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Heat equation is a partial differential equation used to describe the temperature distribution in a heat-conducting body. The
implementation of a numerical solution method for heat equation can vary with the geometry of the body. In this study, a
three-dimensional transient heat conduction equation was solved by approximating second-order spatial derivatives by five-
point central differences in cylindrical coordinates. The stability condition of the numerical method was discussed. A MATLAB
code was developed to implement the numerical method. An example was provided in order to demonstrate the method. The
numerical solution by the method was in a good agreement with the exact solution for the example considered. The accuracy
of the five-point central difference method was compared with that of the three-point central difference method in solving the
heat equation in cylindrical coordinates. The solutions obtained by the numerical method in cylindrical coordinates were
displayed in the Cartesian coordinate system graphically. The method requires relatively very small time steps for a given mesh
spacing to avoid computational instability. The result of this study can provide insights to use appropriate coordinates and
more accurate computational methods in solving physical problems described by partial differential equations.

1. Introduction

In science and engineering, partial differential equations are
used to express how some quantity varies with position and
time [1]. Heat equation is one of such equations used to
describe the variation of temperature in a body. Many diffu-
sion processes can also be described with this equation, for
instance, fluid flow in porous media, molecular diffusion in
biological tissues, and water uptake by plant roots [2]. Solution
of the heat equation is required to understand and analyse the
heat transfer problems [3]. In many real situations, the com-
plexity of the considered problem makes it difficult to obtain
the analytical solutions. In this case, numerical methods such
as finite difference, finite element, and finite volume methods
are used to obtain approximate solutions [4–7].

Finite difference discretizations in polar or cylindrical coor-
dinates are more convenient than in Cartesian coordinates to
solve boundary value problems involving circular shapes
because they avoid the use of complicated differentiation for-
mulae near the curved boundaries [8]. Finite difference discreti-

zations in polar or cylindrical coordinates have been used by
authors to solve partial differential equations. Mori and Romão
[9] used the finite difference method to perform numerical sim-
ulation of 2D convection-diffusion in cylindrical coordinates.
Iyengar and Manohar [10] used the fourth-order difference
method for the solution of Poisson’s equation in cylindrical
coordinates. They extended the method to solve heat equation
in two-dimensional with polar coordinates and three-
dimensional with cylindrical coordinates. Shiferaw and Mittal
[11] solved three dimensional Poisson’s equation with the finite
difference method in cylindrical coordinates. Salehi and Gran-
payeh [12] presented a finite difference method for solving the
two-dimensional Schrödinger equation in polar coordinates.

One purpose of this paper is to present finite difference
discretization of transient three-dimensional heat equation
in cylindrical coordinates and to obtain more accurate solu-
tion by a higher-order finite difference method with a com-
puter program. The other purpose is to display the solution
results graphically in the Cartesian coordinate system for the
better visualization.
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2. Finite Difference Discretization of
Heat Equation

The transient three-dimensional heat equation in cylindrical
coordinates is

∂T
∂t

= α
∂2T
∂r2

+ 1
r
∂T
∂r

+ 1
r2
∂2T
∂2θ

+ ∂2T
∂z2

 !
, ð1Þ

where Tðr, θ, z, tÞ is the temperature at the point ðr, θ, zÞ and
time t. The mesh points in a plane parallel to the r − θ plane
are defined by the intersection points of the circles and the
straight lines as shown in Figure 1. Approximating the time
derivative by two-point forward difference (first-order accu-
rate), second-order spatial derivatives by five-point central
differences (fourth-order accurate), and first-order spatial
derivative by two-point central difference (second-order
accurate) [8, 13], we get

where n is the current time index, Δt is the step size for
time discretization, and Δr, Δθ, and Δz are mesh spacing in r
, θ, and z directions. The total truncation error for the
numerical method is
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After grouping like terms from Equation (2), we obtain
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The iterative scheme, Equation (4), is used to compute
the temperature at the grids by applying initial and bound-
ary conditions. In this paper, this scheme is named as the
“five-point central difference method.” Similarly, if the
second-order derivatives in Equation (1) are discretized by
three-point central differences, the corresponding scheme
is named as the “three-point central difference method.”

3. Stability Analysis

The Von Neumann stability analysis is used to check the sta-
bility condition of the numerical method. According to this
stability analysis method, we replace the temperature at ðp
Δr, qΔθ, kΔz, nΔtÞ as [14]

Tn
p,q,k = Aeiα1pΔreiα2qΔθeiα3kΔzeβ nΔtð Þ = Aeiα1pΔreiα2qΔθeiα3kΔzξβ,

ð5Þ

where ξ = enΔt is an amplification factor, i =
ffiffiffiffiffiffi
−1

p
, and A, α1,

α2, α3, and β are constants. The iteration scheme in Equa-
tion (4) is stable if jξj ≤ 1 [15]. Using Equation (5) in Equa-
tion (4) and simplifying, we get
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where C1 = α/12Δr2, C2 = 4α/3Δr2 − α/2riΔr, C3 = 2:5α/
Δr2 + 2:5α/ðriΔθÞ2 + 2:5α/Δz2, C4 = 4α/3Δr2 + α/2riΔr, C5
= α/12ðriΔθÞ2, C6 = 4α/3ðriΔθÞ2, C7 = α/12Δz2, and C8 = 4
α/3Δz2.
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Using the relations eiθ = cos θ + i sin θ and e−iθ = cos θ
− i sin θ, Equation (6) becomes

ξ = 1 − Δt C1 2 cos 2α1Δrð Þðð − C2 cos α1Δrð Þ − sin α1Δrð Þð Þ
+ C3 − C4 cos α1Δrð Þ + sin α1Δrð Þð Þ + 2C5 cos 2α2Δθð Þð
− 2C6 cos α2Δθð Þ + 2C7 cos 2α3Δzð Þð − 2C8 cos α3Δzð Þð :

ð7Þ

For the worst case, we must have α1Δr = π = α2Δθ = α3
Δz [16]. This gives

ξ = 1 − Δt 2C1 + C2 + C3 + C4 + 2C5 + 2C6 + 2C7 + 2C8ð Þ:
ð8Þ

The stability condition jξj ≤ 1 yields

Δt ≤
2

2C1 + C2 + C3 + C4 + 2C5 + 2C6 + 2C7 + 2C8ð Þ : ð9Þ

Hence, the time step size Δt should satisfy Equation (9)
to ensure numerical stability. To determine a suitable value
for Δt that gives a stable iteration, one can take a minimum
of ri, i = 1, 2, 3,⋯, n, and ri ≠ 0 in Equation (9).

4. A Test Problem and Solutions

Consider three-dimensional transient heat conduction
which satisfies Equation (1) in a solid cylinder made up of
stainless steel having dimensions 0 ≤ r ≤ 1, 0 ≤ z ≤ 2, and 0
≤ θ ≤ 2π [17]. It is assumed that the stainless steel has den-
sity ρ = 8000 kg/m3, specific heat capacity c = 475 J/kg · K,
and thermal conductivity c = 15W/m · K [18]. Thus, the
thermal conductivity α = k/ρc = 3:9474 × 10−6 m/s. The fol-
lowing initial and boundary conditions were considered to
illustrate the numerical solution method [14, 19, 20].

Initial condition:

T r, θ, z, 0ð Þ = F r, θ, zð Þ = J1
s11
R
r

� �
2 cos θð Þð

+ 2 sin θð ÞÞ cos π

L
z

� �
e−α s11/Rð Þ2+ π/Lð Þ2ð Þ,

0 ≤ r ≤ R = 1, 0 ≤ z ≤ L = 2, 0 ≤ θ ≤ 2π, ð10Þ

where J1ðxÞ is the Bessel function of order one given by [20]

J1 xð Þ = 〠
∞
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k! k + 1ð Þ! , ð11Þ

and s11 is the first positive zero of J1.
Boundary condition:

T 0, θ, z, tð Þj j <∞, T r, θ, z, tð Þ = T r, θ + 2π, z, tð Þ, T R, θ, z, tð Þ
= 0, ∂T
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The exact solution is chosen as

T r, θ, z, tð Þ = J1
s11
R
r

� �
2 cos θð Þð

+ 2 sin θð ÞÞ cos π

L
z

� �
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0 ≤ r ≤ R = 1, 0 ≤ z ≤ L = 2, 0 ≤ θ ≤ 2π, t > 0: ð13Þ

Mesh spacing Δr = 0:01, Δθ = π/32, and Δz = 0:02 were
taken in the computation with the numerical method. This
results in 656,601 grid points in the solid cylinder. The iter-
ative scheme in Equation (4) cannot be used to approximate
the temperature at the origin since it involves division by
zero at r = 0. The time step size of Δt = 0:00005 was used
in the computation. The approximate value s11 =
3:83170597020751 was taken to determine the initial condi-
tion [21]. A MATLAB code was developed to perform the
numerical computations and to graph the solutions.

Figure 2 is a 3D plot of temperature distribution in the
solid cylinder for the time value t = 0:5 at z = 0,0:5,1:5,2
obtained by the numerical method and exact solutions.
Figure 3 shows temperature contours at different cross-
section of the cylinder from the two methods.

Using the numerical method, the maximum temperature
value on the cylinder obtained at t = 1 was
1.644829743701951. The corresponding value in the exact
solution was 1.645649737422976. The maximum absolute
error of the numerical method for this time was
0.0008199937210258135. This indicates that the solution
by the numerical method was in a good agreement with
the exact solution. The MATLAB code enables us to simu-
late heat flow in the cylinder from t = 0 to any time T > 0.
The numerical method requires relatively very small time
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Figure 1: Sample cylindrical mesh for a solid circular cylinder.
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Figure 2: 3D plot of temperature distributions for t = 0:5.
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steps for a given mesh spacing to avoid computational insta-
bility [22].

For heat equation, one difference between its representa-
tion in Cartesian and cylindrical coordinates is the presence
of 1/r and 1/r2 in cylindrical coordinate expression which
affects the accuracy of the finite difference scheme near the
origin (r = 0). It also takes more computational time when
we use small mesh spacings in r-direction since small Δt is
required in order to guarantee stability. In this paper, the
center of grid was avoided in the finite-difference computa-
tion and the average of the values on the neighbouring nodes
was taken to determine the value at the origin [23, 24]. The
five-point central difference method in cylindrical coordi-
nates is very sensitive to choose the time step for stability.

The accuracy of the five-point central difference method
was compared with that of the three-point central difference
method in solving heat equation. The solutions of the heat
equation at t = 2 with the two numerical methods and the
exact solution are presented in Table 1 for 0 ≤ r ≤ 1, z = 0:5
, and θ = π/8. The absolute errors of the two numerical
methods at t = 0:5 and t = 2 in the same location are shown

in Figure 4. It can be observed that the five-point central dif-
ference method is more accurate than the three-point central
difference method in solving heat conduction equation in
cylindrical coordinates. But the five-point central difference
method took more computational time than the three-
point central difference method. The errors in the two
methods increase as time increase for the selected problem.
The numerical method was also applied to solve Equation
(1) and gave results which suggested convergence to the
exact solution with small time steps.

If there areMr , Nθ, and Lz nodes in r, θ, and z directions
in a cylindrical mesh, the five-point central difference can be
used to approximate second-order spatial derivatives in
Equation (1), at the nodes for 1 ≤ i ≤Mr − 2, 1 ≤ j ≤Nθ,
and 3 ≤ i ≤ Lz − 2. We can use the three-point central differ-
ence approximation at all interior nodes of the mesh. In Car-
tesian grids, more effort is required to apply the five-point
central difference method near the boundaries. But the cir-
cular nature of cylindrical grids enables us to apply this
method easily and implement on a digital computer to
obtain solutions.
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Figure 3: Temperature contours at t = 0:5 for z between 0 and 2 with a step of (a) 0.5 and (b) 0.02.

5Journal of Applied Mathematics



Table 1: A comparison between three-point central difference, five-point central difference, and exact solutions for 0 ≤ r ≤ 1, z = 0:5, and
θ = π/8 at t = 2.

r Three-point Five-point Exact

0.00 0.000000000000000 0.000000000000000 0.000000000000000

0.04 0.141167318169372 0.141166758064519 0.141166884260490

0.08 0.279851722594559 0.279851442827940 0.279851504083418

0.12 0.413620240060011 0.413620053894126 0.413620092689910

0.16 0.540134995908254 0.540134856713342 0.540134883710731

0.20 0.657199736440746 0.657199625616869 0.657199645115001

0.24 0.762802389453587 0.762802297753132 0.762802311937449

0.28 0.855153914264679 0.855153836454283 0.855153846609828

0.32 0.932722595399281 0.932722528256234 0.932722535221977

0.36 0.994263078395229 0.994263019815159 0.994263024185258

0.40 1.038839561708914 1.038839510257916 1.038839512481672

0.44 1.065842682476337 1.065842637145032 1.065842637580800

0.48 1.074999766554258 1.074999726612890 1.074999725558872

0.52 1.066378252502174 1.066378217410049 1.066378215122743

0.56 1.040382242096527 1.040382211442770 1.040382208148242

0.60 0.997742273569401 0.997742247032389 0.997742242933349

0.64 0.939498554978806 0.939498532297632 0.939498527577856

0.68 0.866978030944270 0.866978011898022 0.866978006725110

0.72 0.781765783532420 0.781765767924871 0.781765762451923

0.76 0.685671384652756 0.685671372300945 0.685671366667532

0.80 0.580690920462760 0.580690911188447 0.580690905521146

0.84 0.468965495818468 0.468965489441841 0.468965483854484

0.88 0.352737096917630 0.352737093252795 0.352737087846569

0.92 0.234302741522606 0.234302740374549 0.234302735238026

0.96 0.115967877485432 0.115967878648705 0.115967873857390

1.00 0.000000000000000 0.000000000000000 0.000000000000002
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Figure 4: Errors in finite difference approximations.
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Let

E Δr, Δθ, Δz, Δtð Þ = max
1≤i≤Nr1≤j≤Nθ1≤k≤Nz
n=Nt

T ri, θj, zk, tn
� �

− Tn
i,j,k

			 			,

ð14Þ

where Nt is the number of time steps. The maximum
errors of the numerical solution for different mesh spacing
and time sizes are shown in Table 2.

From Table 2, we observe that error decreases as grid
spacing is reduced. This shows the convergence of the
numerical method for the selected test problem.

5. Conclusion

This paper presented the five-point central difference
method to solve the three-dimensional transient heat con-
duction equation in cylindrical coordinates. The numerical
method is capable of computing more accurate solution than
the three-point central difference method to the heat con-
duction equation. The five-point central difference method
can be applied in cylindrical grids easily because of the circu-
lar nature of the grid locations. In the computation, the sin-
gularities of heat conduction equation in cylindrical
coordinates were avoided by taking average of values on sur-
rounding grids. To acquire computational stability, a rela-
tively very small time step is required for a given mesh
spacing. A similar procedure can be applied to derive other
higher-order or implicit finite difference schemes in cylin-
drical coordinates to increase accuracy and stability.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there is no conflict of interest
regarding the publication of this article.

References

[1] D. A. McQuarrie, Mathematical Methods for Scientists and
Engineers, University Science Books, Sausalito, 2003.

[2] M. Dehghan, “Weighted finite difference techniques for the
one-dimensional advection- diffusion equation,” Applied
Mathematics and Computation, vol. 147, no. 2, pp. 307–319,
2004.

[3] K. S. Rao, Introduction to Partial Differential Equations, PHI
Learning Pvt Ltd, 2010.

[4] E. Wegrzyn-Skrzypczak and T. Skrzpczak, “Analytical and
numerical solution of the heat conduction problem in the
rod,” Journal of Applied Mathematics and Computational
Mechanics, vol. 16, no. 4, pp. 79–86, 2017.

[5] C. N. Dawson, Q. Du, and T. F. Dupont, “A finite difference
domain decomposition algorithm for numerical solution of
the heat equation,” Mathematics of Computation, vol. 57,
no. 195, pp. 63–71, 1991.

[6] W. Gui, K. A. Gawecka, D. M. G. Taborda, D. M. Potts, and
L. Zdravkovic, “Time-step constraints for finite element analy-
sis of two-dimensional transient heat diffusion,” Computers
and Geotechnics, vol. 108, pp. 1–6, 2019.

[7] S. Mazumder, Numerical Methods for Partial Differential
Equations: Finite Difference and Finite Volume Methods, Aca-
demic Press, New York, 2016.

[8] G. D. Smith, Numerical Solution of Partial Differential Equa-
tions: Finite Difference Method, Clarendon Press, Oxford,
Third Edition edition, 1985.

[9] C. N. T. Mori and E. C. Romão, “Numerical simulation by
finite difference method of 2D convection-diffusion in cylin-
drical coordinates,” Applied Mathematical Sciences, vol. 9,
no. 123, pp. 6157–6165, 2015.

[10] S. R. Iyengar and R. Manohar, “High order difference methods
for heat equation in polar cylindrical coordinates,” Journal of
Computational Physics, vol. 77, no. 2, pp. 425–438, 1988.

[11] A. Shiferaw and R. C. Mittal, “Fast finite difference solutions of
the three dimensional Poisson’s equation in cylindrical coordi-
nates,” American Journal of Computational Mathematics,
vol. 2013, no. 3, pp. 3056–3361, 2013.

[12] M. Salehi and N. Granpayeh, “Numerical solution of the
Schrödinger equation in polar coordinates using the finite-
difference time-domain method,” Journal of Computational
Electronics, vol. 19, no. 1, pp. 91–102, 2020.

[13] J. Li, “General explicit difference formulas for numerical differ-
entiation,” Journal of Computational and Applied Mathemat-
ics, vol. 183, no. 1, pp. 29–52, 2005.

[14] I. Jain, Numerical Methods for Scientific and Engineering Com-
putation, New Age International Publisher, New Delhi, Sev-
enth Edition edition, 2019.

[15] W. Ehlers, S. Zinatbakhsh, and B. Markert, “Stability analysis
of finite difference schemes revisited: a study of decoupled
solution strategies for coupled multifield problems,” Interna-
tional Journal of Numerical Methods for Engineering, vol. 94,
no. 8, pp. 758–786, 2013.

[16] M. N. Rajput, A. A. Shaikh, and S. A. Kamboh, “Computa-
tional analysis of the stability of 2D heat equation on elliptical
domain using finite difference method,” Asian Research Jour-
nal of Mathematics, vol. 16, no. 3, pp. 8–19, 2020.

[17] D.W. Hahn andM. N. Özisik,Heat Conduction, JohnWiley &
Sons, New Jersey, USA, Third Edition edition, 2012.

[18] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine,
Fundamentals of Heat and Mass Transfer, John Wiley & Sons,
New Jersey, USA, Seventh Edition edition, 2011.

[19] N. Dalir and S. S. Nourazar, “Analytical solution of the prob-
lem on the three-dimensional transient heat conduction in a
multilayer cylinder,” Journal of Engineering Physics and Ther-
mophysics, vol. 87, no. 1, pp. 89–97, 2014.

[20] P. R. M. Lyra, R. D. C. F. Lima, D. K. E. De Carvalho, and G. M.
L. L. Da Silva, “An axisymmetric finite volume formulation for

Table 2: Maximum errors of the numerical solution.

Δr Δθ Δz Δt Nt E Δr,Δθ,Δz,Δtð Þ
0.02 π/16 0.05 0.002 1000 4:663020E − 03
0.01 π/32 0.025 0.001 1000 4:170669E − 04
0.005 π/64 0.01 0.0005 1000 1:565003E − 04

7Journal of Applied Mathematics



the solution of heat conduction problems using unstructured
meshes,” Journal of the Brazilian Society of Mechanical Sci-
ences and Engineering, vol. 27, no. 4, pp. 407–414, 2005.

[21] G. B. Gustafson and C. V.WilcoxW. Jager, “Analytic and com-
putational methods of advanced engineering mathematics,” in
Texts in Applied Mathematics, J. E. Marsden and G. Sirovich,
Eds., Springer-Verlag, Nework, 1998.

[22] R. Tavakoli and P. Davami, “New stable group explicit finite
difference method for solution of diffusion equation,” Applied
Mathematics and Computation, vol. 181, no. 2, pp. 1379–1386,
2006.

[23] E. L. Albasiny, “On the numerical solution of a cylindrical
heat-conduction problem,” The Quarterly Journal of Mechan-
ics and Applied Mathematics, vol. 13, no. 3, pp. 374–384, 1960.

[24] J. Thibault, S. Bergeron, and H. W. Bonin, “On finite-
difference solutions of the heat equation in spherical coordi-
nates,” Numerical Heat Transfer, Part A: Applications,
vol. 12, no. 4, pp. 457–474, 1987.

8 Journal of Applied Mathematics


	Numerical Solution of Three-Dimensional Transient Heat Conduction Equation in Cylindrical Coordinates
	1. Introduction
	2. Finite Difference Discretization of Heat Equation
	3. Stability Analysis
	4. A Test Problem and Solutions
	5. Conclusion
	Data Availability
	Conflicts of Interest

