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Data classification is one of the main tasks in the current data mining field, and the existing network data triage algorithms have
problems such as too small a proportion of labeled samples, a large amount of noise, and redundant data, which lead to low
classification accuracy of data stream implementation. Network embedding can effectively improve these problems, but the
network embedding itself has problems such as capturing relational honor and ambiguity. This study proposes a SNN-RODE
based LapRLS heterogeneous network data classification algorithm to achieve deep embedding of structure and semantics
among nodes by constructing a multitask SNN and selecting dead song datasets to perform mining tasks to train the neural
network. Then a semisupervised learning classifier based on Laplace regular least squares regression model is designed to use
the relative support difference function as the decision method and optimize the function. The simulation experimental results
show that the SNN-RODE-LapRLS algorithm improves the performance by 14%-51% over the mainstream classification
algorithms, and the consumption time meets the demand of real-time classification.

1. Introduction

In the era of big data, numerous domains of society generate
immeasurable continuous data streams on a daily basis [1].
These data streams are often characterized by real-time, con-
tinuity, variability, and infinity [2]. In the field of data
stream mining, the focus and difficulty of research lies in
how to mine effective information from data streams using
two basic methods, online learning and active learning,
and the sampling method of neural network models is a
determinant of classification quality [3]. In order to obtain
the corresponding classifier, the standard data stream classi-
fication method process is to extract labeled samples, extract
a subset of features, input data in the classification where,
and train the classifier in the training set [4]. When the
labeled samples occupy a low proportion of the dynamic
data stream, the training algorithm can identify the labeled
samples, and then filter out the other unlabeled samples by
similarity measure and extend the dataset to be used as the
training set of the classifier to improve the performance of
the classifier. In order to solve the problem that labeled sam-

ples occupy too low a proportion of the dynamic data
stream, this study introduces a heterogeneous network
embedding framework based on Siamese Neural Network
(SNN) combined with Relation Oriented Deep Embedding
(RODE) to solve the problem of capturing relational redun-
dancy and, the active learning mechanism introduces a
Laplace regression model to evaluate the least squares error
of labeled samples, and then constrains the active learning
process with multiple constraint rules, and finally optimizes
the decision function of the classifier in order to improve the
performance and efficiency of data stream classification.

2. Related Work

As the technology with the largest number of users and the
largest scope of influence in today’s society, the main
research direction of network technology is the analysis
and classification of network data streams [5]. In recent
years, web embedding has received attention from domestic
and foreign scholars, and many scholars have conducted in-
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depth research on both web embedding and web data stream
classification.

Yi L et al. proposed a scoring prediction algorithm
based on nonlinear feature fusion in order to fully
exploit and integrate the structural features of heteroge-
neous information network nodes. The structural features
of nodes are first extracted using a metapath-based Het-
erogeneous Information Network (HIN), then the struc-
tural features are transformed using a nonlinear fusion
method, and finally the fused features are input into a
multilayer perceptron for score prediction. The algorithm
was proved to outperform the baseline through simula-
tion experiments [6]. Liu et al. modeled the collected
Net Health data as HIN in order to identify individuals
vulnerable to depression and anxiety, and then a novel
way to redefine the problem of predicting individual
mental health status, and finally modeled individual men-
tal health prediction as a node classification in HIN of
another problem type by evaluating four node features
as proof-of-concept classifiers in the process of logistic
regression [7]. Sharma et al. implemented functional
encryption of letters in UAV-assisted heterogeneous net-
works for dense urban areas to protect data from illegal
intrusion; the main goal of this technique implementa-
tion is to provide proof-of-safe passage against illegal
intrusion. The technique was validated using internet
security protocols and application automatic verification
tools and the results showed that the technique is imple-
mentable in UAV-assisted heterogeneous networks [8].
Chang et al. proposed a new metapath extraction hetero-
geneous graph neural network (Megnn), which can
extract meaningful metapaths in heterogeneous graphs
and provide data insights and interpretable conclusions
for the effectiveness of the model. Megnn combines dif-
ferent bipartite subgraphs corresponding to edge types
into a new trainable graph structure by using heteroge-
neous convolutions. Using the message passing paradigm
of GNN through trainable convolutions, Megnn can opti-
mize and extract effective metapaths for heterogeneous
graph representation learning. A large number of experi-
mental results on three datasets not only demonstrate the
effectiveness of Megnn’s method compared with the latest
method but also prove that the extracted metapath has
good interpretability [9]. Lei et al. used source task
models to help reduce the training cost of target task
models in order to reduce the neural network training
cost. They proposed a new migration learning method
which linearly transforms the feature mapping of the tar-
get region, increases the weights of feature matching,
enables knowledge transfer between heterogeneous net-
works, and adds discriminators based on adversarial
principles to speed up feature mapping and learning
[10]. Sharipuddin et al. addressed the intrusion detection
system in heterogeneous networks which is easily affected
by objective factors such as devices and network proto-
cols, proposed an identification method combining deep
learning, and conducted preliminary experiments on
denial-of-service attacks, and the experimental results
showed that deep learning can improve the detection

accuracy in heterogeneous networks [11]. Fu et al. pro-
posed a new model called Metapath Aggregation Graph
Neural Network (MAGN) to improve the final perfor-
mance. MAGN uses three main components, namely,
node content transformation to encapsulate input node
attributes, aggregation within the metapath to merge
intermediate semantic nodes, and aggregation between
metapaths to merge messages from multiple metapaths.
The results show that, compared with the most advanced
baseline, MAGN achieves more accurate prediction
results for the three real-world heterogeneous graph data-
sets of node classification, node clustering, and link pre-
diction [12].

Li et al. address the problem of online learning with
delayed feedback in the presence of malicious data genera-
tors based on the practical application of network data
stream classification. Based on the feedback delay and the
transparency or not of the malicious data generator, four
algorithms that are sublinear under mild conditions are pro-
posed and simulated for experiments. The experimental
results show that the algorithms outperform the offline clas-
sification method when tested with a mixture of normal and
malicious data [13]. Huang et al. proposed a similarity-based
approach to detect unexpected events mentioned in social
media, including natural disasters, public health events,
and social security events. The method focuses on clustering
social media text data based on the attributes of the events,
matching time and location using regular expressions, and
finally calculating the similarity of the text data. After test-
ing, the method has good accuracy and real-time perfor-
mance [14]. Liu et al. proposed an intrusion detection
system, using CICIDS2017 as a dataset to train it, embed-
ding high-dimensional features and using random forest
algorithm to extract redundant features from the original
dataset, with an accuracy rate of 99.93% and a false alarm
rate of only 0.3%. After converting the textual data into dig-
ital features, the training time was reduced with an accuracy
of 87.08%, saving 87.97% of the training time [15]. Zdemir et
and Turani proposed a machine learning approach applica-
ble to the e-commerce domain, applying Logistic Regression,
Parsimonious Bayes, and Support Vector Machines as data
classification algorithm, aiming to identify the model with
the best accuracy [16]. Qiu et al. proposed a data stream
classification model based on distributed processing in order
to solve the problem of real-time detection of grid equip-
ment anomalies. The model uses a local node mining
method and a global mining model for nonuniform data
stream classification, and to ensure the robustness and effi-
ciency of the data stream classification method, a clustering
algorithm is used, combined with its expression of local min-
ing and real-time maintenance to improve the speed of
information transmission between nodes and nodes [17].

Since most networks in reality are heterogeneous net-
works, optimization of heterogeneous network embedding
framework is essentially an optimization of data preprocess-
ing of network data classifier [18]. This study proposes a
SNN-RODE embedding framework to distinguish the
semantic relationships of network data based on several
types and measure the similarity of similar and dissimilar
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nodes to handle the relationships of different types of net-
work structures with a view to improving the accuracy of
data classification.

3. Classification Algorithm for LapRLS Network
Data Streams Based on SNN-RODE
Heterogeneous Network
Embedding Framework

3.1. Heterogeneous Network Embedding Framework
Combining SNN and RODE. Let the heterogeneous network
G = ðV , E, ϕ, φÞ, V be the set of entity nodes, E be the set of
edges connecting two nodes, and each node v and each edge
e be associated with their respective mapping functions ϕðvÞ.
In the heterogeneous network, let the meta-path be π, which
represents the composite relationship between different
node and edge types to different node types.

π = a1 ⟶
r1 a2 ⋯ an−1 ⟶

rn−1
: ð1Þ

In Equation (1), π is a sequence of abstract types, repre-
senting meta-paths. a is a sequence of characteristic nodes,
representing meta-path instances, which conforms to the π
model. For Heterogeneous Network Embedding (HNE), it
is defined as follows: let Rdðd≪ jV jÞ be a low-latitude latent
vector space, let vðv ∈ VÞ be a node, and mapping v to Rd be
HNE. The basic process is to input a graph, and then gener-
ate and output a low-latitude embedding representation cor-
responding to the graph. There are two main modules in the
HNE framework, which are the relation extraction module
and network embedding module. Among them, the relation-
ship extraction module models the structural and semantic
relationships extracted from the HN using the similarity
existing between nodes and nodes. Let the similarity reten-
tion matrix be M, if Mij = 1, it means that there is similarity
between structure and semantics; if Mij = 0, it means that
there is no similarity between structure and semantics.
Besides, when vi and vj are connected by the same edge in
the single-hop structure, Mij = 1, it means there is semantic
similarity. Since each special element path in the heteroge-
neous network contains different types of nodes and edges,
after obtaining the structural similarity, in order to approxi-
mate the neighborhood structure into a low-dimensional
potential space, the loss function needs to be optimized.

Lsim = zi − zj
 2

F
Mij: ð2Þ

In Equation (2), zi and zj are the low-dimensional vec-
tors of the nodes vi and vj, respectively, and Mij is the term
of the i and j columns in M and the label to determine the
similarity of vi and vj. For the distance between the two node
vectors, the Euclidean distance is measured. When there is
similarity in the structure of two nodes, it means that the
distance between the vectors corresponding to the nodes is
the shortest. At this point, the optimization objective for
HNE is to minimize the loss function [19]. After discarding

the redundant relations, the similarity between them consti-
tutes a specific semantic relation, regardless of whether the
nodes are of the same type or not. When nodes vi and vj
exist a, it means that the two nodes have semantic similarity.
From Equation (2), it can be seen that the semantic similar-
ity is approximated to the nodes that closely express seman-
tic similarity in the embedding space, except for the
neighboring nodes of different types, which are also far away
from each other in the embedding space. The embedding
formula that encodes the differences between different types
of nodes is

Ldissim = 1 −Mij

À Á
max 0,m − zi − zj

 
F

� �2
: ð3Þ

In Equation (3), m is a nonnegative constant that repre-
sents the marginal value. In theory, the larger the distance
between two nodes, the less similar they are. The criterion
to determine whether m achieves the desired goal is whether
the embedding variance of nodes of different types is greater
than the embedding variance of nodes of the same type.
Again, because metapath capture to be similar requires
determining the length of the metapath, longer metapaths
can connect remote nodes that are semantically less relevant,
and shorter metapaths can preserve more specific semantics.
SNN is a special type of convolutional neural network, com-
pared to standard convolutional neural network, which uses
the given data to determine a similarity measure and com-
pare the similarity of new samples without determining to
which class each sample label belongs. The structure of a
standard SNN is shown in Figure 1.

In Figure 1, since the loss functions of the two subnet-
works are the same, the semantic distance action of the orig-
inal space can be maintained, and the similarity of the two
inputs can be determined by calculating the distance of the
input vectors with the set distance metric. The formula of
the SNN hidden layer is

h kð Þ x̂ð Þ = f kð Þ W kð Þx̂ + b kð Þ
� �

: ð4Þ

In Equation (4), hðkÞ is the output of the first k hidden
layer, f is the nonlinear activation function, and x̂ is the rep-
resentation vector of the input nodes. When k = 1, x̂ = xiði
= 1, 2,⋯,s, nÞ, and when k > 1, x̂ = hðk−1ÞðxiÞ or x̂ = hðk−1Þðxj
Þ; the subnetworks share the hidden layer with equal weights
W and base b. The equation of SNN output layer is

ẑ = Relu W 3ð Þh 2ð Þ x̂ð Þ + b 3ð Þ
� �

: ð5Þ

In Equation (5), ẑ is the low-dimensional node represen-
tation in the embedding into space, and Relu is the activa-
tion function. SNN randomly selects pairs of nodes and
maps them into the low-dimensional embedding space,
and in order to embed the similarity and dissimilarity
between nodes into the representation, the loss values of
the samples are calculated using the objective function,
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which contains the unity of similarity and dissimilarity.

L = 〠
K

k=1
y zi − zj
 À Á2

F
+ 1 − yð Þmax 0,m − zi − zj

 2
F

� �
: ð6Þ

In Equation (6), y is the label that distinguishes positive
samples from negative samples, y =Mij. When Mij = 1, the
sample is a positive sample; when Mij = 0, the sample is a
negative sample, where positive samples are the unity of
structural similarity and to be similar. In order to optimize
the representation of nodes in the RODE framework, the
objective function is optimized using Stochastic Gradient
Descent (SGD) so that the objective function can more accu-
rately calculate the loss of node similarity and node dissim-
ilarity being mapped to the low-dimensional embedding
space, and the optimization formula is

θ≔ θ − η
∂L
∂θ

: ð7Þ

In Equation (7), η is the learning rate. ∂ is the number of
iterations, and θ is the randomly selected pairs of nodes from
the heterogeneous network.

3.2. Optimized Loss Function for LapRLS Network Data
Stream Classification Algorithm. Let the classifier model that
determines the classification result by the support function

be ψ, and the support formula for each classification is

F = F1, F2,⋯,Fnf g,
ψ zð Þ =max

k∈δ
Fk zð Þð Þ: ð8Þ

In Equation (8), z is the feature vector, k is the set of class
tokens, and δ = f1, 2,⋯,ng is the classification set. The per-
formance of the classifier model can hardly be improved
by increasing the support of the decision, indicating the
low importance of the support of the decision. The support
is proportional to the correct classification rate, and the dif-
ference in support is proportional to the uncertainty. To
evaluate the difference between the maximum support of x
and other types of support, the Relative Support Difference
Function (RSDF) is used.

RSDF xð Þ =
∑n

i=1 max Fk xð Þð Þ = Fi xð Þ
k∈δ

� �
n − 1 : ð9Þ

Unlike the ordinary support degree method, RSDF
divides the boundaries for data points instead of dividing
regions for data points. In general, the similarity between
neighboring data streams is large, and RSDF generates new
decisions when the support difference is large. When the
support difference is small, the current classification model
is maintained to reduce the number of classifiers trained
and to substantially improve the efficiency of the system.
Sequence is the usual expression of the data stream, and
the order of the samples determines the high performance
of the classifier [20]. Usually, a randomized preprocessing
of the samples of the data stream is required. This is only a
threshold to filter the sample data, and a threshold value
greater than the support difference indicates that the classi-
fier performance is insufficient and it needs to be trained
again. In order to reduce the cost of collecting labeled sam-
ples for the data stream, an active learning mechanism of
Laplace least squares regression model is designed, whose
linear function is expressed.

y = xβ + ε: ð10Þ

In Equation (10), x and y are the input and output of the
variables, respectively, and β and ε are the unknown errors

Input 1

Input 2

Twin subnet Low dimensional vector 1

Low dimensional vector 2

Loss function Output similarity

Figure 1: Standard twin neural network structure.

Table 1: Datasets information.

Data set Basic functions and node types Total data

Habitat datasets of swan Swan number Migration times Migration distance 1317

The Movies Datasets Number of users Film category Viewing times 48649

Word Net-WN11 Position Relationship Semantics 157962

Table 2: Link prediction AUC.

Frame
AUC

Habitat datasets
of swan

The Movies
Datasets

Word Net-
WN11

Deep Walk 0.6124 0.7125 0.5721

Node2vec-
Megnn

0.6328 0.7841 0.7893

Metapath2vec 0.7782 0.8531 0.8217

LINE-Megnn 0.7894 0.7352 0.6914

SNN-tri 0.9013 0.8427 0.8129

RODE 0.9274 0.9011 0.9173
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of the weight vector and the mean of 0, respectively. Let the
errors under different observations independently λ2 have
equal variance, x and β are determined, and the output
equation is

f xð Þ = xβ: ð11Þ

Let there exist a set of labeled samples ðz1, k1Þ, ðz2, k2Þ,
⋯, ðzn, knÞ, where kn is the label of zn. Calculate β by mini-
mizing the sum of mean squared errors.

JSSE βð Þ = 〠
m

i=1
ziβ − zið Þ2: ð12Þ

In Equation (12), Z = ðz1, z2,⋯,znÞT is the eigen matrix,

K = ðk1, k2,⋯,knÞT is the marker vector, and the covariance
matrix formula is

cov bβ� �
= λ2 ZTZ

À Á−1
: ð13Þ

The objective of OED is to select the most confident
sample set Z = fz1, z2,⋯,zng from the unlabeled dataset X
= fx1, x2,⋯,xng, and OED transforms the optimization
problem into minimizing the variance of the estimation
module. There are two main types of unsupervised learning

in OED, one minimizes the trace of cov ðbβÞ and the other

minimizes the decision of cov ðbβÞ. To solve the problem of
insufficient training samples for these two types of unsuper-
vised learning, Laplacian Regularized Squares (LapRLS) are
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Figure 2: Multilabel node classification.
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introduced. The data can be utilized simultaneously regard-
less of whether they are labeled or not. Let the sample xi ≈ xj,
then its fitness f ðxiÞ ≈ f ðxjÞ. Let a and b be the total amount
of data and the number of labeled data, and W be the simi-
larity matrix, and the loss function of LapRLS is

JLapRLS βð Þ = 〠
b

i=1
f zið Þ − yið Þ2 + κ1

2 〠
a

i,j=1
f xið Þ − f xj

À ÁÀ Á2Wij + κ2 βk k2:

ð14Þ

In Equation (14), κ and κ1 are the regularization param-
eters and the smoothness penalty terms, which serve to
maintain the flow structure of the input space. κ2 The role
of is to control the sparsity of the regression model. If two
adjacent points are to be separated, a lower weight value
needs to be assigned to the loss function. The equation

defining the similarity matrix Wij is

Wij =
exp −

xi − x2j
λ2

 !
, xi ∈N xj

À Á
, xj ∈N xið Þ,

0, others:

8>><>>: ð15Þ

Since the principle of LapRLS is to estimate linear func-
tions to describe the flow structure based on whether the
samples are labeled or not, while Laplace regularized OED
performs better in the linear model and has average effect
in the nonlinear model. To better describe the nonlinear sys-
tem, let H denote the Reproducing Kernel Hilbert Space
(RKHS), and rewrite Equation (14) as the RKHS formula.

minf ∈H 〠
b

i=1
f zið Þ − yið Þ2 + κ1

2 〠
a

i,j=1
f xið Þ − f xj

À ÁÀ Á2Wij + κ2 fk k2H :

ð16Þ

The OED was improved by using the Laplace regular
model. When the proportion of labeled samples to all sam-
ples is low, unlabeled samples in high-density regions have
more influence on the classifier accuracy than unlabeled
samples in low-density regions. This indicates that the unla-
beled samples in high-density regions are more representa-
tive in the feature space of the regression model.

4. Heterogeneous Network Embedding
Framework Training and Network Data
Stream Classification Algorithm Testing

4.1. SNN-RODE Link Prediction Training and Node
Classification Training. In order to evaluate the performance
of the SNN-RODE model more comprehensively, three
datasets with different node densities and network sizes were
selected for training, and the information of the datasets is
shown in Table 1. From Table 1, Habitat datasets of swan
records the number, migration frequency, and migration
distance of a swan colony through GPS, and the semantic
information of the swan colony to a specific location can
be obtained by analyzing these data; The Movies Datasets
records the number of users, movie types, and movie view-
ing frequency of a movie website, which describes the infor-
mation of individual The Movies Datasets record the
number of users, types of movies, and the number of times
a movie is viewed on a movie website, describing individuals’
preferences for movies.

The five basic network embedding frameworks com-
pared in this study are Deep Walk, Node2vec-Megnn, Meta-
path2vec, LINE-Megnn, and SNN-tri. To obtain the best
framework performance, trial-and-error experiments were
conducted, setting the window size to 10, the node walk to
100, the walk length of each node to 40, and the number
of negative samples to 5. SNN was set to one input layer,
four hidden layers and one output layer. Among them, the
sizes of the four hidden layers are 256, 512, 1024, and
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Figure 3: Frame clustering results.

Table 3: Node cluster NMI.

Frame NMI

Deep Walk 0.178

Node2vec-Megnn 0.298

Metapath2vec 0.225

LINE-Megnn 0.209

SNN-tri 0.317

RODE 0.398
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2048, the learning efficiency is set to 0.02, and the size of the
output layer is set to 64.

Link prediction is a fundamental task in data mining,
predicting the edge between two nodes by actively learning
the embedding representation [21]. The experimental results
of link prediction are shown in Table 2.

As shown in Table 2, LINE-Megnn and Node2vec-
Megnn did not consider the type of nodes compared to Deep
Walk, but only improved the network structure. As seen
from the AUG values, LINE-Megnn and Node2vec-Megnn
improve 3.33% and 28.90%, 10.05% and 3.19%, 37.97%
and 20.85% on the three datasets, respectively, with limited
improvement in the quality of heterogeneous network
embedding. While SNN-tri and RODE improve signifi-
cantly, the best performing RODE improves performance
by 51.44%, 26.47%, and 60.30% compared to Deep Walk.
While SNN-tri and RODE possess the same parameters of
SNN, RODE optimizes the loss function and improves the
performance by 2.90%, 6.93%, and 12.84%. The node classi-
fication task is usually performed on data with label infor-
mation and, in this study, the datasets with label
information are The Movies Datasets and Word Net-
WN11. The data nodes without labels in the datasets are first
removed, and then trained using the training set, using
Micro-F1 and Macro-F1 as metrics. The experimental
results are shown in Figure 2.

As shown in Figure 2, RODE exceeds SNN-tri by
0.01~0.02 in the Micro F1 indicator of The Movies Datasets
dataset and exceeds SNN-tri by 0.03~0.04 in the Macro F1
indicator. In the Word Net-WN11 dataset, RODE exceeds
SNN-tri by 0.04-0.05 in the Micro-F1 indicator. On the
Macro-F1 index, the RODE exceeds SNN-tri by 0.07~0.08.
It can be seen that other frameworks will not maintain sim-
ilarity in the dataset and cannot generate competitive
embedded expressions. RODE has better performance.
Meanwhile, by comparing SNN-tri with the other four
frameworks, it can be seen that Micro-F1 metrics and
Macro-F1 metrics lead by 0.08-0.15 and 0.06-0.14, respec-
tively, indicating that SNN can preserve structural and
semantic similarity and the improved loss function can
improve the embedding quality of heterogeneous networks.
And RODE not only captures more comprehensive relation-
ships but also has stability in handling sparsity problems.
Besides link prediction, clustering task is also a common
task. The training is conducted in Word Net-WN11 dataset,
set one node to one label, and the clustering algorithm of
synonym nodes is K-means. Normalized Mutual Informa-
tion (NMI) is selected as the training metric, and the train-
ing times are set to 10 times, and the training results are
shown in Figure 3.

As shown in Figure 3, the RODE always maintained a
high precision in the 10 clustering experiments, and the pre-
cision gradually increased with the number of clustering
experiments, with the highest precision of 0.48, which was
0.12 higher than the highest precision of SNN-tri. The aver-
age NMI scores were recorded as shown in Table 3.

As can be seen from Table 3, the NMI of SNN-tri is
improved by 0.027-0.153 compared to the four frameworks
without SNN, while the RODE optimized by loss function

is improved by 0.081 compared to the NMI of SNN-tri. In
practical applications, the size of the label set tends to be
large, and the NMI scores of the nodes are generally lower.
And the NMI of RODE demonstrates that while in unsuper-
vised clustering training, embedding representations show-
ing structural and semantic similarity can get better
structure. Besides exploring the effect of link prediction on
AUC, it is also necessary to analyze the effect of different
embedding dimensions and node walks on AUC. The Word
Net-WN11 with the largest size is selected as the test set, and
the obtained experimental results are shown in Figure 4.

As can be seen from Figure 4, the value of AUC increases
with the increase of dimensionality when the dimensionality
is less than 100; it starts to decrease when the dimensionality
is greater than 100, rises again when it is close to 800, and
decreases again when the dimensionality is equal to 1800.
The trend of node walk is similar to the trend of dimension,
but the stability is better, and the change is not as fast as the
dimension change, and the magnitude is smaller. The AUC
reaches the maximum when the dimension is equal to 100,
and the node walk is equal to 200. However, as the number
of dimensions and node walks continue to increase, the
embedded expression leaves behind some information that
does not have value, and the AUC decreases. Therefore,
the common expression of the two metrics must find a bal-
ance of performance and time cost when performing link
prediction.

4.2. RODE-LapRLS Classification Performance and Efficiency
Tests. The current approaches for data flow experimentation
and evaluation are mainly maintenance evaluation methods
and prediction sequence methods [22]. The maintenance
evaluation method uses the current classification model to
process an independent test set; the prediction sequence
method has to predict the marker of each reach sample,
and then use this sample to update the learning model.
The evaluation metric used is the sampling-based metric
accuracy, which needs to consider the time cost in addition
to performance. Therefore, the update time and prediction
time of the model need to be evaluated, and the classification
models are evaluated comprehensively. The models com-
pared are ARForest, NDM, DUaCD, and DELM. The rea-
sons for choosing these models are that ARForest and
DELM are both predictive classification models with active
learning mechanisms, and both DUaCD and DELM are
involved in the concept drift problem, and NDM proposes
diversity assessment methods and both can be effectively
compared with RODE-LapRLS.

As known from Figure 5, the accuracy of the five models
based on the adopted metrics is 0.45 (DELM), 0.58 (NMD),
0.76 (ARForest), 0.82 (DUaCD), and 0.96 (RODE-LapRLS),
respectively. The accuracy is improved by 0.51, 0.48, 0.20,
and 0.14, respectively, possessing a significant enhancement
effect, and the time cost comparison is shown in Figure 6.

As can be seen from Figure 6, the update times of the five
models ranged between 0.8 and 1.8 seconds, and the predic-
tion times ranged between 0.3 and 0.7 seconds. In terms of
model update time, RODE-LapRLS occupies a large advan-
tage, about 0.4 seconds faster than the second place NMD,
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while in terms of model prediction time, the fastest is
ARForest taking 0.3 seconds, the slowest DUaCD 0.7 sec-
onds, and RODE-LapRLS with 0.4 seconds, although
RODE-LapRLS is not the fastest, the overall difference is
not large. Taking into account, RODE-LapRLS is sufficient
to meet the demand of real-time and also has better
performance.

5. Conclusion

In today’s fast-changing Internet technology, we inevitably
need to deal with all kinds of network data, such as shopping
platforms that generate various transaction data, traffic man-
agement systems monitor vehicle movement data, news
reports from around the world, etc. How to extract effective
information from the complicated and huge amount of data
is the focus of data mining work. In this study, we propose a
heterogeneous network embedding framework combining
twin neural networks and depth-oriented relationships to
address the shortcomings of network embedding and data
stream classification in data mining work and introduce a
Laplace regular least squares regression model in data
stream classification to optimize the loss function of the clas-
sifier. After training on four datasets, the performance of the
heterogeneous network embedding framework improves
from 2.7% to 15.3%, and the best performance of the embed-
ding framework is achieved when the dimensionality is
around 100 and the node walk is around 200. After the opti-
mization of the data stream classification algorithm, the
algorithm classification accuracy is improved by 14%-51%,
while in terms of efficiency, the time consumption of the
improved algorithm increases by only 0.1 seconds. It can
be seen that the web data classification algorithm after
embedding the framework is not only substantially
improved in performance but also meets the real-time clas-
sification requirements. The shortcoming of this study is
that the effect of classifier threshold on classification results
was not explored in the preprocessing experiments, and
future studies can be conducted from this perspective.
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