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Migration of pollutant particles into subsurface water reservoirs through point sources is largely involved mixing processes within
the system of water flow. Possible potential sources of pollution to these point sources include municipal wastes, septic loads,
landfills, uncontrolled hazardous wastes, and sewage storage tanks. The mixing processes of pollutant significantly alter their
predictive rate of flow in the water reservoirs, and therefore the time inherent in mixing processes need to be accounted for. In
this study, pollution of subsurface water reservoirs mainly rivers and streams through contaminated water point sources
(CWPS) was studied through a conceptual perspective of mixing problem processes in water tanks. The objective was to
formulate a discrete time delay mathematical model which describes the dynamics of water reservoir pollution that involve
single species contaminants such as nitrates, phosphorous, and detergents injecting from a point source. The concentration xðt
Þ of pollutants was expressed as a function of the inflow and outflow rates using the principle for the conservation of mass.
The major assumption made in modeling of mixing problems using tanks is that mixing is instantaneous. Practical realities
dictate that mixing cannot occur instantaneously throughout the tank. So as to accommodate these realities, the study refined
the systems of ordinary differential equations (ODEs) generated from principles of mixing problems in cascading tanks, into a
system of delayed differential equations (DDEs) so that the concentration of pollutant leaving the reservoir at time t would be
equal to the average concentration at some earlier instant, ðt − τÞ for the delay τ > 0: The formulated model is a mathematical
discrete time delay model which can be used to describe the dynamics of subsurface water reservoir pollution through a point
source. The model was simulated on municipal River Nyakomisaro in Kisii County, Kenya. Physical and kinematic parameters
of the river (cross-sectional lengths, depths, flow velocities) at three river sectional reservoirs were measured and the obtained
parameter values were then used to evaluate coefficients of the formulated model equation. The system of DDEs from this
simulation was solved numerically on MATLAB using dde23 software. From the graphical views generated for concentration of
pollutant xðtÞ versus time ðtÞ, it was established that the developed DDEs cover longer time series solutions (characteristic
curves) than that from the corresponding ODEs in the same reservoir indicating that time necessary for particle flow through
water reservoirs is underestimated if ODEs are used to describe particle flow. Also, the graphical views indicated similar
tendencies (characteristics) in particle flow with time elapse even though initial values of concentration xðtÞ were different for
every potentially recognized single species pollutant considered in each river reservoir. Hence, longer values of time t will imply
more pollution in the water reservoir and vice versa. By introducing time delays due to constituent mixing processes in water
quality simulation models that make use of advection-diffusion equation such as Qual2kw, the findings of this study can help
for better understanding of the contaminant’s accumulation levels and their rate of transport in water resource. These will
assist, for example, water-quality protection agencies such as Environmental Protection Agency (EPA), World Health
Organization (WHO), and National Environmental Management Authority (NEMA) for the need to generate efficient and
effective remedial strategies to control or mitigate hazardous or risks arising from water pollution.
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1. Introduction

In addition to groundwater, subsurface water systems that
include rivers, ponds, dams, and lakes are important water
resource for municipalities, domestic, agriculture, and
industry. Therefore, the capability to predict the levels of
concentration and rate of movement of contaminants in
the water resource is of vital importance for the reliable
assessment of hazardous or risks arising from water contam-
ination problems, and for the decision of efficient and effec-
tive techniques to mitigate them [1].

Reduction of subsurface water pollution largely involves
the scientific understanding of these processes which control
the fate and movement of pollutants in the subsurface envi-
ronment. First, the advection transport involves movement
of dissolved chemicals with the flowing water. Second,
hydrodynamic dispersion, involve molecular and ionic diffu-
sion together with small-scale variations in the flow velocity
through the porous media causing the paths of dissolved
molecules and ions to diverge or spread from the average
direction of water flow. Third, reactions in which some
amount of a particular dissolved chemical species (such as
herbicides) may be removed from the water as a result of
biological, chemical, and physical reactions in water or
between the water and the solid aquifer materials or other
liquid phases. Lastly, fluid point sources, where water of
one constituent level is introduced into and mixed with
water of a different constituent level. In addition, it is impor-
tant to understand the most challenging problems associated
with pollution of water systems which include prevention of
the introduction of contaminants in water systems, predic-
tion of their movement if they are introduced, and methods
of their removal, to some extent, in order to protect the bio-
sphere effectively [2].

The mathematical representation of the transport
models to predict the contaminant migration in subsurface
water systems is one major area to supplement to the scien-
tific knowledge on pollution processes. Formulation of the
transport models involves determination of different param-
eters in the field and the laboratory using different methods
and consequent applications of the established conceptual
models for development of management measures to control
and/or prevent the introduction of contaminants in water
systems [3].

Previous studies on mixing problems that exist in litera-
ture are experimentally covered in Ukwu [4], using variation
of concentration of brine with time through cascading tanks.
The common assumption in these cited literatures while for-
mulating their mixing-problem models is that mixing in the
tanks is instantaneous. Practical realities dictate that mixing
processes cannot occur throughout the tank at once. Thus,
the concentration of salt flowing out of the tank at time, t
will be equal to the average concentration at some earlier
time ðt − τÞ, where τ > 0. Lead this way, the huddle with
the assumption of instantaneous mixing is settled. Mathe-
matically, however, these criteria involve refinement of
ODE models to DDE models. The novelty of this study is
the extension of this experimental approach to mathemati-
cally model the rate and concentration of particle flow (from

point source) of single species pollutants in subsurface
water-flow systems.

The sketch in Figure 1 below introduces the general
problem involving pollution of subsurface water systems
that was covered under this study. In this flow diagram,
water and pollutant meet at a point source and the mixture
flows downstream in discretized cascades as shown in
Figure 2. The pollutant undergoes processes of sedimenta-
tion, filtration, and leakages, and finally, the pollutant either
accumulates on the water surface or in the soil. The concern
of this research is to model the process leading to surface
accumulation of pollutant within the water flow beginning
from the point source.

This paper is organized as follows. First, the background
to the study is described. Then, the governing mathematical
principles and equations are given in section 2, model for-
mulation and applications are presented in section 3, sum-
mary and conclusion in section 4, and recommendations
in section 5.

2. Background

Migration of dissolved (or undissolved) organic and inor-
ganic substances into subsurface water reservoirs through
point sources, largely involve mixing processes within the
system of flow. The mixing processes significantly alter the
predictive rate and concentration of pollutants in the
water-flow systems, and therefore, the time inherent in these
processes need to be accounted for in modeling rate of pol-
lutant flow. This study considered changes in contaminant
concentration which occur within dynamic subsurface water
systems of cascading water reservoirs due to fluid point
sources, where water of one composition of pollutant is
introduced into and mixed with water of a different compo-
sition. A numerical model for the process was formulated
using mixing-problem analyzes in water tanks [6]. The
objective was to apply the formulated model to predict pol-
lution concentration attenuation in water systems and this is
helpful to approximate time inherent in the process of pol-
lutants accumulation in water reservoirs.

The following governing equations and principles were
found resourceful to this study.

2.1. Continuity Equation. In water dynamical systems, devel-
opment of mathematical equations to describe the ground-
water flow and transport processes is mainly achieved
through the fundamental principle of mass conservation of
fluid or solute. The general equation for conservation of
mass may be represented in global variables, using a repre-
sentative volume of porous medium as

Qin −Qout −Qproduction =Qaccumulation: ð1Þ

where Q is the mass of fluid or solute. This is the equation
for conservation of mass (or continuity equation) which
may be combined with a mathematical expression of the rel-
evant dynamic process to obtain a differential equation
describing flow or transport [7].
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2.2. River Water Quality Simulation Model. Qual2kw model
is one commonly used water quality simulation models. The
Qual2kw model is a one-dimensional model for simulation
of river and stream water quality variations. This model uses
the advection-diffusion equation to simulate the transport
and fate of several water constituents. The model deploys
the finite-difference numerical scheme for the solution of
the adjective-dispersion mass transport and reaction ordi-
nary differential equations.

For a water column, the variation of constituent concen-
tration based on a general mass balance equation (Equation
(1)) is given as (Maridi [8])

dxi
dt

= Qi−1
Vi

xi−1 −
Qi

Vi
xi −

Qab,i
Vi

xi +
Ei−1
Ai

xi−1 − xið Þ + Ei

Ai
xi−1 − xið Þ + Wi

Vi
+ Si,

ð2Þ

where xi is the constituent concentration; Qi is flux at reach
i; Qab,i is abstraction flux at reach i; Ei is bulk coefficient
between adjacent reaches; i − 1,i, i + 1 are consecutive cas-
cading reaches; Wi are external loading of constituents;
and Siare sources and sinks of constituents due to reactions
andmass transfer mechanisms. The detail description of inter-
acting water quality state variables processes that are effective
on equation (2) is described in Pelletier and Chapra [9].

Based on equation (2), this study proposes a criterion for
more accurate mathematical evaluation of constituent con-
centration, xiðtÞ by considering the time delays inherent in
the mixing processes of the constituents (pollutant loads)
with flowing water. These mixing processes greatly contrib-
ute to rate of variations of constituent concentration, xiðtÞ
in the flowing water. On principle, the ordinary differential
equation (2) in the given variables and constants is trans-
formed to a corresponding delay differential equation with
the concentration xiðt − τÞ,where τ is the time delayed in
the mixing process at a point as the flow of pollutant load
proceeds downstream. Consequently, xiðt − τÞ/dt is the con-
centration variation rate in time including the temporal var-
iation of concentration based on mixing, diffusion,

advection, reaction, and rate of changes due to pollution
load discharged into the river.

This study propagates and applies a wide range of
known mathematical theories and properties of delay differ-
ential equations (DDEs) to demonstrate the essentiality of
the DDEs in describing dynamical systems over their coun-
terpart, the ordinary differential equations (ODEs). In appli-
cation, the outcome of this analysis is ventured towards the
use of DDEs in place of ODEs in water quality simulation
models that make use of numerical schemes such as
Qual2kw and Ce Qualw2. This mathematical contribution
is geared towards advancement of river water assessment
and management.

2.3. Equations for Mixing-Problem Processes in Cascade
Reservoirs. In modeling population dynamics, Antonin [6]
derives the following system of ODE from cascade arrange-
ment of water tanks:

dx1 tð Þ
dt

= −k1x1 tð Þ, ð3Þ

dxi
dt

= −ki−1xi−1 tð Þ − kixi tð Þ, 2 ≤ i ≤ n, ð4Þ

where x is concentration of pollutant in the cascade; n is
number of reservoirs in the cascade; and k = f /Vi. Equation
(3) indicates that fresh water enters the initial water reser-
voir so that the particle concentration x1ðtÞ due to a single
particle source is negative. Equation (4) is a global ordinary
differential equation which describes the change in concen-
tration between two consecutive reservoirs, ði − 1Þthand ith

in the cascade through the n reservoirs in the flow. It should
be noted that in its application, such as on the dynamics of
river flow involving pollution, the system of ordinary differ-
ential equation (equation (4)) provides net concentration x
ðtÞ of particles only between two progressive adjacent cas-
cade reservoirs, the ði − 1Þth and ith reservoirs.

2.4. Equation for Single Species Population Model with Delay.
In modeling population dynamics, Forde [10] provides DDE
model for a single species population as

dx tð Þ
dt

= x t − hð Þe−bx t−τð Þ − dx tð Þ: ð5Þ

If b > d, then equation (5) will have nontrivial steady
states. The study considered the case of equation (5) when
the average death rate d is constant, and the average birth
rate b has an exponential decaying factor. Examples where
this type of model has been applied include “Nicholson’s
blowfly data” on laboratory populations of blowflies, in
which the essential features of the model are two functions
relating fecundity and egg-to-adult survival to the amount
of food available to each individual. The model describes
thresholds representing maintenance requirements in the
two functions, b and d, together with a time delay τ due to
the development that cause cycling in the blowfly popula-
tions. Similar thresholds and time delays occur in more

Water

Pollutant

Surface

Waterflow

Sedimentation Filtration
of pollutant Leakages

Accumulation of water in soilSurface accumulation 
of pollutant

Water with pollutant

Figure 1: Scheme of pollutant propagation in water reservoir from
point source (adopted from [5]).
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complex biological systems with cycling in closely interact-
ing populations of predators and prey [11].

3. Results and Discussions

3.1. Formulated Discrete Time-Delay Mathematical Model.
Steady, uniform and three-directional flow in a river, stream
or generally subsurface water flow system with cascade geo-
logical setting was considered. First, equations (3) and (4)
derived from mixing-problem processes in controlled set-
up of water tanks [6] were used to provide a conceptual
framework and methodology for natural subsurface water
reservoirs of cascading geological setting. Second, since pol-
lution concentration in the reservoirs is never instantaneous,
the equations were modified to include lag or delay time τ.
This modification considered concentration xðtÞ of pollutant
species as a reducing or decaying factor so that the final
model equation for particle transport would conform to
equation (5) from population dynamics. To achieve this,
the changes in concentration of particles in a particular res-
ervoir were analogized to the dynamics of population change
of a single species in an ecological niche, and therefore the
following derivation was resourceful:

Considering a simple population growth model with
unlimited resources, the changes in population size NðtÞ at
any given time can be represented in global variables as

dN
dt

= B −Dð Þ tð Þ, B,D > 0: ð6Þ

The constantsB andD are the birth and death rates,
respectively. This model assumes that birth and death rates
are directly commensurate! Natural realities in biological
populations indicate that these rates are never commensu-
rate. Can this model, therefore, be improved to simulate
such realities in a population? Let NðtÞ be the number of
adults. The babies of the population species should take time
τ to grow up and with probability ρ to make it to full adults.

Then,

dN
dt

= BρN t − τð Þ −DN tð Þ: ð7Þ

This is a delay differential equation (DDE), named Hayes
Equation [10]. In particular, by considering the independent
variables B,D, ρ and τ, equation (7) is similar to equation (4)
in applications.

3.2. Model Formulation. The model DDE equation was pro-
vided in the form of equation (5) from population dynamics
through equation (4) and then parameter setting mathemat-
ical approach was used to investigate the stable states of the
resulting model equation. This approach involved combina-
tions of a range of chosen values of the time lags τ and coef-
ficients β, ∂ in the DDE equation so as to obtain a steady
stable state.

Following the derivation of Hayes equation in equation
(7), equation (5) was modified to the following model equa-
tion:

dx tð Þ
dt

= βi tð Þ x t − τð Þe−Ax t−τið Þ
h

− ∂i tð Þx tð Þ, i = 1, 2,⋯, n,

ð8Þ

where i is the position of reservoir in the cascades, xðtÞ is the
concentration of pollutant species in subsurface water reser-
voir, τi is the time lag of pollutant flow in the cascade reser-
voir and is considered to be of unique value for a particular
reservoir so that τ1 < τ2 < , ; ; < τn, for reservoirs 1, 2, 3,⋯, n
. This specifies equation (8) as DDE with multiple discrete
delays. The parameters β, ∂ are time-dependent coefficients
so that equation (8) is nonautonomous.

The coefficient βðtÞ is termed as the incursion term and
represents pollutant particles that enter the ith reservoir with
a rate of flow f i−1, which is the rate of flow in the previous
adjacent reservoir. βðtÞ is considered a continuous, positive
decreasing function, so that the average concentration rate
_xðtÞ of pollutant decreases with increasing number cascade

(i + 1)

Fresh water flowing into first reservoir

Pollutant point source

Direction of river flow

0

2

1

Figure 2: Setup for discretization of River flow channel into cascading water reservoirs ði = 0, 1, 2,⋯, n is the position of cascade reservoir).
Flowing water meets with the pollutant point source of predicted pollutant in the first reservoir, and the mixing process proceeds
downstream through the discretized cascades.
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water reservoirs. Similar consideration on this coefficient has
been done for density-limited growth and the logistic models
in population dynamics [10].

The coefficient ∂ðtÞ is called the dilution term which
accounts for the spreading rate (flux divergence rate) of pol-
lutant particles and therefore reducing the average concen-
tration per unit volume of particles flowing in the ith

reservoir. This term is comparable to the death rate d of a
single species in population dynamics, which is increased
by factors like intraspecific competitions for survival. For
example, in Nicholson’s blowfly model [10], d is considered
constant and represents constant per capita death rate. Sim-
ilarly, in applications of equation (8), ?i in the ith reservoir is
considered constant in that particular reservoir.

The invading particles in the ith reservoir do not mix up
instantaneously with water, but rather takes time τi in the
mixing process. Some of these particles will be harbored in
the reservoir due to chemical, biological, and physical pro-
cesses and therefore may or may not eventually flow into
the ði + 1Þth reservoir. With reference to equation (7), Hayes’
equation, this possibility is represented in the model equa-
tion (8) by the mathematical probability ρðtÞ = e−Axðt−τiÞ:
This term is attached to the incursion term βðtÞ to mathe-
matically account for the progressive exponentially reducing
(decaying) incursion rate of pollutant particles in the cas-
cades. The constant A is mathematically used as a scaling
factor and is assigned a negative value so that the exponen-
tial term can reciprocally provide the decaying factor in the
incursion term.

The following mathematical definition was provided for
particle concentration xðtÞ, so as to specify equation (8) for a
solution which is bounded for each water reservoir in the
cascade.

Definition 1. If dxðtÞ/dt = Fðt, xtÞ, xðtÞ ∈ℝn, where xtðt + θ
Þ, θ ∈ ð−∞,0� represent a trajectory of the solution in the
past, then F represent a functional operator from ℝ × C1

to ℝ2. Further, dxðtÞ/dt = FðxðtÞ, xðt + θ1Þ,⋯, xðt + θnÞ,
for θ1 <⋯<θn, define F as functional DDE with discrete
delays [12].

The consequence of this definition is to specify the
model equation (4.3) as a functional delay differential equa-
tion with the following properties:

The delays ?i are discrete with ?1 < ?2<⋯ < ?n for every
τ ∈ℝ:

Concentration, xðtÞ ∈ℝn.

X tð Þ = x τð Þ: τ ≤ tf g: ð9Þ

Initial conditions: ∅ : ½−τ, 0�⟶ℝn:
The characteristic equation is transcendental.

3.2.1. Linearized Stability of Model Equation (8). This sub-
section was aimed at setting conditions for the determina-
tion of values of the coefficients β and ∂ as a pair in
Equation (8) that will always give rise to a stable state on
application of the DDE. This was achieved through a crite-
rion derived to evaluate a critical delay, τc from a suitable

combination of values of β and ∂. The delays, ?i will then
be determined based on the value of ?c so as to sustain stabil-
ity of resulting DDE.

The study derived a lot of insight from stability analysis
of equilibria. An equilibrium point in the state space was
considered for which xðtÞ = �x is a solution of equation (8)
for all t, so that the equilibrium points satisfy

�x, �x,⋯, �xð Þ = 0: ð10Þ

In principle, when a solution or solutions of the charac-
teristic equation has positive real part, then the equilibrium
point is unstable. If they all have negative real parts, the
equilibrium point is stable. When the leading characteristic
values are zero, then the stability is irreducible to linear
order.

It should be realized that the basic properties of this
model are the type of functions β and ∂ which might lead
to the existence of periodic solutions of equation (8). The
study specified the use of the case βðtÞ = βie

−Axðt−τiÞ and ∂ðt
Þ constant in each of the cascade reservoirs so as to provide
periodic solutions of the model equation.

3.2.2. Preliminary Analysis of Model Equation. An analytical
approach was provided to establish basic properties of solu-
tions to the equation (8) under the following projections:

(i) Given positive initial data of concentration xðtÞ,
solutions remain positive in all time t. This positiv-
ity of solutions is important in modeling physical
and biological phenomena because negative solu-
tions (values) will be meaningless

(ii) Solutions are bounded and eventually uniform
bounded regardless of initial data. Pollution in a
flow is characterized with particles moving along a
concentration gradient. The rate of the mixing pro-
cess of pollutant particles is affected by initial con-
centration. Such rates are expressed in terms of
time delays in any dynamics of flow. Eventually a
uniform particle flow is attained for every initial
concentration when particles concentration is mini-
mum constant or otherwise zero in the long run, or
maximum levels

(iii) Determine steady state solutions and their stability:

(a) Identify delays that cause instability to nontrivial
steady states of equation (8). If the nontrivial steady
states exist for a solution, then there is a critical delay
corresponding to every such nontrivial steady state.

(b) Propagate the existence of periodic solutions. DDEs
that model physical dynamics exhibit oscillatory
phenomena whose analytical results provide periodic
solutions [10].

To achieve the above set projections the following ana-
lytical approach provided in Forde, [10] was applied. The
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study relied on the condition that β > ∂, so as to be led by the
case of Theorem (2) below, where the nontrivial steady state
exists. Besides, for particles to flow in a water reservoir, their
rate of “production” must be higher than their “death” rates.

Theorem 2. Let βðtÞ and ∂ðtÞ be positive functions. Suppose
that there exists an �x ∈ x such that

sign ðβðxÞ − ∂ðxÞÞ = −sign ðx − �xÞ,and β′ð�xÞ < ∂′ð�xÞ:
Then, �x is a positive steady state, and the trivial steady state
is unstable. If β′ð�xÞð�xÞ > −2∂ð�xÞ − ∂′ð�xÞ�x, then �x is linearly
stable for all τ: Otherwise, there exists a τi > 0 such that �x is
stable for τi < τc and unstable for τi > τc [10].

Using Theorem (2) above, the particulars of the case β
> ∂were analyzed, which is a necessary condition for particle
flow to occur and for completeness of the mixing process
within a water reservoir. The analysis leads to a condition
for the boundedness of the delays τi in SWR, and the proof
of the theorem follows from the application.

From Theorem (2) and considering the case β > ∂, the
nontrivial steady state occurs whenever,

β = ∂eA�x , ð11Þ

or

�x = 1
A

ln β

∂
: ð12Þ

Then, according to Theorem (2), �x is stable for all β < ∂ if
and only if

d
dx

βe−Ax
Â Ã

x=�x > −
∂
β
: ð13Þ

This is equivalent to the condition that β < ∂e2, which is a
contradiction to the necessary requirement that β > ∂ for par-
ticles to flow in solution. This condition was used to validate
model equation (8) by determining a pair of measured values
ðβ, ∂Þ from the dynamics of water flow involving change of
concentration of pollutant particles, so that β > ∂ for unstable
solution that is essential for the periodic property of the DDEs.
So as to determine the range of values of delay τ that would
give rise to a stable or unstable state solution of equation
(8) in its application, the following criterion based on Theo-
rem (2) was applied [10].

The condition ? > ?e2 was considered for a steady state of
equation (8). Laplace transforms show that all analytic solu-
tions of autonomous constant delay DDEs are exponentials
[12]. To obtain a characteristic equation, therefore, the simple
exponential ekt may be chosen and posted in equation (8) to
get,

kekt = βek t−τð Þ e−Ae
k t−τð Þh i

− ∂ekt: ð14Þ

Dividing by ekt and rearranging gives a transcendental

exponential,

k + ∂ ln β/∂ − 1ð Þe−kτ + ∂ = 0: ð15Þ

Taking σ = ðln β/∂ − 1Þ, then

k + ∂σe−kτ + ∂ = 0: ð16Þ

The roots k have two cases to address on the application of
equation (8). When there is no delay, such as in the case of
flow without mixing processes, τ = 0 resulting to simple poly-
nomial, k = −∂σ − ∂, which is insignificant as far as pollution
is concerned. But, if τ > 0, then k = k1 + k2i, which is a com-
plex root. Taking the real and imaginary parts,

k1 = −∂σcos k2τð Þ,
k2 = −∂σsin k2τð Þ:

ð17Þ

Squaring and summing up yields

k21 + k22 = ∂2σ2, ð18Þ

or,

k1 = k2 σ2 − 1
À Á1/2

: ð19Þ

Rewriting the real and imaginary parts of the roots of the
characteristic equations,

cos k2τð Þ = −1/σ < 0,

sin k2τð Þ = σ2 − 1
À Á1/2/σ > 0:

ð20Þ

Thus, there exists a critical delay, τc at which an eigen-
value crosses into the right half-plane, k2τ2 ∈ ððπ/2Þ, πÞ and
the delay is given by

τc = 1/∂ σ2 − 1
À Á

cos−1 −1/σð Þ: ð21Þ

3.2.3. Time t Necessary for Transport of Pollutants through
Cascaded SWR. The formulated model equation (8) was
solved in Matlab dde23 software to obtain time t necessary
for transport of single species pollutant in cascading sub-
surface water reservoirs (SWR). It should be noted that the
basic properties (such as linearity, stability, and oscillatory)

Table 1: Boundedness of delays, τi:

ith reservoir
Length of reservoir, L mð Þ
For sections “A, B, and C”

τi > τc

0 20 0.000

1 50 0:091 > 0:064
2 60 0:200 > 0:166
3 80 0:345 > 0:286
4 100 0:527 > 0:497
5 120 0:745 > 0:623
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of equation (8) are determined by the nature of functions ?
and ?.

The time series solutions for the system of equation (8)
were generated graphically through Matlab by assigning
paired values of the coefficients βi and ∂i in a particular res-
ervoir that were predetermined for the boundedness of the
corresponding delay τi using equation (21). These time
series curves displayed similar tendencies downstream from
the point source to the last reservoir in the cascade, and
therefore they constitute characteristic curves. Curves result-
ing from the dynamics in reservoirs nearer the point source
have longer times to cover than those far from the point
source. The intensity (magnitude) of the point source pollut-
ant also affects the duration of the curves. Higher levels of
the pollutant concentration at point source cause longer
amplitudes, and vice versa. One remarkable result of the
DDE model was obtained on comparing its results to the
results of ODEs it modifies under the same dynamic system
of flow. The time series solutions obtained for the DDE
model displayed longer curves than the ODE counterparts
in the same reservoir for the same single species pollutant.

Therefore, the time t necessary for transport of pollutant
in cascading SWR can be evaluated numerically using the
DDE model. Further, since the process of water reservoir
pollution is not instantaneous, but rather takes time to
occur, the model provides the time inherent for this process
as ðt − τÞ.

3.2.4. Assumptions for the Model. The following assumptions
were found necessary for the formulation and application of
the model:

(i) Flow in subsurface water reservoirs was assumed
steady, uniform, and unidirectional

(ii) Water free from pollutant-species flows into the
first reservoir in the cascade and pollutant in solu-
tion flows out of every reservoir at the same rate,
ensuring that the amount of fluid flow remains con-
stant in the cascade. This way, the time t was deter-
mined that accounted for movement of pollutant
through the cascades since its injection into water
reservoirs through a point source until maximum
concentration is reached in the whole system of
water flow

(iii) Only a single point source of pollutant species into
water system was considered

(iv) It was assumed that mixing of pollutant particles in
water (in every reservoir) was perfect and complete
and that the flow rates (in and out) of reservoir were
well observed (measurable)

3.3. Model Implementation. The described mathematical
model was implemented on the dynamics of flow involving
pollution on river Nyakomisaro in Kisii town (Kenya). The
river is of shallow water with average depth 0:5 metres (at
minimum during dry season) and 1–2 metres (at maximum
during high rainfall) and average width below 3:0 meters.
The river transverses highly populated Kisii town and there-
fore it is characterized with several point sources of pollution
from the municipal solid and dissolved wastes flowing into
the river through its banks. Concentration, for pollutant spe-
cies were selected at particular point sources along the river
banks.

From the studies conducted on the river involving pollu-
tion [13], the initial pollutant concentrations at the identi-
fied point sources for SECTIONS A, B, and C were taken
as 2:228 ppm, 4:50 ppm, and 6:80 ppm, respectively.

3.3.1. Determination of Flow Volume. Each reservoir volume
Vi was calculated from the length ðLÞ and average cross-
sectional area ðAÞ for every ith reservoir as

Vi = AiLið Þ, ð22Þ

Table 2: Kinematic parameters from River Nyakomisaro.

ith reservoir
Flow rate f i−1 m/sð Þ at sections: Reservoir volume Vi m

3À Á
at sections:

“A and B” “C” “A and B” “C”

0 1.55 3.20 400,000 220,000

1 1.50 2.96 536,000 145,000

2 1.10 2.66 250,000 156,800

3 0.92 2.35 400,000 172,000

4 0.80 1.90 381,700 182,400

5 0.60 1.76 402,000 188,000

6 0.50 1.62 322,000 192,000

Table 3: Values of β, ∂, and initial concentration, x0ðtÞ.

ith reservoir βi × 10−6
À Á

m2s
À Á−1

∂i tð ÞA B C

x0 tð Þ 2.228 4.500 6.800 0

i 2.800 2.800 0.204 1/4

i + 1 1.399 1.399 0.169 1/16

i + 2 0.776 0.776 0.136 1/64

i + 3 0.509 0.509 0.104 1/256

i + 4 0.304 0.304 0.093 1/1024

i + 5 0.218 0.218 0.084 1/4096
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where A = ðdepth × widthÞ: Measurements of depth, width,
and length were taken downstream at every discretized end-
point of a reservoir using meter-rule and string.

3.3.2. Discretization of Time-Lags. In the physical applica-
tions of the DDE equation (8), the lags are parameters dis-
tinctively calculated as a ratio of the cascade length to total
length of the cascade zone

τc =
Ln
LT

, ð23Þ

where Ln =∑n
i=1ðLiÞ, i = 1, 2,⋯, n:These proportions were

necessary to maintain that τ1 < τ2 <…<τn, so that the time
lags are distinctively discrete and in series. The discrete
delays were calculated and bound as shown in Table 1 below.

The coefficient ∂(t) for every cascade reservoir was deter-
mined using the method of “serial dilution”. The dilution
factor (DF) for each step was computed as the ratio of the
total volume, VT (obtained by summing upVi for i = 1, 2,
3,⋯, n,where n is the number of zones in the cascade) to
V0, volume of water (assumed to be free of single species

pollutant) entering the cascade zone. Thus,

DF = VT

V0
= 1630800

400000 ≈ 4, ð24Þ

where V0is the volume of precascade reservoir which is
determined just before entering the first cascade reservoirs.
Using this approach, and with the assumption that “freshwa-
ter” enters the contaminated cascade through the first reser-
voir (at the point source), the dilution term ∂i was computed
as the DF of the system. Thus, the DF up to sixth reservoir
was reached as:

1
4 ,

1
16 ,

1
64 ,

1
256 ,

1
1024 ,

1
4096 : ð25Þ

3.3.3. Coefficients for Model Equation. Using the results in
Table 2, the incursion term βiðtÞ for every cascade was calcu-
lated from the relation

βi tð Þ =
f i−1
Vn

,

Vn = 〠
n

i=1
Við Þ, i = 1, 2,⋯, n:

ð26Þ
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Figure 3: Time series trajectories for particle flow in reservoirs. Figures 3(a)–3(c) show plots of Concentration xðtÞ versus time t for
SECTIONS A, B, and C, respectively, of river flow.
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The computed results for the six cascade zones were
recorded in Table 3. This computation was necessary to
show that the concentration of the pollutant reduces down-

stream leading up to sixth reservoir where it is 4096 times
less than the original “undiluted” solution inside the first
reservoir.
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Figure 4: Plots of concentration xðtÞ versus time t for comparison DDEs and ODEs in modeling rate of particle flow in reservoirs of water
flow systems.
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3.3.4. Particle Flow for τ = 0. The model equation (8) was
transformed into its ordinary differential equation counter-
part by setting the delays ?i =0, which resulted to

dx
dt

= β0x tð Þe−Ax tð Þ − ∂i xð Þ, ð27Þ

where β0 represents the rate per unit volume (flow flux) at
which pollutant particles are entering the ith reservoir at
the boundary point. Because no history of particle flow is
required to solve ODEs, a solution is for equation (8) guar-
anteed at the entry boundary point of each reservoir. The
consequence of the choice of this boundary point for the
ODEs is to determineβ0 using the relation,

β0 =
f i
Vi

, ð28Þ

where fi and Vi represents rate of flow (velocity) of pollutant
particles and the water volume in the itℎ reservoir, respectively.
It turns out that β0 for a given reservoir is a constant defined at
the commencement of the flow process of pollutant particles
in solution for that particular reservoir. This specification of
β0 executes the mixing process of pollutant particles in water
flow as “instantaneous”, so that particle concentration in all
other points in a reservoir is uniform without any time elapse.
The coefficient ∂i remains the serial dilution factor in each res-
ervoir and was computed using relation (24).

Graphical displays of time series solutions for each reser-
voir in the cascade were demonstrated in comparison for
both model equation (8) and ODE equation (27) in the fol-
lowing section.

3.3.5. Comparison of Results and Discussion. When the
model equation 3:3 was ran using MATLAB for the data sets
for βi, ∂i, τi where i = 1, 2, 3,⋯, 6 obtained from River Nya-
komisaro, it produced graphical views that varied from the
paired parameter values for β, ?, and ? in each reservoir,
downstream. From the graphs 3.1(a), 3.1(b), and 3.1(c), it
was observed that as the values of the parameters β and ∂
become smaller, the curve is less clear and has shorter times
to cover than when the parameter values are larger.

This also agreed with the pattern of the natural phenome-
non inmixing-problems that the rate of particle flow decreases
with decreased concentration, a condition described as “con-
centration attenuation”. Therefore, particle migration is faster
and more feasible at early stages (front reservoirs) of pollutant
incursion into water system than when particles must have
stayed (rare reservoirs) in the system.

Further, it was observed from the graphs in Figures 3(a)–
3(c) that as the values of the parameters β and ∂ were varied
downstream in the river flow, the resulting curves change
pattern. The dips (troughs) of the curves change gradually
and eventually to linear with zero slopes.

From the graphs given in Figures 4(a)–4(d), it was
observed that for the same reservoir, under similar physical
properties, an ODE curve has shorter times to cover than
its DDE curve counterpart. It implies that if the time delays
in the mixing processes are not accounted for in particle

(pollutant) transport in water reservoirs, and since mixing
processes are never instantaneous, then the time required
for transport of a species of pollutant in the water reservoir
is underestimated. The time series solutions that include
delays generated by model equation (8) offers a better
approximate value of the time necessary for particle flow in
cascade subsurface water reservoirs than mathematical
models without delays [6].

4. Summary and Conclusions

(i) The numerical model formulated in this study
describes the kind of time delays observed in
mixing-problems that was applied to govern the
dynamics of water pollution in subsurface water res-
ervoirs. The results from the validation of the model,
displayed in Figures (3) and (4), imply that if the aver-
age time elapsing for mixing-process of pollutant par-
ticles within a water reservoir are accounted for (in
models with time delays), and if the duration of the
particle movement within the reservoir up to their
possible maximum accumulation in water systems
are approximately negative exponential in distribu-
tion, then such a model is more accurate (than
models without delays) to estimate time evolution of
particle transport in water reservoirs

(ii) The model was applied on three stretch sections on
River Nyakomisaro in Kisii town, labeled “SEC-
TION A, SECTION B and SECTION C”. These
three sections were identified by recognizing possi-
ble potential pollutants entering the river at particu-
lar points (point sources). The three stretches were
of equal lengths and each was partitioned into six
cascade zones. Physical parameters of the river at
these sections were measured and the coefficients
of model equation (8) were evaluated. It turned
out that the graphical views generated displayed
similar tendencies (characteristics) even though ini-
tial values of concentration xðtÞ were different for
every potentially recognized single species pollutant
chosen for each section. The graphical comparisons
for three sections with different starting points (but
with constant delays) were given in Figures (3).

(iii) The comparisons of results displayed in Figure 4
between the generated ODEs and the corresponding
DDEs in modeling rate of particle flow in reservoirs
of water flow systems, indicate the essentiality of
invoking the time delays in water quality simulation
models such as Qual2kw and CeQualw2 that make
use of the finite-difference numerical methods for
the solution of the adjective-dispersion mass trans-
port and reaction equations. Time delays are inher-
ent in water quality variations, and therefore, for
accurate model simulation of the transport and fate
of several constituents in water flow systems, time
delays should be considered in the advection-
diffusion equation.
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5. Recommendations

More validation of the formulated model (equation (8)) to
different natural river flow systems is recommended.

Nomenclature

g: The gravitational constant (9.8m/s2)
β: Rate of pollutant particle flow in water ðm2sÞ−1
τ: Discrete Time delay (Dimensionless)
∂: Dilution rate of concentration of pollutant par-

ticles in water flow (Dimensionless ratio)
ODE: Ordinary Differential Equations
PDE: Partial Differential Equations
DDEs: Delayed Differential Equations
FDE: Functional Differential Equation
RCDS: Remote Control Dynamic System
IVP: Initial-Value-Problem
BVP: Boundary-Value-Problem
MATLAB: Matrix Laboratory
EPA: Environmental Protection Agency
SWR: Subsurface Water Reservoirs
ppm: Parts Per Million
DF: Dilution Factor.
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