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We introduce the delayed Mittag-Leffler type matrix functions, delayed fractional cosine, and delayed fractional sine and use the
Laplace transform to obtain an analytical solution to the IVP for a Hilfer type fractional linear time-delay system Dμ,ν

0,t zðtÞ + Az
ðtÞ +Ωzðt − hÞ = f ðtÞ of order 1 < μ < 2 and type 0 ≤ ν ≤ 1, with nonpermutable matrices A and Ω. Moreover, we study Ulam-
Hyers stability of the Hilfer type fractional linear time-delay system. Obtained results extend those for Caputo and Riemann-
Liouville type fractional linear time-delay systems with permutable matrices and new even for these fractional delay systems.

1. Introduction

Khusainov et al. [1] studied the following Cauchy problem
for a second order linear differential equation with pure
delay:

x′′ tð Þ +Ω2x t − τð Þ = f tð Þ, t ≥ 0, τ > 0,
x tð Þ = φ tð Þ, x′ tð Þ = φ′ tð Þ, −τ ≤ t ≤ 0,

(
ð1Þ

where f : ½0,∞Þ⟶ℝn,Ω is a n × n nonsingular matrix, τ is
the time delay and φ is an arbitrary twice continuously dif-
ferentiable vector function. A solution of (1) has an explicit
representation of the form ([1], Theorem 2):

x tð Þ = cosτΩtð Þφ −τð Þ +Ω−1 sinτΩtð Þφ′ −τð Þ

+Ω−1
ð0
−τ

sinτΩ t − τ − sð Þφ′′ sð Þds

+Ω−1
ðt
0
sinτΩ t − τ − sð Þf sð Þds,

ð2Þ

where cosτΩ : ℝ⟶ℝn×n and sinτΩ : ℝ⟶ℝn×n denote

the delayed matrix cosine of polynomial degree 2k on the
intervals ðk − 1Þτ ≤ t < kτ and the delayed matrix sine of
polynomial degree 2k + 1 on the intervals ðk − 1Þτ ≤ t < kτ,
respectively.

It should be stressed out that pioneer works [1, 2] led to
many new results in integer and noninteger order time-delay
differential equations and discrete delayed system; see
[3–18]. These models have applications in spatially extended
fractional reaction-diffusion models [19], oscillating systems
[20, 21], numerical solutions [22], and so on.

Introducing the fractional analogue delayed matrices
cosine/sine of a polynomial degree, see Formulas (5) and
(6), Liang et al. [23] gave representation of a solution to
the initial value problem (3):

Theorem 1 (see [23]). Let h > 0, φ ∈ C2ð½−h, 0�,ℝnÞ, Ω be a
nonsingular n × n matrix. The solution x : ½−h,∞Þ⟶ℝn

of the initial value problem

C
 Dα

−hx tð Þ +Ω2x t − hð Þ = 0, t ≥ 0, h > 0,
x tð Þ = φ tð Þ, x′ tð Þ = φ′ tð Þ, −h ≤ t ≤ 0,

(
ð3Þ
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has the form

x tð Þ = cosh,αΩtαð Þφ −hð Þ +Ω−1 sinh,αΩ t − hð Þαð Þφ′ 0ð Þ

+Ω−1
ð0
−h

cosh,αΩ t − h − sð Þαφ′ sð Þds,
ð4Þ

where cosh,αΩtα is the fractional delayed matrix cosine of a
polynomial of degree 2kα on the intervals ðk − 1Þh ≤ t < kh,
sinh,αΩtα is the fractional delayed matrix sine of a polynomial
of degree ð2k + 1Þα on the intervals ðk − 1Þh ≤ t < kh defined
as follows

and I is the identity matrix and Θ is the null matrix.

Mahmudov in [16] studied the following R-L linear frac-
tional differential delay equation of order 1 < 2α ≤ 2 by
introducing the concept of fractional delayed matrix cosine
cosh,α,βfA,Ω ; tg and sine sinh,α,βfA,Ω ; tg ([16], Definitions
2 and 3).

RL
 Dα

−h+
RL
 Dα

−h+

� �
x tð ÞA2x tð Þ +Ω2x t − hð Þ = f tð Þ, t ≥ 0, h > 0,

x tð Þ = φ tð Þ, I1−α−h+x
� �

−h+
� �

= φ −hð Þ,−h ≤ t ≤ 0,
RL
 Dα

−h+x tð Þ = RL
 Dα

−h+φ tð Þ,
I1−α−h+ Dα

−h+xð Þ� �
−h+
� �

= RL
 Dα

−h+φ −hð Þ,−h ≤ t ≤ 0,

8>>>>>>><
>>>>>>>:

ð7Þ

where RL
 Dα

−h+ stands for the R-L fractional derivative of
order 0 < α ≤ 1 with lower limit −h, A,Ω ∈ℝn×n, f ∈ Cð½0,
∞Þ,ℝnÞ, and φ ∈ C1ð½−h, 0�,ℝnÞ. Obviously, the derivative
can be started at −h instead of 0, since the function xðtÞ gov-
erned by (7) actually originates at −h: However, as is known,
changing the starting point of the derivative modifies the
derivative and leads to a different problem. In this article,
we study the case when the derivative started at 0.

Recently, Liu et al. [24, 25] have studied the analytical
representations of the solutions of the inhomogeneous
Caputo type fractional delay oscillating differential
equations.

Motivating by the above works, we study the following
Hilfer type linear fractional differential time-delay equation

of order 1 < μ < 2 and type 0 ≤ ν ≤ 1:

Dμ,ν
0,t z tð Þ + Az tð Þ +Ωz t − hð Þ = f tð Þ, t ∈ 0, Tð �,

z tð Þ = φ tð Þ,−h ≤ t ≤ 0,

D− 2−μð Þ 1−νð Þ+1,ν
0,t z tð Þ

���
t=0

= a1,

D− 2−μð Þ 1−νð Þ,ν
0,t z tð Þ

���
t=0

= a0,

8>>>>>>><
>>>>>>>:

ð8Þ

where Dμ,ν
0,t stands for the Hilfer fractional derivative of order

1 < μ < 2 and type 0 ≤ ν ≤ 1 with lower limit 0, A,Ω ∈ℝd×d ,
f ∈ Cð½0, T�,ℝdÞ, and φ ∈ C1ð½−h, 0�,ℝdÞ:

Delayed perturbation of Mittag-Leffler matrix functions
serves as a suitable tool for solving linear fractional continu-
ous time-delay equations. First, the delayed matrix exponen-
tial function (delayed matrix Mittag-Leffler function) was
defined to solve linear purely delayed (fractional) systems
of order one. Then, the second order differential systems
with pure delay were considered and suitable delayed sine
and cosine matrix functions were introduced in [1]. Later,
Liang et al. [23] introduced the fractional analogue of
delayed cosine/sine matrices and obtained an explicit solu-
tion of the sequential fractional Caputo type equations with
pure delay—the case A =Θ (zero matrix). Recently, Mahmu-
dov [26] introduced the fractional analogue of delayed
matrices cosine/sine in the case when A and Ω commutes
to solve the sequential Riemann-Liouville type linear time-
delay system. It should be noticed that the model investi-
gated here is not sequential and differs from that of dis-
cussed in [23, 26]. For the sake of completeness, we also
refer to studies of discrete/continuous variants of delayed

cosh,αΩtα ≔

Θ, −∞<t<−h,
I, −h ≤ t < 0,

I −Ω2 t2α

Γ 2α + 1ð Þ+⋯+ −1ð ÞkΩ2k t − k − 1ð Þhð Þ2kα
Γ 2kα + 1ð Þ , k − 1ð Þh ≤ t < kh,

8>>>><
>>>>:

ð5Þ

sinh,αΩtα ≔

Θ, −∞<t<−h,

Ω
t + hð Þα

Γ α + 1ð Þ , −h ≤ t < 0,

Ω
t + hð Þα

Γ α + 1ð Þ −Ω3 t3α

Γ 3α + 1ð Þ+⋯+ −1ð ÞkΩ2k+1 t − k − 1ð Þhð Þ 2k+1ð Þα

Γ 2k + 1ð Þα + 1ð Þ , k − 1ð Þh ≤ t < kh,

8>>>>>><
>>>>>>:

ð6Þ
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matrices used to obtain exact solution to linear difference
equations with delays and related problems [1–18, 23–26].

The main contributions of this paper is presented as
below:

(i) We introduce the delayed Mittag-Leffler type matrix
function Yh

μ,γðA,Ω ; tÞ by means of the determining

function QA,Ω
k,m . We give an exact analytical solution

of the Hilfer type fractional problem (8) with non-
permutable matrices A,Ω by using Yh

μ,γðA,Ω ; tÞ
and study their Ulam-Hyers stability. Obtained
results are new even for Caputo and Riemann-
Liouville type fractional linear time-delay systems,
since matrices A,Ω are nonpermutable

(ii) Although the problem considered by us is fractional
of order 1 < μ < 2 and type 0 ≤ ν ≤ 1, our approach is
also applicable to the classical second-order equa-
tions. Thus, our results are new even for the classical
second order oscillatory system

The article contains significant updates in the theory of
fractional differential equations with delay and is structured
in the following way. Section 2 is a preparatory section in
which we introduce the main definitions and recall concepts
of the fractional calculus, the Laplace transform, and the
Ulam-Hyers stability. Moreover, we introduce the delayed
Mittag-Leffler type matrix function of two parameters Yh

μ,γ
: ½0,∞Þ⟶ℝd and study their properties. In Section 3, we
provide the analytical representation formulas of classical
solutions to linear homogeneous and nonhomogeneous Hil-
fer type linear fractional differential time-delay equation of
order 1 < μ < 2 and type 0 ≤ ν ≤ 1 using the delayed
Mittag-Leffler type matrix function Yh

μ,γðA,Ω ; tÞ. Finally,
we study the Ulam-Hyers stability of the problem (8).

2. Auxiliary Lemmas

We introduce a concept of delayed Mittag-Leffler type
matrix function of two parameters

Definition 2. Delayed Mittag-Leffler type matrix function of
two parameters Yh

μ,γ : ½0,∞Þ⟶ℝd is defined as follows:

Yh
μ,γ A,Ω ; tð Þ = Yh

μ,γ tð Þ≔ 〠
∞

m=0
〠
∞

k=0
−1ð ÞkQA,Ω

k,m
t −mhð Þkμ+γ−1+
Γ kμ + γð Þ ,

ð9Þ

where ðtÞ+ = max f0, tg and

Qk,m =QA,Ω
k,m = 〠

k

j=m
Ak−jΩQA,Ω

j−1,m−1,: ð10Þ

QA,Ω
0,m =QA,Ω

k,−1 =Θ,QA,Ω
k,0 = Ak QA,Ω

0,0 = I, k = 0, 1, 2,⋯,m = 0, 1, 2,⋯
ð11Þ

In this definition, the determining function QA,Ω
k,m plays

the role of a kernel, see [17, 26]. It is clear that

QA,Ω
k+1,m = AQA,Ω

k,m +ΩQA,Ω
k,m−1,

QA,Ω
0,m =QA,Ω

k,−1 =Θ,QA,Ω
0,0 = I,

k = 0, 1, 2,⋯,m = 0, 1, 2,⋯

ð12Þ

We state the main novelties of our article as below:

(i) We introduce a novel delayed Mittag-Leffler type
matrix function Yh

μ,γðA,Ω ; tÞ.
(ii) If Ω =Θ, then

Yh
2,1 A2,Θ ; t
� �

= 〠
∞

k=0
−1ð ÞkA2k t2k

2kð Þ! = cos Atð Þ,

AYh
2,2 A2,Θ ; t
� �

= A〠
∞

k=0
−1ð ÞkA2k t2k+1

2k + 1ð Þ! = sin Atð Þ,

Yh
μ,1 A2,Θ ; t
� �

= 〠
∞

k=0
−1ð ÞkA2k tkμ

Γ kμ + 1ð Þ ,

Yh
μ,2 A2,Θ ; t
� �

= 〠
∞

k=0
−1ð ÞkA2k tkμ+1

Γ kμ + 2ð Þ , 1 < μ < 2:

ð13Þ

Yh
μ,1ðA2,Θ ; tÞ and Yh

μ,2ðA2,Θ ; tÞ can be called fractional
cosine and sine for 1 < μ < 2. Similar cosine/sine matrix
functions were defined in [16, 23] to solve 1 < 2μ < 2 order
sequential fractional differential equations.

(i) If A =Θ, then we have

QA,Ω
m,m =Ωm, Yh

μ,γ A,Ω ; tð Þ = 〠
∞

m=0
−1ð ÞmΩm t −mhð Þmμ+γ−1

+
Γ mμ + γð Þ :

ð14Þ

Moreover,

Yh
μ,1 Θ,Ω2 ; t
� �

= 〠
∞

m=0
−1ð ÞmΩ2m t −mhð Þmμ

+
Γ mμ + 1ð Þ = coshμ Ω ; tð Þ,

ΩYh
μ,2 Θ,Ω2 ; t
� �

=Ω 〠
∞

m=0
−1ð ÞmΩ2m t −mhð Þmμ

+
Γ mμ + 2ð Þ =Ω sinhμ Ω ; tð Þ:

ð15Þ

Similar delayed cosine/sine matrix functions were
defined in [4, 16] to solve 1 < 2μ < 2 order sequential frac-
tional linear differential equations with pure delay.

Before introducing properties of Yh
μ,γðA,Ω ; tÞ, we recall

the definition of the Hilfer fractional derivative and Ulam-
Hyers stability:
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Definition 3. Let m ∈ℕ,m − 1 < μ <m, 0 ≤ ν ≤ 1, a ∈ℝ, and
f ∈ Cm½a, b�. Then the Hilfer fractional derivative of f of
order μ and type ν is given by

Dμ,ν
a,t f tð Þ≔ Iν m−μð Þ

a,t
dm

dtm
I 1−νð Þ m−μð Þ
a,t f tð Þ, ð16Þ

where

Iγa,t f tð Þ≔ 1
Γ γð Þ

ðt
a
t − sð Þγ−1 f sð Þds ð17Þ

is the R-L fractional integral of f of order γ > 0.

The main tool we use in this paper is the Laplace trans-
form FðsÞ≔ Lf f ðtÞg = Ð∞

0 e−st f ðtÞdt,Res > a, which is
defined for an exponentially bounded function f . Here are
some of properties of the Laplace transform.

Lemma 4. The following equalities hold true for sufficiently
large ReðsÞ and appropriate functions f , g:

(i) Lfaf ðtÞ + bgðtÞg = aLf f ðtÞg + bLfgðtÞg, a, b ∈ℝ
(ii) L−1fe−shs−1g = 1, t ≥ h ≥ 0

(iii) L−1fFðsÞGðsÞg = ð f ∗ gÞðtÞ
(iv) LfDμ,ν

0,t f ðtÞg = sμLf f ðtÞg −∑m−1
k=0 s

mð1−νÞ+μν−k−1

Ið1−νÞðm−μÞ−k
0,t f ð0Þ

(v) L−1f1g = δðtÞ,where δðtÞ is Dirac delta distribution

(vi) L−1fe−nshs−ng = ðt − nhÞn−1+ /ðn − 1Þ!, h > 0, n ∈ℕ

(vii) L−1fe−shFðsÞg = f ðt − hÞ, h ≥ 0

(viii) L−1fe−shsαγ−βðsαI − AÞ−γg = ðt − hÞβ−1Eγ
α,βðA

ðt − hÞαÞ, t ≥ h, where Eγ
α,βðzÞ =∑∞

k=0ðzαk/Γðαk + β

ÞÞððγÞk/k!Þ is the three parameter Mittag-Leffler
function, α, β, γ > 0, t ∈ℝ and ðγÞk ≔ γðγ + 1Þ⋯ ð
γ + k − 1Þ

Definition 5. System (8) is Ulam-Hyers stable on ½0, T� if
there exists C > 0 such that for any ε > 0 and for any func-
tion z∗ðtÞ satisfying inequality

Dμ,ν
0,t z

∗ tð Þ + Az∗ tð Þ +Ωz∗ t − hð Þ − f tð Þ�� �� ≤ ε, ð18Þ

and the initial conditions in (8), there is a solution zðtÞof (8)
such that

z∗ tð Þ − z tð Þk k ≤ Cε, ð19Þ

for every t ∈ ½0, T�.
We reduce the notations of Yh

μ,γðA,Ω ; tÞ, QA,Ω
k,m to a mere

Yh
μ,γðtÞ, and Qk,m in the sequel.

Theorem 6. The following formulae hold:
The function Yh

μ,γð·Þ is continuous on ð0, +∞Þ,

d
dt

Yh
μ,γ+1 tð Þ = Yh

μ,γ tð Þ; ;
d
dt

Yh
μ,γ+2 tð Þ = Yh

μ,γ+1 tð Þ for all t ∈ :

Dμ,ν
0,t Y

h
μ,γ = −AYh

μ,γ tð Þ −ΩYh
μ,γ t − hð Þ:

ð20Þ

Proof. The proofs of the properties 1 and 2 are obvious.
Proof of the property 3 is based on the following formula

Dμ,ν
0,t t

α = Γ α + 1ð Þ
Γ α − μ + 1ð Þ t

α−μ, t > 0, n − 1 < μ ≤ n, 0 ≤ ν ≤ 1, α > −1:

ð21Þ

The main tool we use in this paper is the Laplace trans-
form FðsÞ≔ Lf f ðtÞg = Ð∞

0 e−st f ðtÞdt,Res > a, which is
defined for an exponentially bounded function f :

Lemma 7. We have

L−1 e−hs sμI + Að Þ−1Ω
� �m

sμ−γ sμI + Að Þ−1
n o

= 〠
∞

k=0
−1ð Þk−mQk,m

t −mhð Þkμ+γ−1+
Γ kμ + γð Þ ,

ð22Þ

where Qk,m is defined in (10).

Proof. For n = 0 by Lemma 4(viii) we have

L−1 sμ−γ sμI + Að Þ−1
n o

= tγ−1Eμ,γ −Atμð Þ,

L−1 e−sh sμI + Að Þ−γ
n o

= t − hð Þμ−1+ Eμ,μ −A t − hð Þμð Þ, t ≥ h:
ð23Þ

Let Qk,0 = Ak. For n = 1, we use the convolution property
(Lemma 4(iii)) of the Laplace transform to get

L−1 e−hs sμI + Að Þ−1Ωsμ−γ sμI + Að Þ−1
n o

,

= L−1 e−hs sμI + Að Þ−1Ω
n o

∗ L−1 sμ−γ sμI + Að Þ−1
n o

,

=
ðt
0
s − hð Þμ−1+ Eμ,μ −A s − hð Þμð ÞΩ t − sð Þγ−1Eμ,γ −A t − sð Þμð Þds,

= 〠
∞

k=0
〠
∞

j=0

−1ð ÞkAkΩ −1ð ÞjAj

Γ μk + μð ÞΓ μj + γð Þ
ðt
h
s − hð Þμk+μ−1 t − sð Þμj+γ−1ds,

= 〠
∞

k=0
〠
∞

j=0
−1ð ÞkAkΩ −1ð ÞjAj t − hð Þμk+μj+μ+γ−1+

Γ μk + μj + μ + γð Þ ,

= 〠
∞

k=0
−1ð Þk 〠

k

j=0
Ak−jΩAj t − hð Þμk+μ+γ−1+

Γ μk + μ + γð Þ ,

= 〠
∞

k=1
−1ð Þk−1 〠

k−1

j=0
Ak−1−jΩAj t − hð Þμk+γ−1+

Γ μk + γð Þ :

ð24Þ
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Now, to use the mathematical induction, suppose that it
holds for n =m. Then convolution property yields

L−1 e−hs sμI +Að Þ−1Ω
� �m+1

sμ−γ sμI + Að Þ−1
� 	

,

= L−1 e−hs sμI +Að Þ−1Ω
n o

∗ L−1 e−hss−β sμI +Að Þ−1Ω
� �m

sμ−γ sμI + Að Þ−1
n o

,

=
ðt
h
s − hð Þμ−1+ Eμ,μ −A s − hð Þμð ÞΩ〠

∞

j=0
−1ð ÞjQj+m,m

t − s −mhð Þμj+μm+γ−1
+

Γ μj + μm + μð Þ ds,

= 〠
∞

k=0
〠
∞

j=0
−1ð ÞkAkΩ −1ð ÞjQj+m,m

ðt
h

t − s − hð Þkμ+μ−1+
Γ kμ + μð Þ

s −mhð Þμj+μm+γ−1
+

Γ μj + μm + γð Þ ds,

= 〠
∞

k=0
〠
∞

j=0
−1ð ÞkAkΩ −1ð Þ jQj+m,m

ðt−h
mh

t − s − hð Þkμ+μ−1
Γ kμ + μð Þ

s −mhð Þμj+μm+γ−1

Γ μj + μm + γð Þ ds,

= 〠
∞

k=0
〠
∞

j=0
−1ð ÞkAkΩ −1ð Þ jQj+m,m

t − m + 1ð Þhð Þkμ+jμ+ m+1ð Þμ+γ−1
+

Γ kμ + jμ + m + 1ð Þμ + γð Þ ,

= 〠
∞

k=m+1
−1ð Þk−m−1 〠

k−m−1

j=0
Ak−jΩQj+m,m

t − m + 1ð Þhð Þkμ+jμ+ m+1ð Þμ+γ−1
+

Γ kμ + jμ + m + 1ð Þμ + γð Þ ,

ð25Þ

what was to be proved.

Lemma 8. We have

Yh
μ,γ tð Þ≔ L−1 sμ−γ sμI + A +Ωe−hs

� �−1
� 	

,

= 〠
∞

m=0
〠
∞

k=0
−1ð ÞkQk,m

t −mhð Þkμ+γ−1+
Γ kμ + γð Þ :

ð26Þ

Proof. It is easy to see that

L−1 sμ−γ sμI + A +Ωe−hs
� �−1

� 	
,

= L−1 sμ−γ sμI + Að ÞI + sμI + Að Þ sμI + Að Þ−1Ωe−hs
� �−1

� 	
,

= L−1 I + sμI + Að Þ−1Ωe−hs
� �−1

sμ−γ sμI + Að Þ−1
� 	

,

= L−1 〠
∞

m=0
e−mhs −1ð Þn sμI + Að Þ−1Ω

� �m
sμ−γ sμI + Að Þ−1

( )
,

= 〠
∞

m=0
L−1 e−mhs −1ð Þm sμI + Að Þ−1Ω

� �m
sμ−γ sμI + Að Þ−1

n o
:

ð27Þ

Hence, by Lemma 7 we have

L−1 sμ−γ sμI + A +Ωe−hs
� �−1

� 	
,

= 〠
∞

m=0
〠
∞

k=0
−1ð ÞkQk,m

t −mhð Þkμ+γ−1+
Γ kμ + γð Þ :

ð28Þ

3. Exact Analytical Solution and Ulam-
Hyers Stability

We obtain the exact analytical solution of the Hilfer type
fractional second order problem (8) using delayed Mittag-
Leffler type matrix function Yh

μ,γðA,Ω ; tÞ and study their
Ulam-Hyers stability.

Theorem 9. The analytical solution of the initial value prob-
lem (8) has the form

z tð Þ = Yh
μ, μ−2ð Þ 1−νð Þ+1 tð Þ I 1−νð Þ 2−μð Þ

0,t φ
� �

0ð Þ
+ Yh

μ, μ−2ð Þ 1−νð Þ+2 tð Þ I 1−νð Þ 2−μð Þ−1
0,t φ

� �
0ð Þ

−
ð0
−h
Yh
μ,μ t − s − hð ÞΩφ sð Þds +

ðt
0
Yh
μ,μ t − sð Þf sð Þds:

ð29Þ

Proof. Assume that the function f and the solution of (8) is
exponentially bounded. By applying the Laplace transform
to the both sides of (8), we obtain the following relation

L Dμ,ν
0,t z tð Þ
 �

+ AL z tð Þf g +ΩL z t − hð Þf g = L f tð Þf g: ð30Þ

It follows that

sμI + A +Ωe−hs
� �

Z sð Þ = s2 1−νð Þ+μν−1 I 1−νð Þ 2−μð Þ
0,t φ

� �
0ð Þ

+ s2 1−νð Þ+μν−2 I 1−νð Þ 2−μð Þ−1
0,t φ

� �
0ð Þ −Ω

ð∞
0
e−stz t − hð Þdt + F sð Þ,

ð31Þ

where ZðsÞ = LfzðtÞg, FðsÞ = Lf f ðtÞg. For sufficiently large s,
such that

A +Ωe−hs
��� ��� < sμ, ð32Þ

the matrix sμI + A +Ωe−hs is invertible, and it holds that

Z sð Þ = s2 1−νð Þ+μν−1 sμI + A +Ωe−hs
� �−1

I 1−νð Þ m−μð Þ
0,t φ

� �
0ð Þ

+ s2 1−νð Þ+μν−2 sμI + A +Ωe−hs
� �−1

I 1−νð Þ m−μð Þ−1
0,t φ

� �
0ð Þ

− sμI + A +Ωe−hs
� �−1

ΩΨ sð Þ + sμI + A +Ωe−hs
� �−1

F sð Þ:
ð33Þ

By Lemma 8

z tð Þ = Yh
μ, μ−2ð Þ 1−νð Þ+1 tð Þ I 1−νð Þ m−μð Þ

0,t φ
� �

0ð Þ
+ Yh

μ, μ−2ð Þ 1−νð Þ+2 tð Þ I 1−νð Þ m−μð Þ−1
0,t φ

� �
0ð Þ

−
ð0
−h
Yh
μ,μ t − s − hð ÞΩφ sð Þds +

ðt
0
Yh
μ,μ t − sð Þf sð Þds,

ð34Þ
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since

L−1 sμI + A +Ωe−hs
� �−1

ΩΨ sð Þ
� 	

,

= L−1 sμI + A +Ωe−hs
� �−1

� 	
∗ L−1 ΩΨ sð Þf g,

=
ðt
0
Yh
μ,μ t − sð ÞΩψ s − hð Þds,

=
ðh
0
Yh
μ,μ t − sð ÞΩφ s − hð Þds,

=
ð0
−h
Yh
μ,μ t − s − hð ÞΩφ sð Þds:

ð35Þ

Now the assumption on the exponential boundedness
can be omitted. We can easily check that (34) is a solution
of (8).

Theorem 10. Let 1 < μ < 2, 0 ≤ ν ≤ 1,f ∈ Cð½0,∞Þ,ℝdÞ: Sys-
tem (8) is stable in Ulam-Hyers sense on ½0, T�.

Proof. Let z∗ðtÞ satisfy the inequality (18) and the initial con-
ditions in (8). Set

X tð Þ =Dμ,ν
0,t z

∗ tð Þ + Az∗ tð Þ +Ωz∗ t − hð Þ − f tð Þ, t ∈ 0, T½ �:
ð36Þ

It follows from definition 5 that kXðtÞk < ε. By Theorem
9 we have

z∗ tð Þ = Yh
μ, μ−2ð Þ 1−νð Þ+1 tð Þ I 1−νð Þ m−μð Þ

0,t φ
� �

0ð Þ
+ Yh

μ, μ−2ð Þ 1−νð Þ+2 tð Þ I 1−νð Þ m−μð Þ−1
0,t φ

� �
0ð Þ

−
ð0
−h
Yh
μ,μ t − s − hð ÞΩφ sð Þds +

ðt
0
Yh
μ,μ t − sð Þ f sð Þ − X sð Þð Þds:

ð37Þ

Thus, we can estimate the difference z∗ðtÞ − zðtÞ as fol-
lows:

z∗ tð Þ − z tð Þk k,

=
ðt
0
Yh
μ,μ t − sð ÞX sð Þds

����
���� ≤ ε

ðT
0

Yh
μ,μ T − sð Þ

��� ���ds,
= Cε:

ð38Þ

Then, the problem (8) is Ulam-Hyers stable on ½0, T�.

4. Conclusion

The article solves a problem of finding exact analytical solu-
tion of continuous linear time-delay systems using the delayed
Mittag-Leffler type matrix functions of two variables. In arti-
cles [1, 6] delayed exponential is suggested to obtain an exact
solution of delayed first order continuous equations. Similar

results for sequential Caputo type and Riemann-Liouville type
fractional linear time-delay systems of order 1 < 2α < 2 were
obtained in [23, 26]. These results are obtained either for sys-
tems with pure delay or under the condition of commutativity
of A and Ω. In this article, we drop the commutativity condi-
tion. The result has been obtained by defining the new delayed
Mittag-Leffler matrix function and employing the Laplace
transform. The work contained in this article will be useful
for future research on fractional time-delay systems.

One possible direction in which to extend the results of
this paper is toward fractional impulsive systems [27] and
conformable fractional differential systems of order 1 < α <
2: Another challenge is to study the qualitative properties
of the problem (8).
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