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In this paper, we present a new method to establish the oscillation of advanced second-order difference equations of the form
ΔðηðℓÞΔυðℓÞÞ + ρðℓÞυðσðℓÞÞ = 0, using the ordinary difference equation ΔðηðℓÞΔυðℓÞÞ + qðℓÞυðℓ + 1Þ = 0: The obtained results
are new and improve the existing criteria. We provide examples to illustrate the main results.

1. Introduction

This paper is concerned with the second-order advanced dif-
ference equation

Δ η ℓð ÞΔυ ℓð Þð Þ + ρ ℓð Þυ σ ℓð Þð Þ = 0, ℓ ≥ ℓ0, ð1Þ

where ℓ ∈ℕðℓ0Þ = fℓ0, ℓ0 + 1, ℓ0 + 2,⋯,g, ℓ0 is a nonnegative
integer, and

(C1) fηðℓÞg, fρðℓÞg, and fqðℓÞg are positive real
sequences for ℓ ≥ ℓ0

(C2) fσðℓÞg is a monotone increasing sequence of inte-
gers with σðℓÞ ≥ ℓ + 1 for ℓ ≥ ℓ0

(C3) ΩðℓÞ =∑ℓ−1
s=ℓ01/ηðsÞ⟶∞ as ℓ⟶∞

By a solution of ðEÞ, we mean a nontrivial sequence
fυðℓÞg that satisfies ðEÞ for all ℓ ≥ ℓ0: A solution fυðℓÞg
of ðEÞ is said to be oscillatory if it is neither eventually
negative nor eventually positive. Otherwise, it is said to
be nonoscillatory. Equation (1) is called oscillatory if all
its solutions are oscillatory.

Oscillation phenomena take part in different models
described by various differential equations, partial differen-

tial equations, and dynamic equations on time scales; see,
for instance, the papers [1–6] for more details. In particular,
we refer the reader to the papers [4, 6] for models from math-
ematical biology and physics where oscillation and/or delay
actions may be formulated by means of cross-diffusion terms.
In recent years, there have appeared several criteria on the
oscillation of (1) for the retarded case, that is, σðℓÞ ≤ ℓ − 1
and limℓ⟶∞σðℓÞ =∞, using either comparison methods or/
and Riccati transformation technique. On the majority, these
studies use the comparison methods, which is considered to
be the most powerful tool in the oscillation theory of difference
equations (see, for example, [7–17] and the references cited
therein). Another particular method appearing in several stud-
ies is also the summation averaging method (see, for example,
[1, 18–21] and the references cited therein).

From the literature, it is well known that not many
oscillation results are available by using comparison
methods. In [22, 23], the authors obtained oscillation of
the advanced difference equation (1) from that of the
ordinary difference equation

Δ η ℓð ÞΔυ ℓð Þð Þ + ρ ℓð Þυ ℓ + 1ð Þ = 0, ð2Þ
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without explicitly using the information about the advanced
argument fσðℓÞg: Very recently in [22], the authors studied
the oscillation of ðEÞ by assuming that ηðℓÞ ≥ 1 for all ℓ ≥ ℓ0:

In this paper, we present a new method which produces
the oscillation of (1) without the restriction ηðℓÞ ≥ 1: Thus,
our results generalize and complement to those reported
in [14, 15, 22, 23].

2. Main Results

Without loss of generality, in studying the nonoscillatory
solutions of (1), we can restrict our attention only to positive
solutions.

Lemma 1. Let fυðℓÞg be a positive solution of (1). Then,
ηðℓÞΔυðℓÞ > 0 and ΔðηðℓÞΔυðℓÞÞ < 0, eventually.

Proof. The proof can be found in Lemma 1, [22], and the
details are omitted.

Next we present an oscillation criterion for equation (2)
which will be used to prove our main results.

Lemma 2. Assume that

lim
ℓ⟶∞

〠
ℓ

s=ℓ0
ρ sð Þ ð3Þ

is convergent and fυðℓÞg is a positive solution of ðE1Þ. Then,
there is an integer ℓ1 ∈ℕðℓ0Þ such that

ω ℓð Þ ≥ 〠
∞

s=ℓ
ρ sð Þ + 〠

∞

s=ℓ

ω s + 1ð Þω sð Þ
η sð Þ , for ℓ ∈ℕ ℓ1ð Þ, ð4Þ

where ωðℓÞ = ηðℓÞΔυðℓÞ/υðℓÞ for ℓ ≥ ℓ1.

Proof. From Lemma 1, there is an ℓ1 ∈ℕðℓ0Þ such that
ωðℓÞ > 0 for all ℓ ≥ ℓ1: Taking into account the fact that
ηðℓÞΔυðℓÞ is positive and decreasing, we have

Δω ℓð Þ = Δ η ℓð ÞΔυ ℓð Þð Þ
υ ℓ + 1ð Þ −

η ℓð ÞΔυ ℓð Þ
υ ℓð Þυ ℓ + 1ð ÞΔυ ℓð Þ

= −ρ ℓð Þ − ω ℓð Þη ℓð ÞΔυ ℓð Þ
η ℓð Þυ ℓ + 1ð Þ

≤ −ρ ℓð Þ − ω ℓð Þω ℓ + 1ð Þ
η ℓð Þ :

ð5Þ

Summing up the last inequality from ℓ to j and then
taking j⟶∞, we obtain

ω ℓð Þ ≥ 〠
∞

s=ℓ
ρ sð Þ + 〠

∞

s=ℓ

ω sð Þω s + 1ð Þ
η sð Þ , ð6Þ

for all ℓ ∈ℕðℓ1Þ:

Now let us define

Q ℓ, 0ð Þ = 〠
∞

s=ℓ
ρ sð Þ, j = 0, ℓ ≥ ℓ1, ð7Þ

Q ℓ, jð Þ = 〠
∞

s=ℓ

Q s + 1 ; j − 1ð ÞQ s ; j − 1ð Þ
η sð Þ +Q ℓ ; 0ð Þ, j ≥ 1, ℓ ≥ ℓ1:

ð8Þ

Theorem 3. Let condition (3) hold. Then, (2) is oscillatory
provided one of the following two conditions holds:

(H1) There exists an integer j ∈ℕ such that Qðℓ ; 0Þ,⋯,
Qðℓ ; j − 1Þ defined by (8) satisfying

〠
∞

s=ℓ1

Q s + 1, j − 1ð ÞQ s, j − 1ð Þ
η sð Þ =∞: ð9Þ

(H2) There exists an integer ℓ ≥ ℓ1 such that

lim
j⟶∞

sup Q ℓ ; jð Þ =∞: ð10Þ

Proof. Assume, for the sake of contradiction, that equation
(2) is nonoscillatory. Let (H1) hold, and let fυðℓÞg be a pos-
itive solution of (2) for all ℓ ∈ℕðℓ1Þ: By Lemma 2, we have
for j = 0

ω ℓð Þ ≥ 〠
∞

s=ℓ
ρ sð Þ + 〠

∞

s=ℓ

ω sð Þω s + 1ð Þ
η sð Þ ≥Q ℓ, 0ð Þ, ℓ ∈ℕ ℓ1ð Þ:

ð11Þ

Thus,

〠
∞

s=ℓ1

Q s + 1, 0ð ÞQ s, 0ð Þ
η sð Þ ≤ 〠

∞

s=ℓ1

ω s + 1ð Þω sð Þ
η sð Þ ≤ ω ℓ1ð Þ ð12Þ

by (11), which contradicts (9). Similarly for j ≥ 1 from
(8) and (4), we have

ω ℓð Þ ≥Q ℓ, jð Þ for j = 1, 2,⋯ ð13Þ

and hence,

〠
∞

s=ℓ1

Q s + 1, jð ÞQ s, jð Þ
η sð Þ ≤ 〠

∞

s=ℓ1

ω s + 1ð Þω sð Þ
η sð Þ ≤ ω ℓ1ð Þ <∞, ð14Þ

which is again a contradiction.
Next, suppose that (H2) hold. Clearly, in view of

ωðℓÞ ≥Qðℓ ; jÞ for j = 1, 2,⋯, we get from (4) that
lim j⟶∞Qðℓ1 ; jÞ ≤ ωðℓ1Þ <∞, which is a contradiction.
The proof of the theorem is complete.
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Theorem 4. Assume that

Ω ℓð Þ〠
∞

s=ℓ
ρ sð Þ ≥ β > 1

4
, ð15Þ

eventually. Then, ðEÞ is oscillatory.

Proof. From (15) and (8) for j = 0, we have Qðℓ ; 0Þ ≥ β/ΩðℓÞ:
From (8) for j = 1, we get

Q ℓ ; 1ð Þ = 〠
∞

s=ℓ

Q s + 1, 0ð ÞQ s, 0ð Þ
η sð Þ +Q ℓ, 0ð Þ

≥ β2 〠
∞

s=ℓ

1
Ω s + 1ð ÞΩ sð Þη sð Þ + β

Ω ℓð Þ

= β2 〠
∞

s=ℓ
Δ

−1
Ω sð Þ

� �
+ β

Ω ℓð Þ

= β + β2

Ω ℓð Þ :

ð16Þ

Hence,

Q ℓ ; 1ð Þ ≥ β1
Ω ℓð Þ , ð17Þ

where β1 = β + β2:
In general,

Q ℓ ; jð Þ = 〠
∞

s=ℓ

Q s + 1, j − 1ð ÞQ s, j − 1ð Þ
η sð Þ +Q ℓ ; 0ð Þ ≥ βj

Ω ℓð Þ ,

ð18Þ

where βj = β + β2
j−1 and j = 1, 2,⋯. Clearly, β = β0 < β1

< β2 <⋯. If βj converges to some positive number α, then

α = β0 + α2: ð19Þ

But there is no real positive solution for such an equation
β0 > 1/4: Thus, limj⟶∞βj =∞: Then, we have lim j⟶∞
Qðℓ ; jÞ =∞: Thus, from Theorem 3, it follows that (2)
is oscillatory. Now using Theorem 3.5 of [23], we see that
(1) is oscillatory. The proof of the theorem is complete.

Next assume that the opposite condition of (15), namely,

Ω ℓð Þ〠
∞

s=ℓ
ρ sð Þ ≥ β butβ ≤

1
4 , ð20Þ

holds.

Theorem 5. Let fυðℓÞg be a positive solution of (1) and

Ω ℓð Þ〠
∞

s=ℓ
ρ sð Þ ≥ β > 0, ð21Þ

eventually. Then, there is an integer L such that for ℓ ≥ L,

υ ℓð Þ
Ωβ ℓð Þ

( )
, ð22Þ

is monotonically nondecreasing.

Proof. The proof is similar to that of Theorem 3 of [22], and
hence, the details are omitted.

Next we state a comparison result, containing an
advanced argument.

Theorem 6. Let (21) hold. If the difference equation

Δ η ℓð ÞΔυ ℓð Þð Þ + Ω σ ℓð Þð Þ
Ω ℓ + 1ð Þ

� �β

ρ ℓð Þυ ℓ + 1ð Þ = 0 ð23Þ

is oscillatory, then (1) is oscillatory.

Proof. The proof is similar to that of Theorem 4 in [22] and
hence omitted.

The above theorem ensures that any oscillation criterion
established for (23) leads to an oscillation criterion for (1).

Theorem 7. Let (21) hold. Assume that there is a constant β1
such that

Ω ℓð Þ〠
∞

s=ℓ

Ω σ sð Þð Þ
Ω s + 1ð Þ

� �β

ρ sð Þ ≥ β1 >
1
4
, ð24Þ

eventually. Then, (1) is oscillatory.

Proof. The condition (24) guarantees that (23) oscillates,
which in turn implies that (1) is oscillatory. This completes
the proof.

Next, we provide an example, illustrating this result.

Example 1. Consider the second-order advanced Euler type
difference equation

Δ
1

ℓ + 1ð ÞΔυ ℓð Þ
� �

+ b
ℓ ℓ + 1ð Þ ℓ + 2ð Þ υ λℓð Þ = 0, ℓ ≥ 1, ð25Þ

with b > 0 and λ ≥ 2 is an integer.
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Now ΩðℓÞ ≃ ℓ2/2: With β = b/4 and by Theorem 7,
equation (25) is oscillatory provided that

bλb/4 > 1: ð26Þ

For example, if b = 1/2, then it is required that λ ≥ 18:
Note that the result in [22] cannot be applicable to (25)

since ηðℓÞ = 1/ðℓ + 1Þ < 1:
If condition (24) fails to hold ðβ1 ≤ 1/4Þ, then we can

derive a new oscillation criterion using the constant β1:

Theorem 8. Let (21) hold. Assume that fυðℓÞg is a positive
solution of (1) and

Ω ℓð Þ〠
∞

s=ℓ

Ω σ sð Þð Þ
Ω s + 1ð Þ

� �β

ρ sð Þ ≥ β1 > 0, ð27Þ

eventually. Then,

υ ℓð Þ
Ωβ1 ℓð Þ

( )
ð28Þ

is monotonically nondecreasing.

Proof. Use [22], Theorem 2.6, to complete the proof.

Theorem 9. Let (21) and (24) hold. If the difference equation

Δ η ℓð ÞΔυ ℓð Þð Þ + Ω σ ℓð Þð Þ
Ω ℓ + 1ð Þ

� �β1

ρ ℓð Þυ ℓ + 1ð Þ = 0 ð29Þ

is oscillatory, then so is (1).

Theorem 10. Let (21) and (24) hold. If there exists a constant
β2 such that

Ω ℓð Þ〠
∞

s=ℓ

Ω σ sð Þð Þ
Ω s + 1ð Þ

� �β1
ρ sð Þ ≥ β2 >

1
4

ð30Þ

eventually, then (1) is oscillatory.

The proofs of Theorems 9 and 10 follow from Theorems
6 and 7, and hence, the details are omitted.

Example 2. Consider the difference equation (25). For this
equation β1 = bλ2b. By Theorem 10, we see that (25) is
oscillatory provided that

bλ2β1 > 1
4 : ð31Þ

Since β1 > b, Theorem 10 improves Theorem 7.

For convenience, let us use the additional condition that
there is a positive constant δ such that

Ω σ ℓð Þð Þ
Ω ℓ + 1ð Þ ≥ δ > 1, ð32Þ

eventually. In view of (21), conditions (24) and (30) can
be written in simpler form as

β1 = δββ > 1
4 ,

ð33Þ

β2 = δβ1β > 1
4 ,

ð34Þ

respectively. Repeating the above process, we have the
increasing sequence fβjg∞j=0 defined as β0 = β

βj+1 = δβ jβ: ð35Þ

Now as in [22], Theorem 2.9, one can generalize the
oscillation criteria obtained in Theorems 7 and 10.

Theorem 11. Let (21) and (32) hold. If there exists a positive
integer m such that βj ≤ 1/4 for j = 0, 1,⋯,m − 1 and βm >
1/4 , then (1) is oscillatory.

Example 3. Consider the second-order advanced difference
equation

Δ
1

ℓ + 1Δυ ℓð Þ
� �

+ 0:5
ℓ ℓ + 1ð Þ ℓ + 2ð Þ υ 5ℓð Þ = 0, ℓ ≥ 1: ð36Þ

For this equation β0 = 1/8 and δ = 25: Through direct
calculations, we get

β1 = 0:18692,
β2 = 0:22815:

ð37Þ

Thus, Theorems 7 and 10 fail for equation (36). But

β3 = 0:26053 > 0:25, ð38Þ

and hence, Theorem 11 guarantees the oscillation of (36).

3. Conclusion

In this paper, we have derived a new comparison method to
obtain the oscillation of second-order advanced difference
equation which removed the restriction imposed on the
coefficient fηðℓÞg such that ηðℓÞ ≥ 1 as in [22]. Thus, the
oscillation criteria obtained in this paper improved and
complemented to the existing results. It is an interesting
problem to extend the results of this paper to equation (1)
when it is in noncanonical form.
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