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In this paper, a coupled system of two transport equations is studied. The techniques are a fixed-point and Space-Time Integrated
Least Square (STILS) method. The nonstationary advective transport equation is transformed to a “stationary” one by integrating
space and time. Using a variational formulation and an adequate Poincare inequality, we prove the existence and the uniqueness
of the solution. The transport equation with a nonlinear feedback is solved using a fixed-point method.

1. Introduction

This work is motivated by the crystal dissolution and precipi-
tation model in saturated porous medium [1]. In [1], the
authors present a macroscopic model describing ions trans-
port by fluid flow in a porous medium undergoing dissolution
and precipitation reactions. Suchmodels receivedmuch atten-
tion during the past years (e.g., [2–4]).

All these papers deal with the upscaled formulation of the
phenomena. A rigorous justification, starting from a well-
posed microscopic (pore-scale) model and applying a suitable
upscaling, has been given for important classes of problems.
For instance, [5] presents homogenization as a method for
upscaling and contains an overview with particular emphasis
on porous media flow including chemical reactions. In this
respect, we also mention [6], where the reaction rates and iso-
therms are linear (see also [7] or [8]), where nonlinear cases as
well as multivalued interface conditions are analyzed.

In [9], the authors study the pore-scale analogue of the
model proposed in [1], which is built on Stokes flow in the
pores, transport of dissolved ions by convection and diffusion,
and dissolution-precipitation reactions on the surface of the
porous skeleton. They use regularisation techniques and a
fixed-point argument to obtain existence of a weak solution
in general domains. The results obtained are a rigorous justifi-
cation of the macroscopic model in [1].

In this paper, we give a mathematical analysis of the
macroscopic model in [1] using the fixed-point theorem
and the STILS method to solve the transport equations.

The least squares method is widely used to solve partial dif-
ferential equations. We can refer to [10, 11] for application on
elasticity and fluid mechanics problems. Some general mathe-
matical results have been obtained for this method in the case
of first-order time-dependent conservations laws. With the
space-time objects below, the STILS method transforms a non-
stationary problem into a “stationary” problem by integrating
space and time. This “stationary” problem is of advective form.
For instance, in [12], an equivalence between the advective for-
mulation and that of anisotropic diffusion is established.

The STILS method is originated to [13, 14]. In [13, 14], a
least squares method is used to solve a 2D stationary first-
order conservation equation with regularity assumptions on
the advection velocity. A comparison between the least squares
solution and the renormalized solution in the sense of [15] for
some equations is given in [16]. The STILS method leads to
some numerical schemes which aremuch simpler than the usual
ones (like the streamline diffusion method, the characteristic
method, and the discontinuous finite element method with flux
limiter). Some numerical examples are presented in [17–19].

In this paper, we make use of both the fixed-point theo-
rem and the so called STILS method to solve nonlinear
transport equations in the model described below.
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This paper is organized as follows. Section 2 provides a
brief presentation of the model proposed in [1]. Assumptions
and preliminary results useful to the resolution are also pre-
sented. Section 3 is devoted to an existence and uniqueness
theorem. The fixed-point theorem and the STILS method
are both used to deal with the above mentioned model.

2. Model Equations and Problem Description

2.1. Model Equations. It is useful to recall the model equations
suggested in [1] without going into the details. We assume
having two species M1 and M2, for example, ions, say M1
being a cation and M2 an anion. In addition, there may be a
crystalline solid M12 present at the porous skeleton. M1 and
M2 may precipitate at the surface of the porous skeleton to
form M12, and conversely, the crystalline solid may dissolve.
The stoichiometry of the reaction is supposed to be as follows:

M12⇌nM1 +mM2: ð1Þ

n and m denote positive numbers. Let ci, i = 1, 2, be the
molar concentration ofMi in the solution relative to the water
volume, and let c12 be the molar concentration ofM12 relative
to the mass of the porous skeleton. The particle M12 is
attached to the surface of the porous skeleton and thus is
immobile. The conservation of the corresponding total masses
leads to the partial differential equations

∂
∂t

θc1ð Þ + nρ
∂
∂t

c12 − div θD∇c1 − q∗c1ð Þ = 0, ð2Þ

∂
∂t

θc2ð Þ +mρ
∂
∂t

c12 − div θD∇c2 − q∗c2ð Þ = 0, ð3Þ

where the water content θ is supposed to be constant and not
affected by the reaction (1), ρ is the bulk density, D is the
diffusion/dispersion tensor, and q∗ is the specific discharge
vector. If we define

c =mc1 − nc2, ð4Þ

then equations (2) and (3) imply that the quantity c verifies

∂
∂t

c − div D∇c −
q∗

θ
c

� �
= 0: ð5Þ

Another equation for c12 results from a description of the
precipitation and dissolution processes. Following the detailed
discussion in [1], we have

ρ

θ

∂
∂t

c12 − k∗ rp − rd
� �

= 0, ð6Þ

where rd and rP = kprðc1, c2Þ are, respectively, the dissolution
and precipitation rates and k∗ the reaction velocity. r is a non-
linear smooth nonnegative function depending on c1 and c2. A
typical example is leading to

r x, yð Þ = xnym: ð7Þ

Summarizing the discussion done in about precipitation-
dissolution reaction, we have for the crystalline solid the
equation

ρ

θ

∂
∂t

c12 ∈ k
∗ kpr c1, c2ð Þ − kdH c12ð Þ� � ð8Þ

or equivalently

ρ

θ

∂
∂t

c12 = k∗ kpr c1, c2ð Þ − kdw
� �

, ð9Þ

where

w ∈H c12ð Þ, ð10Þ

which means 0 ≤w ≤ 1 for c12 = 0 and w = 1 for c12 > 0.
H is the set-valued Heaviside function defined by

H uð Þ =
1 for u > 0,
0, 1½ � for u = 0,
0 for u < 0:

8>><
>>: ð11Þ

We make now some assumptions which lead to the
model we study in this paper. Equation (4) gives

c2 =
1
n

mc1 − cð Þ: ð12Þ

Then, in this model, we consider equations (2), (5), and
(9).

If the dispersive transport is negligible compared to the
advective transport, it is reasonable to tend D to zero. This
assumption cancels the corresponding terms in (2) and (5).
We assume also that c12 > 0 anywhere; it means w = 1 in
(9). The velocity of the solute transport q = q∗/θ in (2) is
the gradient of the hydraulic potential. Setting

c12 ≔
nρ
θ
c12,

α≔ k∗kp,

β≔
kd
kp

,

ð13Þ

the model equations have the following form:

∂
∂t

c1 +
∂
∂t

c12 + q · ∇c1 = 0, ð14Þ

∂
∂t

c + q · ∇c = 0, ð15Þ

∂
∂t

c12 = α r c1,
1
n

mc1 − cð Þ
� �

− β

� �
: ð16Þ

In this paper, we study the coupled system (14)–(16) in
addition to the appropriate boundary conditions.
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2.2. Problem Description

2.2.1. Notations. Let Ω ⊂ℝd , d = 1, 2, 3, be a domain with a
Lipschitz boundary ∂Ω satisfying the cone property.

If T > 0 is given, set ΩT =Ω × �0, T½. Let

Γ− = x ∈ ∂Ω, q xð Þ · n xð Þ < 0f g,
Γ+ = x ∈ ∂Ω, q xð Þ · n xð Þ > 0f g,

ð17Þ

where nðxÞ is the outer normal to ∂Ω at x. Let

Γ−
T = Γ− × 0, T½ � ∪Ω × 0f g,

a = q, 1ð Þt ,

∇t = ∇, ∂
∂t

� �t

:

ð18Þ

Let HmðΩÞ be the classical Hilbert space of order m, and

H1
0 Ωð Þ = φ ∈H1 Ωð Þ ; φ = 0 on ∂Ω

� �
: ð19Þ

We also define the following Hilbert space V :

V = ϕ ∈ L2 ΩTð Þ ; a · ∇tϕð Þ ∈ L2 ΩTð Þ� �
, ð20Þ

equipped with the graph norm:

vk k2V = vk k2L2 ΩTð Þ + a · ∇tvk k2L2 ΩTð Þ, ∀v ∈ V : ð21Þ

Let

H a,ΩT ; Γ−ð Þ = ϕ ∈ V such thatϕ = 0 onΓ− × 0, T� ½f g:
ð22Þ

The problem consists in finding

c, c1 : ΩT ⟶ℝ, ð23Þ

satisfying the following partial differential equation system

P1ð Þ

∂c
∂t

+ q · ∇c = 0 inΩT ,

c = g onΓ−
T ,

c x, 0ð Þ = c0 xð Þ inΩ,

8>>><
>>>:

P2ð Þ

∂c1
∂t

+ q · ∇c1 = r c1,
1
n

mc1 − cð Þ
� �

− β

� �
inΩT ,

c1 = g1 onΓ−
T ,

c1 x, 0ð Þ = c10 xð Þ inΩ:

8>>>><
>>>>:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð24Þ

Equations (14) and (16) give system ðP2Þ. In systems
ðP1Þ and ðP2Þ, initial conditions and inflow boundary
conditions are given for c and c1. The technique is to solve

first ðP1Þ and after ðP2Þ. With the solutions c and c1 and
equation (16), we obtain c12.

2.2.2. Preliminary Results. The STILS method will be used to
solve the problem ðP1Þ like in [12, 20]. The method leads to
a variational formulation problem, and we use the classical
Lax-Milgram theorem to find the solution. So we give the
following lemma to prove the bilinear map coercivity.

Lemma 1 (curved Poincaré inequality). There exists a
constant k = 2T such that

uk kL2 ΩTð Þ ≤ k a · ∇tuk kL2 ΩTð Þ, ∀u ∈H a,ΩT ; Γ−ð Þ: ð25Þ

The proof is in [20].
Let HðX, x, tÞ be a polynomial with respect to X with

bounded coefficients hi defined in ΩT .

H X, x, tð Þ = 〠
n

i=0
hi x, tð ÞXi: ð26Þ

Let ai, i = 0,⋯, n be defined by

ai = sup
ΩT

hi x, tð Þj j: ð27Þ

ðP2Þ is also a transport problem with a nonlinear feed-
back. We use both STILS method and fixed-point theorem
to solve the problem. So we need ðck1Þk∈ℕ to be bounded in
L∞ðΩTÞ; hence, we give the following lemma.

Lemma 2. Let T be a positive real number and u0 ∈DðΩTÞ a
positive function such that

T <
sup
ΩT

u0
� �

∑n
i=0ai sup

ΩT

u0
 !i : ð28Þ

Let ðukÞk∈ℕ be the sequence of functions defined by

a · ∇tu
k =H uk−1, x, t

� 	
inΩT ,

uk = 0 onΓ−
T :

8<
: ð29Þ

Then, we have

∀k ∈ℕ, sup
ΩT

uk



 


 ≤ sup

ΩT

u0
� �

: ð30Þ

Proof. Assume that there exists k ∈ℕ∗ such that

sup
ΩT

uj

 

� �
≤ sup

ΩT

u0
� �

, ∀j = 0,⋯, k − 1: ð31Þ

We know that the velocity field q is bounded in its time
component and has a constant dot product (equal to 1, too)
with the vector ð0,⋯, 0, 1Þ. This ensures (see Proposition 7
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in [12]) that ΩT is filled by the characteristics in the follow-
ing ways:

There exists an S > 0 such that for almost each point
ðx, tÞ of ΩT , there exists an integral curve

ζ : 0, S½ �⟶ΩT such that
∂ζ
∂s

= a ζð Þ ð32Þ

that connect ðx, tÞ to the space-time inflow boundary:

ζ 0ð Þ = x0, t0ð Þ ∈ Γ−
T ,

ζ tð Þ = x, tð Þ, ∀t ∈ 0, S½ �:
ð33Þ

On this integral curve (characteristic), system (29) gives

uk x tð Þ, tð Þ =
ðt
t0

H uk−1, x sð Þ, s
� 	

ds: ð34Þ

Hence,

uk x tð Þ, tð Þ



 


 ≤ T〠

n

i=0
ai sup

ΩT

u0
� � !i

≤ sup
ΩT

u0
� �

, ð35Þ

thanks to (28). Moreover, since ΩT is filled by characteristics,
we have

sup
ΩT

uk



 


� 	

≤ sup
ΩT

u0
� �

: ð36Þ

Finally, we conclude that for any n ∈ℕ, supΩT
ðjunjÞ ≤

supΩT
ðu0Þ. This ends the proof of the lemma.

3. Existence and Uniqueness Theorem

Theorem 3. Let ðg, g1Þ ∈ L∞ðΓ−
TÞ × L∞ðΓ−

TÞ and ðc0, c10Þ ∈
L∞ðΩÞ × L∞ðΩÞ. System (24) has an unique solution ðc, c1Þ
∈ V2.

Proof. The proof will be done in two steps.
Step one. In the system ðP1Þ, we assume that the diver-

gence of the velocity q is zero; then, we can use the result
in [12] or in [21, 22] cited in [12] to prove the existence of
the boundary trace on ΓT of a function in V .

So, using the extension d ∈ V of g in system ðP1Þ, this
later is equivalent to searching w in Hða,ΩT ; Γ−Þ such that

PMCð Þ
a · ∇tw − F = 0 inΩT ,
w = 0 onΓ−

T ,
w x, 0ð Þ = c0 xð Þ − d x, 0ð Þ0 inΩ,

8>><
>>: ð37Þ

with F = −ð∂d/∂tÞ − ð1/θÞq · ∇d. Now, like in [12], we define
the following convex quadratic form J :

J wð Þ =
ð
ΩT

a · ∇tw − Fð Þ2dxdt: ð38Þ

The Gateau derivative of J is

DJ wð Þφ =
ð
ΩT

a · ∇tw − Fð Þa · ∇tφdxdt: ð39Þ

Hence, w is the solution of (37) if and only if w satisfies

ð
ΩT

a · ∇twð Þ a · ∇tφð Þdxdt =
ð
ΩT

F a · ∇tφð Þdxdt, ∀φ ∈H a,ΩT ; Γ−ð Þ:

ð40Þ

Using the Lax-Milgram theorem, we have the solution of
the variational problem (40). Lemma 1 is used to prove the
bilinear application coercivity.

Step two. This last step is devoted to the problem ðP2Þ:
We set

G c1ð Þ = −α r c1,
1
n

mc1 − cð Þ
� �

− β

� �
, ð41Þ

which is a polynomial function with respect to c1 with coef-
ficients depending on c. Then, ðP3Þ becomes

a · ∇tc1 == G c1ð Þ inΩT ,
c1 = g1 inΓ−

T ,
c1 x, 0ð Þ = c10 xð Þ inΩ:

8>><
>>: ð42Þ

This is a transport equation with a nonlinear feedback G
ðc1Þ due to the chemical reactions (dissolution-precipitation).
To solve it, we first split (42) into the following systems:

PT1ð Þ
a · ∇t�c ==G �c +~cð Þ inΩT ,
�c = 0 onΓ−

T ,
�c x, 0ð Þ = 0 inΩ:

8>><
>>: ð43Þ

PT2ð Þ
a · ∇t~c == 0 inΩT ,
~c = g1 onΓ−

T ,
~c x, 0ð Þ = c10 xð Þ inΩ:

8>><
>>: ð44Þ

In order to solve the nonlinear system (43), we use the
fixed-point theory. For T > 0 and c0 ∈DðΩTÞ satisfying (28),
let ðckÞk∈ℕ be the sequence of functions defined by

PT1kð Þ
a · ∇tc

k = G ck−1 +~c
� 	

inΩT ,

ck = 0 onΓ−
T ,

ck x, 0ð Þ = 0 inΩ:

8>>><
>>>:

ð45Þ

Using Lemma 2, we prove that ðckÞk∈ℕ is bounded in L∞

ðΩTÞ.
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Put ck1 = ck +~c solution of

a · ∇tc
k
1 =G ck−11

� 	
inΩT ,

ck1 = g1 onΓ−
T ,

ck1 x, 0ð Þ = c10 xð Þ inΩ:

8>>><
>>>:

ð46Þ

Let us show that ðck1Þk∈ℕ is a Cauchy sequence in V and
that its limit c1 is the solution of (42).

Let p and q be integers such that

a · ∇tc
p
1 =G cp−11

� 	
, ð47Þ

a · ∇tc
q
1 =G cq−11

� 	
: ð48Þ

Equations (47) and (48) give

a · ∇t cp1 − cq1
� �

=G cp−11
� 	

− G cq−11
� 	

: ð49Þ

By a variational formulation, (49) give

ð
ΩT

a · ∇t cp1 − cq1
� �

a · ∇twð Þdxdt

=
ð
ΩT

G cp−11
� 	

− G cq−11
� 	h i

a · ∇twð Þdxdt, ∀w ∈ V :

ð50Þ

We choose w = cp1 − cq1 thenð
ΩT

a · ∇t cp1 − cq1
� �

a · ∇t cp1 − cq1
� �� �

dxdt

=
ð
ΩT

G cp−11
� 	

− G cq−11
� 	h i

a · ∇t cp1 − cq1
� �� �

dxdt:

ð51Þ

Hence,

a · ∇t cp1 − cq1
� ��� ��2

L2 ΩTð Þ =
ð
ΩT

G cp−11
� 	

−G cq−11
� 	h i

a · ∇t cp1 − cq1
� �� �

dxdt:

ð52Þ

Since the function G is regular enough, we have

G cp−11
� 	

−G cq−11
� 	

= G′ sð Þ cp−11 cq−11
� 	

: ð53Þ

So using the Cauchy-Schwarz inequality in the right
hand side of (52), we get

a · ∇t cp1 − cq1
� ��� ��2

L2 ΩTð Þ ≤max
0≤s≤γ

G′ sð Þ

 

 a · ∇t cp1 − cq1
� ��� ��

L2 ΩTð Þ cp−11 − cq−11

��� ���
L2 ΩTð Þ

:

ð54Þ

Hence,

a · ∇t cp1 − cq1
� ��� ��

L2 ΩTð Þ ≤max
0≤s≤γ

G′ sð Þ

 

 cp−11 − cq−11

��� ���
L2 ΩTð Þ

:

ð55Þ

Let τ =max0≤s≤γjG′ðsÞj; we have

a · ∇t cp1 − cq1
� ��� ��

L2 ΩTð Þ ≤ τ cp−11 − cq−11

��� ���
L2 ΩTð Þ

: ð56Þ

Using the curved Poincaré inequality of Lemma 1, we get

cp1 − cq1
�� ��

V
≤ 2τT cp−11 − cq−11

��� ���
V
: ð57Þ

So, if T < 1/2τ, the sequence ðck1Þk∈ℕ is a Cauchy
sequence in V which is a Hilbert space then converges to
c1 ∈ V .

Let us now prove that the limit c1 of ðck1Þk∈ℕ is the solu-
tion of (42). For this purpose, we write

a · ∇tc1 − G c1ð Þ = a · ∇tc1 − a · ∇tc
k
1 + a · ∇tc

k
1 −G ck−11

� 	
+G ck−11

� 	
−G c1ð Þ, ∀k ∈ℕ:

ð58Þ

Since a · ∇tc1 − a · ∇tc
k
1 tends to zero in L2ðΩTÞ and a ·

∇tc
k
1 − Gðck−11 Þ = 0, it remains to be proved that Gðck−11 Þ −G

ðc1Þ tends to zero. We have

G ck−11

� 	
−G c1ð Þ = G′ sð Þ ck−11 − ck1

� 	
: ð59Þ

We know that G′ is bounded and ðck−11 Þ tends to c1 in V
so Gðck−11 Þ −Gðc1Þ tends to zero. Then, c1 is the solution of
the first equation of (42). The boundary and initial condi-
tions are obtained by the continuity of the trace mapping.

4. Conclusion

The existence and uniqueness solutions of a coupled trans-
port equations have been proved by a fixed-point and STILS
method. Free divergence of the transport velocity is consid-
ered in this work, but the method used can be extended to
no free divergence case. The techniques used in this paper
can be applied in other coupled nonstationary systems.
The spatial operator in N dimension, for example, can be
replaced by an operator in N + 1 dimension, where the N
+ 1 component is the time derivative. The obtained result
can be improved adding a concrete example like solving a
salt-wedge intrusion model or a coupled system arising in
epidemiology. All those things and the numerical simulation
will be done in the future work.
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