t, ζ, 0ð Þ − f t, η, 0ð Þ
ζ − η

≤max
W

∂x f t, x, yð Þj j ≤M ≤ L, ∀t ∈ 0, T½ �:

ð42Þ

Therefore, by Theorem 1, the boundary value problem

(18) has at least one solution ψ such that

η ≤ ψ tð Þ ≤ ζ, ∀t ∈ 0, T½ �: ð43Þ

2.1. Multiplicity and Stability of Periodic Solution for Duffing
Equations. We end this section by showing some results
about multiplicity and stability of periodic solutions for the
Duffing-type equation:

€x + c _x + g t, xð Þ = 0, ð44Þ

where c > 0 and g : ℝ × �l1, l2½⟶ℝ, −∞≤ l1 < l2 ≤∞, a
continuous function, T-periodic with respect to t, and
having a continuous partial derivative with respect to x.
The following notation will be used throughout the rest of
the paper.

The positive part of a given a function f is defined as
f +ðtÞ≔max f f ðtÞ, 0g:

(1) Given a pair of function f , g ∈ Lp½0, T�, we write
f ≻ g, if f ≥ g for almost every t and f > g in a
subset of positive measure

(2) Lpðℝ/TℤÞ: T-periodic function f ∈ Lp½0, T� with the
norm

fk kLp ≔ fk kLp 0,T½ �, p ∈ 1,∞½ �: ð45Þ

(3) For some p ∈ ½1,∞� and p∗ = p/ðp − 1Þ, KðqÞ denotes
the best Sobolev constant in the following inequality:

C uk k2Lq ≤ _uk k2L2 , ∀u ∈H1
0 0, T½ �ð Þ: ð46Þ

Let us start with some results over the linear differential
operator:

La : W ⟶ L1 0, Tð Þ
ω⟶ La ω½ � = €ω + c _ω + a tð Þω,

ð47Þ

where

W = ω ∈W2,1 0, Tð Þ: ω 0ð Þ = ω Tð Þ, _ω 0ð Þ = _ω Tð Þ
 �
, ð48Þ

c is a positive constant and a ∈ Γp,c, with

Γp,c = a ∈ Lp 0, Tð Þ: a − c2/4
� 


+
�� ��

Lp
< K 2p∗ð Þ

n o
, ð49Þ

for some p ∈ ½1,∞�:

Proposition 4. Suppose that a, a1, a2 ∈ Γp,c for some p ∈ ½0,
∞½. Then, we have the following conclusions:
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(1) Each possible T-periodic solution ω = ωðtÞ of
La½ω� = 0 is either trivial or different from zero
for each t ∈ ½0, T�

(2) If a2 ≻ a1, then Lai ½ω� = 0ði = 1, 2Þ cannot admit non-
trivial T-periodic solutions simultaneously

(3) La½ω� = 0 does not admit negative Floquet’s
multipliers

(i) If �a = 1/TÐ T0 aðtÞdt satisfies �a > c2/4, then La½ω� = 0
does not admit real Floquet’s multipliers, i.e.,
La½w� = 0 is elliptic and has no nontrivial T-peri-
odic solutions

The trivial solution ω ≡ 0 is locally exponentially asymp-
totically stable with rate of exponential decay c/2.

The proof of Proposition 4 can be found in several
papers, see, for example, [13–16]. It is worth pointing out
that the arguments in [14–16] are not precise but easy to
fix by choosing correctly the set Γp,c.

3. An Improvement for the Linear
Damping Case

In this section, we consider the Duffing equation:

€x + c _x + x = βV 2 tð Þ
1 − xð Þ2 , ð50Þ

with x ∈ �−∞,−1½: This equation corresponds to the
Nathanson model (6) with linear damping force FDðx, _xÞ =
c _x, c ≥ 0, and c ∈ R. The existence and stability of periodic
solutions of (50) have been considered in [9] for the case
c = 0 and also in [7] for c > 0. The results exposed here
respect to (50) have the purpose to combine the ideas
found in the mentioned papers and the results of Theorems
15 and 16 in the Appendix.

Theorem 5. Assume the following conditions:

(I) 0 <V 2
min <V 2

max ≤ 4/27β

(II) 1 − 2βV 2ðtÞ ∈ Γp,c and c2/4 + 2βV 2ðtÞ < 1 for all t
∈ ½0, T� and some p ∈ ½1,∞�

Then, Equation (50) has exactly two positive T-periodic
solutions ψ1 and ψ2 such that

η1 ≤ ψ1 tð Þ ≤ ζ1 ≤
1
3
≤ ζ2 ≤ ψ2 tð Þ ≤ η2, ∀t ∈ 0, T½ �, ð51Þ

with ηi, ζi, i = 1, 2 the corresponding solutions of

x 1 − xð Þ2 = βV 2
min and x 1 − xð Þ2 = βV 2

max, ð52Þ

in �0, 1½, respectively. Moreover, ψ1 is asymptotically stable,
and ψ2 is unstable.

Additionally, if

c2

4
< 1 − 3ζ1

1 − ζ1
, ð53Þ

then ψ1 is locally exponentially asymptotically stable with rate
of exponential decay c/2.

Proof. We divide the proof in 4 steps following the ideas
in [9].

Step 1: Constant lower and upper solutions
Equation (50) is Equation (18) with

c t, xð Þ = c, K xð Þ = x, G xð Þ = 1 − xð Þ2, F tð Þ = βV 2 tð Þ:
ð54Þ

In such a case, ϕðxÞ = KðxÞGðxÞ is given by ϕðxÞ = x
ð1 − xÞ2. Direct computations prove that ϕðxÞ is monotone
increasing in Î = �0, 1/3½ and monotone decreasing in I = �1
/3, 1½ with isolated critical points at x = 1/3 and x = 1. There-
fore, by the assumption ðIÞ and Theorems 2 and 3, it follows
directly that the solutions of

x 1 − xð Þ2 = Fmin,
x 1 − xð Þ2 = Fmax,

ð55Þ

provide constant upper solutions ηi, i = 1, 2 with 0 < η1 < 1/
3 < η2 < 1 and constant lower solutions ζi, i = 1, 2 with 0 <
ζ1 < 1/3 < ζ2 < 1, respectively. Moreover,

η1 < ζ1 ≤
1
3 ≤ ζ2 < η2 < 1: ð56Þ

Step 2: Existence of periodic solutions
Applying Theorem 2, there exists at least one T-periodic

solution ψ2 of (50) such that

ζ2 ≤ ψ2 tð Þ ≤ η2, ∀t ∈ 0, T½ �: ð57Þ

In order to apply Theorem 15 (part A) on the set

~E = t, xð Þ ∈ℝ × 0, 1/3� �jη1 ≤ x ≤ ζ1f g, ð58Þ

it is necessary to study the condition

∂xg t, xð Þ ≤ a tð Þ, ∀ t, xð Þ ∈ ~E, ð59Þ

for some function a such that a ≻ c2/4 and a ∈ Γp,c, some

p ∈ ½1,∞�, where gðt, xÞ = x − ððβV 2ðtÞÞ/ðð1 − xÞ2ÞÞ. Then, a
direct computation shows that

∂xg t, xð Þ = 1 − 2βV 2 tð Þ
1 − xð Þ3 < 1 − 2βV 2 tð Þ, ð60Þ

for all ðt, xÞ ∈ℝ × ½0, 1½. Let aðtÞ≔ 1 − 2βV 2ðtÞ, t ∈ℝ.
The previous inequality along with the assumptions (I) and
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(II) imply the inequality (59) with a ≻ c2/4, and a ∈ Γp,c for
some p ∈ ½1,∞�. This proves the existence of at least one
T-periodic solution ψ1 of (50) which is asymptotically sta-
ble and such that

η1 ≤ ψ1 tð Þ ≤ ζ1, ∀t ∈ 0, T½ �, ð61Þ

if the number of T-periodic solutions of (50) between η1
and ζ1 is finite.

Step 3: Multiplicity of periodic solutions
Assume that φ1 and φ2 are two different nontrivial

T-periodic solutions of (50). Define vðtÞ = φ2ðtÞ − φ1ðtÞ,
t ∈ℝ. Then, v is a nontrivial T-periodic solution of the
equation:

€v + c _v + ~a tð Þv = 0, ð62Þ

with ~aðtÞ = Ð 10∂xgðt, φ1ðtÞ +mðφ2ðtÞ − φ1ðtÞÞÞdm: By the
inequality (60), the condition (II) and part 1 of Proposi-
tion 4, we conclude that vðtÞ > 0 or vðtÞ < 0 for all t ∈ℝ.
Therefore,

φ2 tð Þ < φ1 tð Þ or φ1 tð Þ < φ2 tð Þ, ð63Þ

for all t ∈ R. Now, assume that there exists a third non-
trivial T-periodic solution φ3 of (50). The preceding
arguments allow us to assume that

φ1 tð Þ < φ2 tð Þ < φ3 tð Þ ∀t ∈ 0, T½ �: ð64Þ

In consequence, the nontrivial T-periodic functions
viðtÞ = φi+1ðtÞ − φiðtÞ, i = 1, 2 satisfy the equations:

€v tð Þ + c _v + ~ai tð Þv = 0, i = 1, 2, ð65Þ

where ~aiðtÞ =
Ð 1
0∂xgðt, φiðtÞ +mðφi+1ðtÞ − φiðtÞÞÞdm. Since

∂2xg t, xð Þ = −
6βV 2 tð Þ
1 − xð Þ4 , ∀ t, xð Þ ∈ R × −∞,1� ½, ð66Þ

it follows that a2ðtÞ < a1ðtÞ for all t ∈ℝ. Therefore, by
part 2 of Proposition 4, we reach a contradiction. This
proves that there is at most two positive T-periodic
solutions of (50).

To sum up, under the assumptions (I) and (II), Equation
(50) has exactly two positive T-periodic solutions which are
precisely the functions ψ1 and ψ2 satisfying

η1 ≤ ψ1 tð Þ ≤ ζ1 ≤
1
3 ≤ ζ2 ≤ ψ2 tð Þ ≤ η2, ∀t ∈ 0, T½ �: ð67Þ

Moreover, by Step 1, ψ1 is asymptotically stable, and ψ2
is unstable.

Step 4: Exponential stability
Finally, we want to apply Theorem 16. We need to find a

lower bound of ∂xgðt, xÞ for all ðt, xÞ ∈ ~E. Then, direct com-
putations show that

∂xg t, xð Þ > 1 − 2βV 2 tð Þ
1 − ζ1ð Þ3

> 1 − 2βV 2
max

1 − ζ1ð Þ3
= 1 − 3ζ1

1 − ζ1
> 0, ∀ t, xð Þ ∈ ~E:

ð68Þ

Then, by (60) and the previous inequality, we have

0 < 1 − 3ζ1
1 − ζ1

< ∂xg t, xð Þ < 1 − 2βV 2 tð Þ, ð69Þ

for all ðt, xÞ ∈ ~E. Define lðtÞ≔ 1 − ðð2βV 2ðtÞÞ/ðð1 − ζ1Þ3ÞÞ;
therefore, l ∈ Cðℝ/TℤÞ. From (53), we can deduce that �l >
c2/4. Then, by Theorem 16, the T-periodic function ψ1 is
exponentially asymptotically stable with rate of exponential
decay c/2. This completes the proof.

Remark 6. Condition (53) can be replaced by

�V
2 < 1 − ζ2ð Þ3

2β 1 − c2

4

� �
, ð70Þ

where �V
2 = 1/T

Ð T
0V

2ðtÞdt:
Additionally, respect to the results over the Nathanson

model with constant damping given in [7, 9], the criteria
that we illustrated over the function ∂xgðt, xÞ − c2/4 in
Theorem 5 have the advantage that considers the Lp

norms ðp ∈ ½1,∞�Þ, and not over the supremum of its
range. In consequence, Theorem 5 leads to a refinement
of the results founded in [7, 9].

Example 1. The values required to determine the existence of
ψ1 are Fmax, Fmin, and T . In order to test different combina-
tions of parameters, let

2
27 = Fmax + Fmin

2  A = Fmax − Fmin
2 : ð71Þ

If A ≤ 2/27, then Fmax ≤ 4/27. Figure 3 shows the combi-
nation of parameters that allowed to prove the existence and
exponentially asymptotical stability, only existence, or did
not allow to prove the existence of ψ1 with Theorem 5.

To test the exponentially asymptotical stability property
of one of the combination of parameters, let c = 0:9, A =
0:07, T = 2, and V ðtÞ = 0:1579 cos ð2πt/TÞ + 0:2217. Fol-
lowing the results depicted in Figure 3, with that combina-
tion, it is possible to prove the existence of ψ1, and it is
exponentially asymptotically stable.

Let the error between any other solution φ of (50) and
the periodic solution ψ1 be defined as

ε tð Þ = φ tð Þ − ψ1 tð Þj j + _φ tð Þ − _ψ1 tð Þj j: ð72Þ

Following the results of Theorem 5, ψ1 is locally expo-
nentially asymptotically stable with rate of exponential decay
c/2. Then, there exists an adequate positive value d such that

bε nð Þ≔ ln ε nTð Þð Þ ≤ ln d + c T
2 n≕ bυ nð Þ: ð73Þ
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For this example, Figure 4 depicts bυðnÞ in blue for 10
different solutions of (50) and bυ in red with ln d = −2.

4. On the Squeeze Film Damping Case

In this section, we present some analytic and numerical val-
idation on the existence and linear stability of periodic solu-
tions for the Nathanson model under the squeeze film
damping effect. Therefore, the boundary value problem

€x + κ

1 − xð Þ3
_x + x = βV 2 tð Þ

1 − xð Þ2 , ð74Þ

with κ = γ/d3 > 0 and x ∈ �−∞,1½.
Our approach to the existence of solutions of (74) is

again throughout the Theorems 2 and 3. Therefore, from
the notation of those theorems,

c t, xð Þ = κ

1 − xð Þ3 ,

G xð Þ = 1 − xð Þ2,
K xð Þ = x,
F tð Þ = βV 2 tð Þ,

ð75Þ

with GðxÞ > 0 for all x in �−∞, 1½. As before, the function ϕ is
given by

ϕ xð Þ = x 1 − xð Þ2, x ∈ R: ð76Þ

Recall that ϕ is monotone non-decreasing in �−∞,1/3�
and monotone non-increasing in the interval ½1/3, 1½ with a
unique local maximum at x = 1/3.

Theorem 7. Assume that 0 <V 2
min ≤V 2

max ≤ 4/27β. Then,
there exists ζi, ηi with i = 1, 2 such that

0 < η1 < ζ1 ≤ 1/3, and 1/3 ≤ ζ2 < η2 < 1, ð77Þ

where ζi and ηi satisfy

ϕ ηið Þ = βV 2
min, ϕ ζið Þ = βV 2

max, i = 1, 2: ð78Þ

Furthermore,

(1) The problem (74) admits a T-periodic solution ψ2
such that

ζ2 ≤ ψ2 tð Þ ≤ η2 ∀t ∈ 0, T½ �, ð79Þ

(2) Let

N = κ

1 − ζ1ð Þ3
, â =max N , ζ1 − η1f g, M = 3κR

1 − ζ1ð Þ4
+ 1 − 3η1

1 − η1
,

ð80Þ

with R > 0 the unique solution of

R − ln R + 1ð Þ = â ζ1 − η1ð Þ: ð81Þ

Assume that the following conditions hold:

M ≤ π/Tð Þ2 and N ≤H L∗ð Þ = L∗ −Mffiffiffiffiffi
L∗

p cot T
ffiffiffiffiffi
L∗

p
2

� �
, ð82Þ

with L∗ ∈ ½M, ðπ/TÞ2� the unique value that satisfies H ′
ðLÞ = 0 which is equivalent to

c = 0.9
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Figure 3: (a) With c = 0:9. The values of A andT that satisfied the conditions of Theorem 7 for existence and exponentially asymptotical
stability are plotted in the green area. In blue, only where the conditions of Theorem 7 for the existence are satisfied and in red where
they are not. (b) Boundary between satisfying and not satisfying the conditions for existence of Theorem 7 for different values of c.
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sin T
ffiffiffiffiffi
L∗

p� �
= T

ffiffiffiffiffi
L∗

p L∗ −M
L∗ +M

� �
: ð83Þ

Then, there exists a periodic solution ψ1 of (74)
such that

η1 ≤ ψ1 tð Þ ≤ ζ1, ∀t ∈ 0, T½ �: ð84Þ

Proof. Under the existence of ζi, ηi follows directly from
the monotonicity properties of the function ϕ in each
of the considered intervals.

For part 1 by Theorem 2 applied over I = ½1/3, 1½, the
problem (74) admits constant lower and upper solutions
that correspond to ζ2 and η2, respectively. Additionally,
there exists a solution ψ2 of (6) such that

ζ2 ≤ ψ2 tð Þ ≤ η2, ∀t ∈ 0, T½ �: ð85Þ

For part 2 by Theorem 3 (part (‡)) applied over Î = ½0,
1/3�, the problem (74) admits constant lower and upper
solutions that correspond to ζ1 and η1, respectively. Further-
more, since ϕðη1Þ = βV 2

min, we have

x −
βV 2 tð Þ
1 − xð Þ2 ≤ ζ1 −

βV 2
min

1 − η1ð Þ2
= ζ1 − η1, ∀ t, xð Þ ∈ 0, T½ � × η1, ζ1½ �:

ð86Þ

Define,

N ≔ max
R× η1,ζ1½ �

κ

1 − xð Þ3
				 				 = κ

1 − ζ1ð Þ3
,

â≔max N , ζ1 − η1f g:
ð87Þ

From here, we are able to find a unique positive constant
R that satisfies

R − ln R + 1ð Þ = â ζ1 − η1ð Þ: ð88Þ

Now consider the set

W = t, x, yð Þ: t ∈ 0, T½ �, x ∈ η1, ζ1½ �, y ∈ −R, R½ �f g: ð89Þ

In order to fulfill the all the conditions in ð‡‡Þ in Theo-
rem 3, for the value M > 0, it is necessary to show that

max
W

∂
∂x

κ

1 − xð Þ3
_x + x −

βV 2 tð Þ
1 − xð Þ2

 !					
					

≤
3κ

1 − ζ1ð Þ4
R + 1 − 3η1

1 − η1
=M:

ð90Þ

Indeed, notice that

max
W

∂
∂x

κ

1 − xð Þ3
_x + x −

βV 2 tð Þ
1 − xð Þ2

 !					
					

=max
W

3κ
1 − xð Þ4

_x + 1 − 2βV 2 tð Þ
1 − xð Þ3

				 				
≤max

W

3κ
1 − xð Þ4
				 				R +max

W
1 − 2βV 2 tð Þ

1 − xð Þ3
				 				:

ð91Þ

The function 3κ/ð1 − xÞ4 is monotone increasing in the
domain �−∞, 1½; then

3κ
1 − xð Þ4 ≤

3κ
1 − ζ1ð Þ4

,∀x ∈ η1, ζ1½ �: ð92Þ
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Figure 4: (a) Poincaré map of nine different solutions of (50). The periodic solution is painted in black, while the others are in red with their
initial point in green. (b) Plot in blue of bε for nine different solutions of the differential equation (50). Plot in red of (73) which shows that it
is an upper bound of bε .
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Additionally,

1 − 2Fmax
1 − ζ1ð Þ3

≤ 1 − 2βV 2 tð Þ
1 − xð Þ3 ≤ 1 − 2Fmin

1 − η1ð Þ3 : ð93Þ

Since ϕðζ1Þ = Fmax and ϕðη1Þ = Fmin, then

0 ≤ 1 − 3ζ1
1 − ζ1ð Þ = 1 − 2ζ1

1 − ζ1ð Þ ≤ 1 − 2βV 2 tð Þ
1 − xð Þ3

≤ 1 − η1
1 − η1ð Þ =

1 − 3η1
1 − η1ð Þ ,

ð94Þ

because ζ1 ∈ �0, 1/3�. Hence,

max
W

∂
∂x

κ

1 − xð Þ3
_x + x −

βV 2 tð Þ
1 − xð Þ2

 !					
					 ≤M, ð95Þ

Then, by Theorem 3, there exists a solution ψ1 of (74)
such that

η1 ≤ ψ1 tð Þ ≤ ζ1, ∀t ∈ 0, T½ �: ð96Þ

Notice that it is fairly simply to prove the existence of ψ2.
However, to prove the existence of ψ1 requires intermediate
computations of values that depend not only on parameters
such as κ, β and T but also in other intermediate values.
Therefore, here we present the steps that allow us to prove
the existence of ψ1 for a set of parameters ðκ, T , Fðt, TÞÞ.

(1) Find Fmin and Fmax.

(2) If 0 < Fmin ≤ Fmax ≤ 4/27, find ζ1, η1 in �0, 1/3� such
that

ϕ ζ1ð Þ = Fmax,
ϕ η1ð Þ = Fmin:

ð97Þ

(3) Compute N and â:

(4) Find the positive value R > 0 such that

R − ln R + 1ð Þ = â ζ1 − η1ð Þ: ð98Þ

(5) Compute the value M given in Theorem 7

(6) If M ≤ ðπ/TÞ2, find L∗ such that

sin T
ffiffiffiffiffi
L∗

p� �
= T

ffiffiffiffiffi
L∗

p L∗ −M
L∗ +M

� �
: ð99Þ

(7) Finally, if N ≤HðL∗Þ we can conclude the existence
of ψ1.

If any of the conditions given in the Steps (3), (12) and
(16) are not satisfied, then we cannot use Theorem 7 to con-

clude the existence of ψ1. Example 2 is based on these steps
for different parameters ðκ, T , Fðt, TÞÞ.
4.1. Linear Stability. As a final contribution of this work, we
provide some results about the linear stability of any peri-
odic solution ψ1 of (74) located in ½η1, ζ1�. Our approach is
based on the analysis of the linear equation corresponding
to the given periodic solution. Direct computations shows
that the associated Hill’s equation is given by

€w + κ

1 − ψ1 tð Þð Þ3
_w + q tð Þw = 0, with q tð Þ

= 3κ
1 − ψ1 tð Þð Þ4

_ψ1 tð Þ + 1 − 2βV 2 tð Þ
1 − ψ1 tð Þð Þ3 :

ð100Þ

Proposition 8. Under the assumption of Theorem 7, then any
possible periodic solution ψ1 of (74) located ½η1, ζ1� is locally
asymptotically stable if

1 − 3ζ1
1 − ζ1

> κ

2 1 − ζ1ð Þ4
3R + κ

2 1 − ζ1ð Þ2
 !

, ð101Þ

π

T

� �2
≥
1 − 3η1
1 − η1

+ κ

2 1 − ζ1ð Þ4
3R −

κ 1 − ζ1ð Þ4
2 1 − η1ð Þ6

 !
:

ð102Þ
Proof. Under the change of variables,

w tð Þ = u tð Þv tð Þ, v tð Þ = e−P tð Þ, P tð Þ = 1
2

ð
κ

1 − ψ1 tð Þð Þ3 dt,

ð103Þ

Equation (100) can be written as

€u +Q tð Þu = 0, ð104Þ

with QðtÞ given by

Q tð Þ = 3κ
2 1 − ψ1 tð Þð Þ4

_ψ1 tð Þ − κ2

4 1 − ψ1 tð Þð Þ6 + 1 − 2βV 2 tð Þ
1 − ψ1 tð Þð Þ3 :

ð105Þ

Notice that if any solution uðtÞ of (104) is bounded, then
any solution wðtÞ of (100) converges to zero. Indeed, notice
that

η1 ≤ ψ1 tð Þ ≤ ζ1 and  _ψ1 tð Þj j < R, ∀t ∈ R, ð106Þ

with 0 < η1 < ζ1 ≤ 1/3. Direct computations show that

κ t

2 1 − η1ð Þ3 ≤ P tð Þ ≤ κ t

2 1 − ζ1ð Þ3
, ∀t ∈ R, ð107Þ
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then, vðtÞ⟶ 0 if t⟶∞: Moreover,

−
3κR

2 1 − ζ1ð Þ4
≤

3κ _ψ1 tð Þ
2 1 − ψ1 tð Þð Þ4 ≤

3κR
2 1 − ζ1ð Þ4

,

−
κ2

4 1 − ζ1ð Þ6
≤ −

κ2

4 1 − ψ1 tð Þð Þ6 ≤ −
κ2

4 1 − η1ð Þ6 ,
ð108Þ

and also,

0 < 1 − 3ζ1
1 − ζ1

≤ 1 − 2βV 2 tð Þ
1 − ψ1 tð Þð Þ3 ≤

1 − 3η1
1 − η1

, ð109Þ

for all t ∈ R. From here, we deduce the following:

1 − 3ζ1
1 − ζ1

−
κ

2 1 − ζ1ð Þ4
3R + κ

2 1 − ζ1ð Þ3
 !

≤Q tð Þ, ∀t ∈ R,

Q tð Þ ≤ 1 − 3η1
1 − η1

+ κ

2 1 − ζ1ð Þ4
3R −

κ 1 − ζ1ð Þ4
2 1 − η1ð Þ6

 !
, ∀t ∈ R:

ð110Þ

From the assumptions (101), (102) follows directly

0 <Q tð Þ ≤ π

T

� �2
, ∀t ∈ R: ð111Þ

From the previous computations and Theorem 18, we
deduce that ψ1 is locally asymptotically stable.

Remark 9. To arrive to the conclusion of Proposition 8, we
used the results of Theorem 18 that resemble the
Lyapunov-Zukovskii’s criteria for stability. We could also
arrive to the linear stability of the periodic solution ψ1 of

(74) by asking the following conditions:

1 − 3ζ1
1 − ζ1

> γ

2 1 − ζ1ð Þ4
3R + γ

2 1 − ζ1ð Þ3
 !

,

2
T

� �2
≥
1 − 3η1
1 − η1

−
γ2

4 1 − η1ð Þ6
:

ð112Þ

We arrive to this conclusion by Theorem 18 with the
conditions that resemble the Lyapunov-Borg’s criteria for
stability.

Example 2. Following the same definition (71) from Example
1 for parameter A, in Figure 5, we display the combination of
parameters that allowed or did not allow to prove the exis-
tence of ψ1 for Equation (74) by means of Theorem 7. If
the existence is guaranteed, we attempt to prove with Prop-
osition 8 that ψ1 is asymptotically stable. The numerical
results of Figure 5 indicate that if we take low values of κ,
it seems to be more possible to prove the existence of ψ1 with
Theorem 7.

5. Conclusions and Outlook

In this work, we have rigorously shown the existence of at
least two positive periodic solutions for the Nathanson
model under squeeze damping forces, as a direct conse-
quence of a periodic voltage load with a maximum value
under V0 =

ffiffiffiffiffiffiffiffiffiffiffiffi
4/27β

p
known as pull-in voltage, which is pre-

cisely the critical voltage associated with the pull-in phe-
nomenon. The location and the L∞-norm of these
solutions are provided, and we have also been able to give
an algorithm to show the numerical conditions of Theorem
7. We also note that these analytical and numerical compu-
tations could be reproduced for other types of MEMS
devices and new algorithms could be developed to show
the existence and linear stability. Future work could explore
the upper boundaries of the number of positive periodic
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Figure 5: (a) Areas in the plane A andT where the conditions for the existence are satisfied (blue) and where they are not (red) with
κ = 0:3674. (b) Boundary between satisfying and not satisfying the conditions of Theorem 7 for different values of κ.
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solutions, and more interestingly, the possibility of periodic
oscillations with a negative or nonconstant sign, for exam-
ple, for the comb-drive model under squeeze damping force.
We also revisited the Nathanson model under linear damp-
ing. Although this problem is considered in [7–9], Theorem
5 improves the existence and stability results as a result of
appropriate conditions over the voltage load and the viscous
damping coefficient c, providing new and significant knowl-
edge of the dynamics of this model.

Appendix

A.1. The Upper and Lower Solution Method

Consider the boundary value problem

€x + f t, x, _xð Þ = 0, x 0ð Þ = x Tð Þ,  _x 0ð Þ = _x Tð Þ = 0: ðA:1Þ

where D ⊂ R × �l1, l2½ × R is an open connected set with
−∞≤ l1 < l2 ≤∞ and f : D⟶ R, is a continuous func-
tion.We have that there exists a constant R > 0 such that
k _uk∞ < R:

Definition 10 Lower and upper solution. A function ζ ∈ C2

ð�0, T½Þ ∩ C1ð½0, T�Þ is called lower solution of (A.1) rela-
tive to the domain D if

€ζ tð Þ + f t, ζ tð Þ, _ζ tð Þ
� �

≥ 0 for all t ∈ 0, T� ½: ðA:2Þ

ζðtÞ ∈ �l1, l2½ for all t ∈ �0, T½, and ζð0Þ = ζðTÞ,  _ζð0Þ
≥ _ζðTÞ.

A function η ∈ C2ð�0, T½Þ ∩ C1ð½0, T�Þ is called upper
solutions of (A.1) relative to the domain D if all the previous
conditions hold with the reverse inequalities.

The lower and upper solutions are well-ordered if

ζ tð Þ ≤ η tð Þ, ∀t ∈ 0, T½ �: ðA:3Þ

Meanwhile, the lower and upper solutions are in the
reversed order if

η tð Þ ≤ ζ tð Þ, ∀t ∈ 0, T½ �: ðA:4Þ

Given ζ, η ∈ Cð½0, T�Þ such that ζ ≤ η, define the set

Eζ,η ≔ t, x, yð Þ ∈ 0, T½ � ×ℝ2		ζ tð Þ ≤ x ≤ η tð Þ
 �
: ðA:5Þ

Definition 11 Nagumo condition. Let f : Eζ,η ⟶ℝ continu-
ous. The function f satisfies the Nagumo condition on Eζ,η if
there exists a positive continuous function ρ : ℝ+ ⟶ℝ
such thatð∞

0

s
ρ sð Þ ds =∞ and  f t, x, yð Þj j ≤ ρ yj jð Þ, ðA:6Þ

for all ðt, x, yÞ ∈ Eζ,η.

Theorem 12. Let ζ and η be lower and upper solution of (10)
such that ζðtÞ ≤ ηðtÞ for all t in ½0, T�. If f satisfies the
Nagumo condition in Eζ,η, then the problem (5) has at least

one solution u ∈ C2ð½0, T�Þ such that

ζ tð Þ ≤ u tð Þ ≤ η tð Þ, ∀t ∈ 0, T½ �: ðA:7Þ

Theorem 13. Let f : D ⊂ℝ3 ⟶ℝ a continuous function
with a continuous partial derivative on the third variable
such that j∂y f ðt, x, yÞj ≤N in D where N ≥ 0 and D is a con-
nected domain. Consider

E≔ 0, T½ � × α, β½ � ×ℝ ⊂D, ðA:8Þ

where T , α, β ∈ R. Then, for any solution uðtÞ ∈ ½α, β� for all t
in ½0, T� of any of the following problems:

€x ≥ f t, x, _xð Þ, x 0ð Þ = x Tð Þ, ðA:9Þ

€x ≤ f t, x, _xð Þ, x 0ð Þ = x Tð Þ, ðA:10Þ

€x = f t, x, _xð Þ, x 0ð Þ = x Tð Þ: ðA:11Þ

For sake of completeness, we will make the proof for the
boundary value problem (A.9) following the ideas of the
proof of Proposition I-4.5 in [12]. The procedures for
(A.10) and (A.11) are similar.

Proof. Since j∂y f ðt, x, yÞj ≤N , then by the mean value theo-
rem, we have that

−ρ ϑj jð Þ ≤ f t, x, yð Þ ≤ ρ ϑj jð Þ, ðA:12Þ

with ρðϑÞ =Nϑ +max j f ðt, x, 0Þj. Notice thatð∞
0

s
ρ sð Þ ds =∞: ðA:13Þ

Define R > 0 such that

ðR
0

s
ρ sð Þ ds > β − α: ðA:14Þ

Let u1 be a solution of (A.9) such that u1ðtÞ ∈ ½α, β� for
all t in ½0, T�. Suppose that there exists t1 ∈ ½0, T� such that
_u1ðt1Þ = R. Let t0 ∈ ½0, T� be the closest zero to t1; then,
_u1ðtÞ > 0 for all t in �min ft0, t1g, max ft0, t1g½. Notice that

ðR
0

s
ρ sð Þ ds =

ð _u1 t1ð Þ

_u1 t0ð Þ

s
ρ sð Þ ds =

ðt0
t1

_u1€u1
−ρ _u1j jð Þ dt, ðA:15Þ

since

−ρ _u1j jð Þ ≤ f t, u1, _u1ð Þ ≤ €u1, ðA:16Þ
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then, 1 ≥ €u1/ð−ρðj _u1jÞÞ andðt0
t1

_u1€u1
−ρ _u1j jð Þ dt ≤

ðt0
t1

_u1dt = u1 t0ð Þ − u1 t1ð Þ ≤ β − α <
ðR
0

s
ρ sð Þ ds,

ðA:17Þ

hence, ðR
0

s
ρ sð Þ ds <

ðR
0

s
ρ sð Þ ds, ðA:18Þ

which is a contradiction.

Suppose that there exists t1 ∈ ½0, T� such that _u1ðt1Þ = −R
. Let t0 ∈ ½0, T� be the closest zero to t1; then, _u1ðtÞ < 0 for all
t in �min ft0, t1g, max ft0, t1g½. Notice thatðR

0

s
ρ sð Þ ds =

ð− _u1 t1ð Þ

− _u1 t0ð Þ

s
ρ sð Þ ds =

ðt0
t1

− _u1ð Þ −€u1ð Þ
−ρ _u1j jð Þ dt, ðA:19Þ

since

−ρ _u1j jð Þ ≤ f t, u1, _u1ð Þ ≤ €u1, ðA:20Þ

then 1 ≥ €u1/ð−ρðj _u1jÞÞ andðt0
t1

_u1€u1
−ρ _u1j jð Þ dt ≤

ðt0
t1

_u1dt = u1 t0ð Þ − u1 t1ð Þ ≤ β − α <
ðR
0

s
ρ sð Þ ds,

ðA:21Þ

hence ðR
0

s
ρ sð Þ ds <

ðR
0

s
ρ sð Þ ds, ðA:22Þ

which is a contradiction.

Remark 14. Notice that an alternative definition for the func-
tion ρ is

ρ ϑð Þ = â ϑ + 1ð Þ, ðA:23Þ

with â =max fN , max j f ðt, x, 0Þjg. This allows us to com-
pute R as the positive real value that satisfies the inequality.ðR

0

s
ρ sð Þ ds =

1bα R − ln R + 1ð Þð Þ ≥ β − α: ðA:24Þ

In particular, we can select R such that R − ln ðR + 1Þ =
âðβ − αÞ.

A.2. Multiplicity and Stability of Periodic
Solution for Duffing Equations

We finish this section showing some results that provide a
connection between lower and upper solution method and
the multiplicity and stability of periodic solutions of the

Duffing equation:

€x + c _x + g t, xð Þ = 0, ðA:25Þ

where c > 0 and g : ℝ × �l1, l2½⟶ℝ, −∞≤ l1 < l2 ≤∞,
a continuous function, T-periodic with respect to t and hav-
ing a continuous partial derivative with respect to x. Con-
sider the linear differential operator:

La : W ⟶ L1 0, Tð Þ
ω⟶ La ω½ � = €ω + c _ω + a tð Þω,

ðA:26Þ

where

W = ω ∈W2,1 0, Tð Þ: ω 0ð Þ = ω Tð Þ,  _ω 0ð Þ = _ω Tð Þ
 �
,

ðA:27Þ

c is a positive constant and a ∈ Γp,c, with

Γp,c = a ∈ Lp 0, Tð Þ: a − c2/4
� 


+
�� ��

Lp
< K 2p∗ð Þ

n o
, ðA:28Þ

for some p ∈ ½1,∞� and p∗ = p/ðp − 1Þ. Here, KðqÞ is the best
Sobolev constant in the following inequality:

C uk k2Lq ≤ _uk k2L2 , ∀u ∈H1
0 0, T½ �ð Þ: ðA:29Þ

Explicitly (see [17]),

K qð Þ =
2π

qT1+2/q
2

2 + q

� �1−2/q Γ 1/qð Þ
Γ 1/2 + 1/qð Þð Þ
� �2

, 1 ≤ q<∞,

4/T , q =∞:

8>>><>>>:
ðA:30Þ

(A) If ζ > η and for some 1 ≤ p ≤∞, there exists a ∈ Γp,c
with a ≻ c2/4 and verifying

gx t, xð Þ ≤ a tð Þ a:e: ∀x ∈ η tð Þ, ζ tð Þ½ �, ðA:32Þ

Theorem 15. Let g : R × �l1, l2½⟶ R, −∞≤ l1 < l2 ≤∞ a
continuous function, T-periodic with respect to t and having
a continuous partial derivative with respect to x. Assume that
ζ and η are a couple of lower and upper solutions, respec-
tively, of the boundary value problem:

€x + c _x + g t, xð Þ = 0, x 0ð Þ = x Tð Þ,  _x 0ð Þ = _x Tð Þ, ðA:31Þ

with c > 0 and ζðtÞ, ηðtÞ ∈ �l1, l2½ for all t ∈ R.

Then, (A.31) has at least an asymptotically stable solu-
tion (which is T-periodic) ψ, such that

η tð Þ < ψ tð Þ < ζ tð Þ, ∀t ∈ R, ðA:33Þ
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provided that the number of T-periodic solutions between
η and ζ is finite.

(B) If ζ < η, then (A.31) has at least an unstable solution
(which is T-periodic) φ such that

ζ tð Þ < φ tð Þ < η tð Þ, ∀t ∈ R, ðA:34Þ

provided that the number of T-periodic solutions between
ζ and η is finite.

Proof. For part (A), the proof can be found in [15, 18], and
for part (B) the proof can be found in [19].

Another and more accurate results about the stability of
periodic solutions of Duffing equations like (A.31) are found
in [14, 16] and indicate the following.

Theorem 16. Assume that gxðt, xÞ exists and satisfies

l tð Þ ≤ gx t, xð Þ ≤ u tð Þ, ∀ t, xð Þ ∈ 0, T½ � × R, ðA:35Þ

where l and u are T-periodic functions such that �l > c2/4 and
u ∈ Γp,c for some p ∈ ½1,∞�. Then (A.31) has a unique and
locally exponentially asymptotical stable T-periodic solution
x0ðtÞ. And the rate of exponential decay of x0ðtÞ is c/2.

Remark 17. Following the lines of the proof of Theorem 16
given in [14, 16] it is easy to deduce that the exponential
decay of x0ðtÞ only requires that

l tð Þ ≤ gx t, x0 tð Þð Þ ≤ u tð Þ, ∀t ∈ℝ, ðA:36Þ

This follows if we are able to located x0ðtÞ for all t ∈ R
and compute a lower bound of gxðt, x0ðtÞÞ for all t ∈ℝ:

Theorem 18 Stability test for Hill’s equations. Let Q be a
T-periodic function such that

Q≡0, Q ∈ L1 0, Tð Þ, 
ðT
0
Q tð Þdt > 0: ðA:37Þ

Assume that Q ∈ Lpð0, TÞ for some p ∈ ½1,∞�, the Hill’s
equation:

€u +Q tð Þu = 0, ðA:38Þ

is stable (elliptic) when

Q+k kLα < K 2α∗ð Þ if 1 < α ≤∞, ðA:39Þ

or

Q+k kLα ≤ K ∞ð Þ = 4
T
 if α = 1, ðA:40Þ

Furthermore, the upper bounds Kð2α∗Þ for kQ+kLα are
the best possible.

If α = 1, QðtÞ ≥ 0 (i.e., QðtÞ > 0 for all t ∈ R on a subset of
positive measure), Theorem 18 establishes that

Q+k kL1 =
ðT
0
Q tð Þdt ≤ 4

T
, ðA:41Þ

then, (A.38) is elliptic, which corresponds to the Lyapunov-
Borg’s stability criteria (see [20]). If α =∞, Theorem 18 estab-
lished that if Q ∈ L1ðℝ \ TℤÞ (i.e., Q is T-periodic and Q ∈
L1ð0, TÞ) such that

Q≡0, 0 <
ðT
0
Q tð Þdt,  Q+k kL∞ < K 2ð Þ = π

T

� �2
, ðA:42Þ

then (A.38) is elliptic, which corresponds to the Lyapunov-
Zukovskii’s stability criteria. The proof of Theorem 18 can
be found in [21, 22].
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