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In this paper, we study the flow of two immiscible fluids namely, couple stress fluid and Jeffrey fluid in a porous channel. Instead
of the classical no-slip conditions on the boundaries, we used slip boundary conditions, which are more realistic and meaningful.
In addition, we used inclined magnetic field effects on the fluid flow. The couple stress fluid and Jeffrey fluid are flowing adjacent
to each other in the region I and in the region II, respectively, of the horizontal porous channel. The nondimensionalized
governing equations are solved analytically by using slip conditions at the lower and upper boundaries and interface conditions
at the fluid-fluid interface. The analytical expressions for the velocity components in both regions are obtained in closed form.
The effects of slip parameter, Hartmann number, couple stress parameter, Jeffrey parameter, angle of inclination, and Darcy
number on velocity components in both regions are investigated. In the absence of slip, couple stress parameter, and Jeffrey
parameters, limiting cases are obtained and discussed.

1. Introduction

As the classical Newtonian fluid theory is inadequate to
explain the fluids with additives and other nonlinear stress
and strain relationships that occur in real fluids, many non-
Newtonian fluid theories are proposed. Non-Newtonian
fluids are categorized as visco-elastic fluids, time-dependent
fluids, and time-independent fluids [1, 2].

Stokes [3] in 1966 proposed the couple stress theory by
introducing the nonsymmetry of the stress tensor that shows
the effects of couple stresses. This fluid theory gained the
attention of researchers due to its major applications in lubri-
cation theory, liquid crystals, blood flows, etc. A review of
couple stress fluid dynamics was reported by Stokes [4] in
1984. The presence of couple stress parameter decreases the
velocity of the fluid and other parameters effect on the veloc-
ity of a single couple stress fluid studied by Devakar et al. [5],
Ahmad [6], and Jangili et al. [7].

Other non-Newtonian fluid which has been attracted
much by the researchers in view of its simplicity is known
as Jeffrey fluid [8]. The Jeffrey fluid model is able to describe
the characteristics of relaxation and retardation time. Jef-
frey’s fluid model is a significant generalization of the Newto-
nian fluid model as the latter one can be deduced as a special
case of the former. Several scholars have studied Jeffrey fluid
flow under different assumptions and conditions. Akbar et al.
[9] have studied the effect of thermal and velocity slip for Jef-
frey fluid symmetric channel. Akram and Nadeem [10] stud-
ied analytically the influence of induced magnetic field on the
peristaltic motion of a Jeffrey fluid in an asymmetric channel.
Shail [11] studied theoretically the possibility of using a two-
phase system to obtain increased flow rates in an electromag-
netic pump. Meyer and Garder [12] analyzed the mechanics
of two immiscible fluids in porous media. Bhattacharya [13]
studied the flow of immiscible fluids in a rigid channel with a
time-dependent pressure gradient.
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The study of immiscible fluids like Newtonian versus
Newtonian, Newtonian versus Non-Newtonian, and/or
Non-Newtonian versus Non-Newtonian fluids occurs in
industries, manufacturing process, groundwater hydrology,
etc. Recently, several researchers studied the flows of immis-
cible fluids, to mention a few, such as Newtonian fluid-
Newtonian fluid or Newtonian-Non-Newtonian fluid (Berg
et al. [14], Padma Devi and Srinivas [15], Yadav and Sneha
[16, 17], Deo and Ansari [18], Matias et al. [19], Malashetty
and Umavathi [20], Ramana Murthy and Srinivas [21], and
Punnamchandar and Fekadu [22]) in channel configurations
with slip and/or no-slip boundary conditions.

In general, the no-slip boundary condition is used when
the fluid flows past rigid boundaries. However, it has been
accepted now that a number of fluids such as polymerics
and additive fluids slip/stick-slip on rigid boundaries. To
describe the slip characteristics of a fluid on the solid surface,
“Navier introduced a more general boundary condition – that
the fluid velocity component tangential to the solid surface,
relative to the solid surface, is proportional to the shear stress
on the fluid-solid interface” (Thompson and Troia [23]).
“Recent advances in experimental and mathematical investi-
gation and results have provided evidence in support of the
slip condition and try to show its effects on different fluid
model” (Akram et al. [24], Punnamchandar and Iyengar
[25], Ashmawy [26], and Srinivasacharya and Bindu [27]).

To the extent, the authors have surveyed the combined
effects of slip and inclined magnetic field on the flow of
immiscible couple stress fluid and Jeffrey fluids in a porous
medium channel have not been studied. Hence, in this
paper, the flow of two immiscible fluids in a porous medium
channel with an inclined magnetic field along with the slip at
the boundaries is analyzed. The analytical expressions for
the velocity components in both regions are obtained in
closed form. The effects of various parameters on the two
velocity profiles are shown graphically and briefly discussed.

2. Mathematical Formulation of the Problem

Consider a fully developed laminar incompressible, immisci-
ble couple stress, and Jeffrey fluids flow through a porous
medium between two parallel horizontal plates which are
2 h distance apart. The x-axis is taken in the midway direc-
tion of the porous channel, and the y-axis is taken normal
to the porous channel (Figure 1).

Let β1 and β2 be the slip coefficients of the fluids at the
lower and the upper plates of the channel, respectively. The
fluid flow is driven by a common pressure gradient. The
couple stress fluid in the region I (−h ≤ y ≤ 0) has density
ρ1, shear viscosity μ1, and couple stress viscosity η1. Simi-
larly, the Jeffrey fluid in the region II (0 ≤ y ≤ h) has density
ρ2, shear viscosity μ2 and λ1 is the material parameter of a
Jeffrey fluid. The porous medium is rigid, isotropic, and
homogeneous with permeabilitiesk1 and k2 in the two
regions, respectively.

A uniform magnetic field Bois applied at an inclined
angleθ with respect to the positive y-direction. The couple
stress fluid and Jeffrey fluid are assumed to be slightly con-
ducting. Hence, the induced magnetic field is negligible in

comparison to the applied uniform inclined magnetic field.
The Lorentz force is the only body force acting on the fluid,
and there are no body couples.

For region I ð−h ≤ y ≤ 0Þ,
following Stokes [3] and Skelland [1], the flow of couple

stress fluid in the region I has an extra stress tensor compare
with Navier - Stokes equation is governed by the differential
equations given by

μ1
d2u1
dy2

− η1
d4u1
dy4

− σ1B
2
o cos2θu1 −

μ1
k1

u1 = −
dp
dx

: ð1Þ

For region II ð0 ≤ y ≤ hÞ,
following Chabra and Richardson [2], Akbar et al. [9],

and Akram and Nadeem [10], the flow of Jeffrey fluid in
region II has an extra stress tensor S = μ2/1 + λ1ð _γ + €γÞ, _γ is
the shear rate. Using the above assumptions and this extra
stress tensor, the governing differential equation reduced to

μ2
1 + λ1

d2u2
dy2

− σ2B
2
0 cos2θu2 −

μ2
k2

u2 = −
dp
dx

, ð2Þ

where dp/dx represents the driving force i.e., the common
pressure gradient, μid

2ui/dy2 represents the force due to
shear stresses, η1d

4u1/dy4 represents the force due to couple
stresses, σiB

2
oui represent the Lorentz force due to applied

magnetic field, μi/kiui represents the retarding force due to
porous media in both the fluid regions.

To determine the velocity field components u1ðyÞ and
u2ðyÞ in region I and region II described above, we adopt
the following boundary and interface conditions:

(i) at y = −h, the Navier slip relation says that the shear
stress on the fluid at the boundary is proportional
to the fluid velocity at the boundary [28]. A velocity
slip boundary condition proposed by Navier in which
slip velocity depends upon shear stress. Devakar et al.
[5] and Pei-Ying et al. [29] presented the analytical
solution for a couple stress fluids by taking velocity
slip conditions. This slip conditions is given by

Jeffrey fluid

;

Couple stress fluid

(  )

(       )

u2 = –

u1 = 𝛽1

du2

d2u1d3u1du1

y = h
Bo

x

y = –h

 = 0

dy
y

dy dy2dy3

𝛽2
1 + 𝜆1

dp
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𝜃

𝜂1

𝜇1

Figure 1: A schematic representation of the flow of two immiscible
fluids.
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u1 = β1
du1
dy

−
η1
μ1

d3u1
dy3

 !
: ð3Þ

Stokes [3] has proposed two types of boundary Condi-
tions (A) and (B), respectively, and the vanishing of couple
stresses on the boundary is referred to as Condition (A).
This condition is adopted here as this is appropriate in the
present context. The vanishing of couple stresses is given by

d2u1
dy2

= 0: ð4Þ

(ii) at y = 0, at the fluid–fluid interface, Murthy and Sri-
nivas [21] assumed that the velocity, shear stress,
and couple stress components are continuous. This
implies:

Continuity of velocities,

u1 0−ð Þ = u2 0+ð Þ,
u1 = u2:

ð5Þ

Vanishing of couple stresses,

Mxy
��
1 0−ð Þ =Mxy

��
2 0+ð Þ,

d2u1
dy2

= 0:
ð6Þ

Continuity of shear stresses,

τxy
��
1 0−ð Þ = τxy

��
2 0+ð Þ,

μ1
du1
dy

− η1
d3u1
dy3

 !
= μ2

1 + λ1

� �
du2
dy

:
ð7Þ

(iii) at y = h, the slip boundary condition for Jeffrey
fluid, is given by (Ramesh [30])

u2 = −
β2

1 + λ1ð Þ
du2
dy

, ð8Þ

By introducing the nondimensional quantities, x∗ = x/h
, y∗ = y/y, u∗i = ui/U , p∗ = p/ρ1U2 where U is the maximum
velocity of the fluid in the channel and i = 1, 2, we have the
governing equations, boundaries, and interface conditions
(in the nondimensionalized form after dropping ∗‘s) as

For region I ð−1 ≤ y ≤ 0Þ,

1
s1
d4u1
dy4

−
d2u1
dy2

+ M2 + 1
Da

� �
u1 = Re P: ð9Þ

Similarly for region II ð0 ≤ y ≤ 1Þ,

1
1 + λ1

d2u2
dy2

−
1

K Da
+ nσ
nμ

M2
 !

u2 = −
nρ
nμ

Re P: ð10Þ

(i) at y = −1,

u1 =
1
α1

du1
dy

−
1
s1

d3u1
dy3

 !
,

d2u1
dy2

= 0

ð11Þ

(ii) at y = 0,

u1 = u2

nμ
1 + λ1

du2
dy

� �
= du1

dy
−

1
s1

d3u1
dy3

,

d2u1
dy2

= 0

ð12Þ

(iii) at y = 1,

u2 = −
1

1 + λ1ð Þα2
du2
dy

� �
, ð13Þ

where P = −dp/dx is the constant pressure gradient, Re
= ρ1U h/μ1 is the Reynolds number, αi = h/βiði = 1, 2Þ are
the slip parameters, s1 = μ1 h

2/η1 is the couple stress param-
eter, Ha = B0h

ffiffiffiffiffiffiffiffiffi
σ/μ1

p
is the Hartmann number, M =HaCo

sθ, Da = k/h2 is the Darcy number, nσ = σ2/σ1 is the electric
conductivity ratio, nμ = μ2/μ1 is the viscosity ratio, and nρ
= ρ2/ρ1 is the density ratio.

3. Solution of the Problem

Region I (−1 ≤ y ≤ 0), from Equation (9), the velocity com-
ponent differential equation in region I is given by

u1 yð Þ = C11 cosh λ11y + C12 sinh λ11y

+ C13 cosh λ12y + C14 sinh λ12y + P1

where λ1i = ð−1Þi−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1/2 ± 1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12 − 4m1

pq
, i = 1, 2,

m1 = M2 + 1
Da

� �
s1 ; P1 =

Re P s1
m1

: ð15Þ
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Region II (0 ≤ y ≤ 1), from Equation (10), the velocity
component differential equation in region II is given by

u2 yð Þ = C21 cosh λ21y + C22 sinh λ21y + P2, ð16Þ

where λ2i = ð−1Þi−1 ffiffiffiffiffiffim2
p for i = 1, 2,

m2 =
ησ
ημ

M2 + 1
K Da

 !
1 + λ1ð Þ,

P2 =
nρ

nμm2
1 + λ1ð Þ Re P:

ð17Þ

The velocity components u1ðyÞ and u2ðyÞ involve six
constants C11, C12, C13, C14, C21, andC22 . The expressions
of these are given in appendix A.

Evaluation of volumetric flow rate : the expression of
volumetric flow rate through the channel in dimensionless

form can be evaluated using the following relation [31]:

Q yð Þ =
ð0
−1
u1 yð Þdy +

ð1
0
u2 yð Þdy,

Q yð Þ = sinh λ11
λ11

C11 +
1 − cosh λ11ð Þ

λ11
C12 +

sinh λ12
λ12

C13

+ 1 − cosh λ12ð Þ
λ12

C14 + P1 + sinh λ21
λ21

C21

+ cosh λ21 − 1ð Þ
λ21

C22 + P2:

ð18Þ

Evaluation of shearing stress : the expression for nondi-
mensional shearing stress experienced by fluids in the upper
and lower region of the horizontal porous channel [31],
respectively, is given by:

4. Particular Solution for the Effects of Slip and
Inclined Magnetic Field on the Immiscible
Fluid Flow in a Horizontal Porous Channel

4.1. Immiscible Fluids (CSF and Newtonian Fluid) Flow in
the Assumed Channel in the Existence of a Uniform
Inclined Magnetic Field for λ1 = 0. Region I (−1 ≤ y ≤ 0),
the governing differentialequation is given by

1
s1
d4u1
dy4

−
d2u1
dy2

+ M2 + 1
Da

� �
u1 = Re P: ð20Þ

Therefore, the general solution is given by

u1 yð Þ = C11 cosh λ11y + C12 sinh λ11y + C13 cosh λ12y

+ C14 sinh λ12y + P1,
ð21Þ

where λ1i = ð−1Þi−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1/2 ± 1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12 − 4m1

pq
for i = 1, 2:

τxy1 =
du1
dy

−
1
s1

d3u1
dy3

at y = −1,

τxy2 = −
1

1 + λ1ð Þ
du2
dy

at y = 1:

9>>>=
>>>;

τxy1 =

C12 cosh λ11ð Þλ11 −
cosh λ11ð Þλ311

s1

 !
,

C11 − sinh λ11ð Þλ11 +
sinh λ11ð Þλ311

s1

 !
,

+C14 cosh λ12ð Þλ12 −
cosh λ12ð Þλ312

s1

 !
,

+C13 − sinh λ12ð Þλ12 +
sinh λ12ð Þλ312

s1

 !
,

τxy2 =
−

1
1 + λ1ð Þ sinh λ21ð ÞC21λ21ð Þ,

−
1

1 + λ1ð Þ sinh λ21ð ÞC22λ21ð Þ:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð19Þ
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Region II (0 ≤ y ≤ 1), the governing differential equation
is given by

d2u2
dy2

−
1

K Da
+ nσ
nμ

M2
 !

u2 = −
nρ
nμ

Re P: ð22Þ

Therefore, the general solution is given by

u2 yð Þ = C21 cosh λ21y + C22 sinh λ21y + P2, ð23Þ

where λ21 =
ffiffiffiffiffiffi
m2

p ;m1 = ðM2 + 1/DaÞs1, P1 = Re P s1/m1,

m2 =
ησ
ημ

M2 + 1
K Da

 !
, P2 =

nρ
nμm2

Re P: ð24Þ

4.2. Immiscible Newtonian and Jeffery Fluids Flow in the
Assumed Channel in the Existence of a Uniform Inclined
Magnetic Field for η1 = 0 or s1 ⟶∞. Region I (-1 ≤y ≤ 0),
the governing differential equation is given by

−
d2u1
dy2 + Ha2 + 1

Da

� �
u1 = Re P: ð25Þ

Therefore, the general solution is given by

u1 yð Þ = C11 cosh λ11y + C12 sinh λ11y + P1: ð26Þ

Region II (0 ≤ y ≤ 1), the governing differential equation
is given by

1
1 + λ1

d2u2
dy2

−
1

K Da
+ nσ
nμ

M2
 !

u2 = −
nρ
nμ

Re P: ð27Þ

Therefore, the general solution is given by

u2 yð Þ = C21 cosh λ21y + C22 sinh λ21y + P2 ð28Þ

where λ11 =
ffiffiffiffiffiffiffiffiffi
m1 ;

p
λ2i = ð−1Þi−1 ffiffiffiffiffiffi

m2
p for i = 1, 2,

m1 = ðM2 + 1/DaÞ,m2 = ðησ/ημM2 + 1/K DaÞð1 + λ1Þ,
P1 = ðRe P Þ/m 1, and P2 = n ρ/ðn μm 2 Þ ð1 + λ 1 Þ Re P:

4.3. Immiscible Newtonian and Newtonian Fluid Flow in the
Channel in the Existence of Uniform Inclined Magnetic Field
for η1 = 0 or s1 ⟶∞ and λ1 = 0. Region I (-1 ≤y ≤ 0), the
governing differential equation is given by

−
d2u1
dy2 + M2 + 1

Da

� �
u1 = Re P: ð29Þ

Therefore, the general solution is given by

u1 yð Þ = C11 cosh λ11y + C12 sinh λ11y + P1: ð30Þ

Region II (0 ≤ y ≤ 1), the governing differential equation

is given by

d2u2
dy2

−
1

K Da
+ nσ
nμ

M2
 !

u2 = −
nρ
nμ

Re P: ð31Þ

Therefore, the general solution is given by

u2 yð Þ = C21 cosh λ21y + C22 sinh λ21y + P2, ð32Þ

where λ11 =
ffiffiffiffiffiffim1

p , λ21 =
ffiffiffiffiffiffim2

p ,

m1 = ðM2 + 1/DaÞ, P1 = Re P/m1,m2 = ðησ/ημM2 + 1/K DaÞ
, and P2 = nρ/nμm2 Re P:

4.4. Comparative Study with Kumar and Agarwal [32].
Assuming the two immiscible fluids are Newtonian fluids
in such a way that the fluid in region I is nonconducting
and the fluid in region II is conducting fluids. From our
model equation given in Equations (1) and (2), let the couple
stress viscosity is zero (η1 = 0 or s1 ⟶∞), and the Jeffrey
fluid parameter is also zero (λ1 = 0), and the angle of inclina-
tion θ = 0 (which implies M =Ha) then we have the
following.

Region I (-1 ≤y ≤ 0), the differential equation is given by

−
d2u1
dy2 + Ha2 + 1

Da

� �
u1 = Re P: ð33Þ

Therefore, the general solution is given by

u1 yð Þ = C11 cosh λ11y + C12 sinh λ11y + P1: ð34Þ

Region II (0 ≤ y ≤ 1), the differential equation is given by

d2u2
dy2

−
1
Da

� �
u2 = −

nρ
nμ

Re P: ð35Þ

Therefore, the general solution is given by

u2 yð Þ = C21 cosh λ21y + C22 sinh λ21y + P2, ð36Þ

where λ11 =
ffiffiffiffiffiffim1

p ; λ21 =
ffiffiffiffiffiffim2

p ;m1 = ðHa2 + 1/DaÞ,

P1 = Re P
m1

;m2 =
1
Da

� �
; P2 =

nρ
nμm2

Re P: ð37Þ

Now by sustitutingthe following variables in to the equa-
tions(34) and (36) (P = Ps,Ha =M,Da = K , and nμ = 1/β ;

nρ =
1
α
,m1 = A1,m2 = A2, Re = R1, C11 = C1, ð38Þ

C12 = C2, C21 = C3, andC 22 = C4), after simplification

u1 yð Þ = C1 cosh
ffiffiffiffiffi
A1

p
y + C2 sinh

ffiffiffiffiffi
A1

p
y + Re1Ps

A1
, ð39Þ
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u2 yð Þ = C3 cosh
ffiffiffiffiffi
A2

p
y + C4 sinh

ffiffiffiffiffi
A2

p
y + αR1Ps

A2
: ð40Þ

These equations (39) and (40) are exactly the same with
the work of Kumar and Agarwal [32] which is the solution of
steady flow.

5. Results and Discussion

5.1. Velocity Profile. The flow of immiscible fluids (couple
stress fluid and Jeffery fluid) in a horizontal porous channel
in the presence of a uniform inclined magnetic field is con-
sidered. The simplified model equations are solved analyti-
cally, and the expressions for velocities in both are

obtained in closed form. The effects of pertinent parameters
on the velocity u1ðyÞ in region I and on the velocity u2ðyÞ in
region II are studied and presented through Figures 2–12.
The set of fixed values of all parameters
(-
Ha = 3, Re = 2, P = 1:1, nσ = 1:0, nμ = 0:9, nρ = 0:9, a1 = 10,
a2 = 10, θ = π/4, Da = 1, s1 = 2, K = 1, and λ1 = 0:3) is care-
fully chosen in accordance with previous literatures (see
[30]) when a sparticular parameter is varied to see the
variation: Further, if any, variation in the parameters is indi-
cated in that particular figure.

The effect of the couple stress parameter s1 on the veloc-
ity components is shown in Figure 2. It is seen that as s1 =
μ1 h

2/η1 is increasing (i.e., as η is decreasing); the velocity
components are increasing. We conclude from Figure 2 that
the velocity in the case of a couple stress fluids is smaller
than that in the Newtonian fluid case. Thus, the presence
of couple stresses in the fluid decreases the velocity. This
may be due to the fact that the couple stresses spend some
energy to rotate the particles, thereby decreasing the particle
velocity. We observe that the flow velocities are strongly
dependent on the non-Newtonian material parameter s1.
As s1 ⟶∞ (as η⟶ 0); the velocity component u2ðyÞ in
region I corresponds to the Newtonian fluid. This particular
velocity profile represents the flow of immiscible fluids
(Newtonian fluid and Jeffrey fluid) in a porous medium with
slip boundary conditions.

The effects of Jeffrey parameter λ1 on the velocity profile
is shown in Figure 3. It is observed that on increasing Jeffrey
parameter λ1, the velocity of the fluid in the region II
increases. Further, the maximum values of fluid velocity
occur at the interface for small Jeffrey parameter λ1, and it
shifts to region II for large Jeffrey parameter λ1. This is
because of the force due to shear stresses decreases when
the Jeffrey parameter λ1 increases. We observe that the fluid
velocity in the region II is strongly dependent on the non-
Newtonian material parameter λ1. Further, it is seen that,
as λ1 approaches zero, the flow corresponds to that of

1.0

0.5

0.0

–0.5

–1.5
0.1 0.2 0.3 0.4 0.5

y

u (y)
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Region-I
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S1 = 5

S1 = 25
S1 ∞

Figure 2: Effect of couple stress parameter S1 on velocity
components.
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Figure 3: Variation of velocity profile with Jeffrey parameter λ1:
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Figure 4: Effect of Hartmann number Ha on velocity components.
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immiscible couple stress fluid and Newtonian fluid in a
porous channel.

The effect of Hartmann number on the distribution of
velocity components is as shown in Figure 4. The velocity
profile attains the maximum for Ha = 0; this indicates the
fluid flow in the absence of a magnetic field attains the max-
imum velocity. As Ha is increasing, it is seen that the veloc-
ity is decreasing. This shows that the imposed magnetic field
has a retarding effect on the flow. Therefore, increasing the
Hartmann number increases the effect of resistive force,
which further decreases the flow velocity.

In Figure 5, the effect of the angle of inclination of the
magnetic field on the velocity profile is shown. We observe
that the velocity profile increases with the increasing of the
angle inclination ðθÞ relative to y-axis of the applied mag-
netic field. This is due to the fact that the magnetic field
has maximum effect in the transverse direction of the flow
to retard the motion of the fluids.

From Figure 6, it is seen that as the permeability param-
eter Da = k/h2 is increasing (i.e., as the permeability k is
increasing), the velocity is increasing, and the increase of
the permeability of the porous medium reduces the drag
force and hence causes the flow velocity to increase. As Da
⟶∞, the velocity corresponds to the immiscible fluids
(couple stress fluid and Jeffrey fluid) flow between two par-
allel plates in the absence of porous media.

The effect of the shear viscosity ratio ημ = μ2/μ1 is
depicted in Figure 7. As ημ is increasing, the velocity is
decreasing. For ημ < 1:00 the velocity in region II is more
than in region I. It confirms that the fluid with less viscosity
has more velocity. For ημ ≥ 1:00 , the velocity components
are symmetric about the interface. The maximum velocity
of the fluid occurs at the interface of the regions when ημ
≥ 1:00, while the velocity of the fluid in region II first
increases and gains maximum value and then decreases
toward the wall of the plate of region II.

Figure 8 shows the effect of slip parameter α = h/β1 = h
/β2 ð= α1 = α2Þ on the velocity profile. As α is increasing,
the velocity is decreasing in both regions at the same rate,
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Figure 5: Variation of velocities with the angle of inclination ðθÞ.
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and hence the velocity profiles become flatten due to the
decreasing shearing force from the slip boundary. Further,
when θ = 0 andα⟶∞ðβ⟶ 0Þ represents the flow with
no-slip boundary conditions which is similar result with
Devakar [5] and Pei-Ying et al. [29].

The influence of electrical conductivity ratio nσ = σ2/σ1
on the velocity profile is shown in Figure 9. It is seen that
the velocity of fluids in both regions decreases with the
increase in the electrical conductivity ratio. The increasing
in conductivity ratio means increasing the resistive force to
the fluid flow. It is important to note that the velocity of
the fluid in region II is greater than the velocity of the fluid
in region I, and the maximum velocity occurs in region II
for nσ = σ2/σ1 ≤ 1:25.

5.2. Limiting Cases

(i) if the couple stress parameter s1 ⟶∞ or η1 = 0 , then
the problem corresponds to the flow of two immiscible
Newtonian fluid and Jeffrey fluid flow in the porous
channel with aunifrom inclined magneticfield

(ii) if Jeffrey fluid parameter λ1 = 0, then the problem
corresponds to the flow of two immiscible couple
stress and Newtonian fluids through porous channel
with a unifrom inclined magnetic field

(iii) if the couple stress parameter s1 ⟶∞ or η1 = 0
and Jeffrey fluid parameter λ1 = 0, then the problem
corresponds to the flow of two immiscible Newto-
nian fluids flow in the porous channel with a uni-
from inclined magnetic field

We present some results in the absence of couple stress
and/or Jeffrey fluid parameters through Figures 10–12. In
Figure 10, as the Jeffrey fluid parameter λ1 increases, the Jef-
frey fluid velocity is more than the Newtonian fluids and
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Figure 9: Variation of velocity with electrical conductivity ratio.
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λ1 = 0 ; the two fluids are Newtonian fluids, and hence the
two velcities are symmetric with respect the fluid-fluid inter-
face. In Figure 11 we observe the couple stress fluid velocity
lesser than Newtonian fluid velocity.. The effect of Hart-
mann number ðHaÞ on the distributions of velocity profiles
of the two immiscible Newtonian fluids is shown in
Figure 12. As Ha increases, the velocity decreases. The veloc-
ity profiles attain maximum value for Ha = 0, this indicates
the fluid flow in the absence of a magnetic field attains the
maximum velocity. Furthermore, the profile is symmetric
with respect to the fluid-fluid interface.

5.3. Flow Rate and Shear Stresses. The variations of volumet-
ric flow rate and shear stresses on the upper and lower wall
of the channel with different physical parameters are shown
in Tables 1–5.

From Table 1, the volumetric flow rate in the horizontal
porous channel decreases with the increase of conductivity
ratio (nσ), slip parameter (α), Hartmann number (Ha),
and viscosity ratio (nμ) in immiscible couple stress and Jeff-
ery fluid flow. This is obvious, for example, as the magnetic
parameter increases, the velocity decreases which in turn
lead to the decrease in the volumetric flow rate. The effects
of the other pertinent parameters on the volumetric flow rate
are in tune with the velocity.

From Table 2, the volumetric flow rate in the porous
channel increases with the increase of Darcy number (Da),
angle of inclination (θ), and Jeffery fluid parameter (λ1).
This is obvious, for example, as Darcy number increases,
the velocity increases which lead to the increase in the volu-
metric flow rate. The effects of the other pertinent parame-
ters on the volumetric flow rate are in tune with the velocity.

From Table 3, the shear wall stress of immiscible couple
stress and Jeffery fluid flow in the horizontal porous channel
decreases with the increase magnetic field (M), viscosity
ratio (nμ), slip parameter (α = α1 = α2), and conductivity
ratio (nσ). It is also noticed that the shear stress on the wall
of the lower region is greater than the shear stress on the wall
of the upper region of the horizontal porous channel.

From Table 4, with the increasing of Jeffery parameter
(λ1) and angle of inclination (θ) the shear stress is increasing
at the lower wall and is decreasing at the upper wall. It is also
noticed that the shear stress on the wall of the lower region is
greater than the shear stress on the wall of the upper region
of the horizontal porous channel.

From Table 5, the increasing of Darcy number (Da) and
density ratio (nρ) makes the shear stress on the wall of the

Table 1: Variation of volumetric flow rate with conductivity ratio
(nσ), slip parameter (α), Hartmann number (Ha) and viscosity
ratio (nμ).

n σ Q α1 = α2 = α Q
0.25 1.00247 5 0.8849

0.75 0.89079 10 0.84544

1.25 0.80541 15 0.82998

1.75 0.73793 25 0.8166

Ha Q nμ Q

0 1.29261 0.25 1.17604

0.5 1.18736 0.5 1.00417

1 1.09815 1 0.81588

2 0.9551 1.5 0.70028

Table 2: Variation of volumetric flow rate with Darcy number (Da
), angle of inclination (θ), and Jeffery fluid parameter (λ1).

Da Q θ Q λ1 Q

1 0.84544 θ = 0 0.63009 0 0.80975

2 0.94787 θ = π/6 0.72176 1 0.89998

3 0.98787 θ = π/3 1.02157 2 0.94632

4 1.00917 θ = π/2 1.29261 3 0.97628

Table 3: Variation of shear wall stress with Hartmann number (Ha
), viscosity ratio (nμ), slip parameter (α) and conductivity ratio (nσ)
at the lower plate ðτxy1Þ and at the upper plate ðτxy2Þ.

Ha τ xy1 τ xy2 n μ τxy 1 τ xy2
0 1.66437 0.14376 0.25 1.27312 0.2065

0.5 1.56011 0.13341 0.5 1.25362 0.14121

1 1.47124 0.12461 0.75 1.22981 0.11125

1.5 1.39452 0.11705 1 1.20723 0.09331

α τxy 1 τx y2 n σ τ xy1 τ xy2
5 1.22119 -0.0722 0.25 1.2661 -0.0702

10 1.21602 -0.012 0.75 1.23056 -0.1082

15 1.21399 -0.0072 1.25 1.20312 0.00366

20 1.21291 -0.005 1.75 1.18121 0.07319

Table 4: Variation of shear stress with Jeffery fluid parameter (λ1)
and angle of inclination (θ) at the lower plate ðτxy1Þ and at the
upper plate ðτxy2Þ.

λ 1 τ xy1 τxy 2 θ τ xy1 τ xy2
0 1.20383 -0.0658 0 0.99151 0.01846

1 1.23084 -0.0431 π/6 1.0882 0.01209

2 1.23899 -0.0821 π/3 1.39452 -0.0145

3 1.24184 -0.1331 π/2 1.66437 -0.0779

Table 5: Variation of shear wall stress Darcy number (Da) and
density ratio (nρ) at the lower plate ðτxy1Þ and at the upper plate ð
τxy2Þ.

Da τ xy1 τxy2 nρ τxy 1 τ xy2
1 1.21602 -0.0323 0.5 1.15713 0.07439

2 1.32484 -0.0191 1.0 1.23074 -0.007

3 1.36709 -0.0337 1.5 1.30434 -0.1774

4 1.38956 -0.0312 2.0 1.37795 -0.3365
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region increase and decrease in the upper region. It is also
noticed that the shear stress on the wall of the lower region
is greater than the shear wall stress on the wall of the upper
region of the horizontal porous channel.

6. Conclusion

Effects of slip and inclined uniform magnetic field on immis-
cible fluids (couple stress fluid and Jeffrey fluid) flow in a
porous channel are studied. We observe that, as the Hart-
mann number, slip parameter and viscosity ratios are
increasing, the velocity components are decreasing in both
regions. The velocity increases in region II as the Jeffery
parameter is increasing, as the velocity in region I is con-
stant. As the couple stress parameter is increasing, the veloc-
ity is increasing. As the Darcy number Da and the Reynolds
number Re are increasing; the velocity is increasing. The
shear stress on the wall of the lower region is greater than
the shear stress on the wall of the upper region of the porous
channel.

Appendix

A. Simplified Constants

C11 = −
C13λ

2
12

� �
λ211

,

C12 = −
P1 + C14L3 + C13L15ð Þ

L1
,

C13 = −
H8L10 −H7L13
H9L10 − L9L13L14

, C14 = − H1 + C13H3ð Þ/H2,

C21 = P3 + C13L14, C22 = −
H7H9 −H8L9L14
H9L10 − L9L13L14

,

P1 = Re P s1
m1

, P2 =
nρ

nμm2

 !
1 + λ1ð Þ Re P,

P3 = P1 − P2, s

L1 = −sinh λ11 −
cosh λ11ð Þλ11

a1
+ cosh λ11ð Þλ311

a1s1

 !
,

L2 = cosh λ11 +
sinh λ11ð Þλ11

a1
−

sinh λ11ð Þλ311
a1s1

 !
,

L3 = −sinh λ12 −
cosh λ12ð Þλ12

a1
+ cosh λ12ð Þλ312

a1s1

 !
,

L4 = cosh λ12 +
sinh λ12ð Þλ12

a1
−

sinh λ12ð Þλ312
a1s1

 !
,

L5 = cosh λ11ð Þλ211, L6 = − sinh λ11ð Þλ211,

L7 = cosh λ12ð Þλ212, L8 = − sinh λ12ð Þλ212,

L9 = cosh λ21 +
sinh λ21ð Þλ21
a2 1 + λ1ð Þ

� �
,

L10 = sinh λ21 +
cosh λ21ð Þλ21
a2 1 + λ1ð Þ

� �
, L11 = λ11 −

λ311
s1

 !
,

L12 = λ12 −
λ312
s1

 !
, L13 = −

ηηλ22
1 + λ1

, L13 = 1 − λ212
λ211

 !
,

L15 = L4 −
L2λ

2
12

λ211

 !
, L16 = L7 −

L5λ
2
12

λ211

 !
,H1 = −

P1L6
L1

,

H2 = −
L3L6
L1

+ L8

� �
,H3 = −

L6L15
L1

+ L16

� �
,

H4 = −
P1L11
L1

,H5 = −
L3L11
L1

+ L12

� �
,H6 = −

L11L15
L1

,

H7 = P2 + P3L9,H8 =H4 −
H1H5
H2

,H9 = −
H3H5
H2

+H6

� �
:

ð41Þ

Nomenclature

Bo: Uniform magnetic field (W/m2)
Da: Darcy number (-)
ki: Permeability of porous medium (m2)
Ha: Hartmann number (-)
M: Magnetic parameter (-)
nμ: Viscosity ratio (-)
nσ: Electric conductivity ratio (-)
nρ: Density ratio (-)
Re: Reynolds number (-)
si: Couple stress parameters (-)
Ti: Temperature profile (K)
ui: Velocity profile (m/s)
αi: Slip parameter (-)
μi: Dynamic viscosity (kg/(m.s))
η1: Couple stress viscosity ((kg.m)/s)
σi: Electrical conductivity (S/m)
θ: Angle of inclination (rad)
λ1: Jeffrey fluids parameter (-)
βi: Slip coefficient (m)
ρi: Density (kg/m3)
Subscript i: 1 and 2 for region I and II.
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