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Irrespective of whether the test for homogeneity is significant or not, most researchers assume time-homogeneity in analysing
Markov chains due to scanty literature on the analysis of time-inhomogeneous Markov chains. Based on the assumption that,
for each point in time in the future, a stochastic process will be subjected to a randomly selected transition matrix from an
ergodic set of transition matrices the process was subjected to in the recent past, a methodology was proposed for analysing
the long-run behaviours of time-inhomogeneous Markov chains. The proposed model was implemented to historical data
consisting of the exchange rate of cedi-dollar, cedi-pound, and cedi-euro spanning over 6 years (January 2012 to December 2017).
The results show that under certain “closeness” conditions, the long-run behaviours of the time-inhomogeneous case are almost
identical to those of the time-homogeneous case. The paper asserted that even if the Markov chain exhibit time-inhomogeneity,
analysing the Markov chain under the assumption of time-homogeneity is a step in the right direction under certain “closeness”
conditions; otherwise, the proposed method is recommended. It was also found that investing in dollars yields better returns than
the other currencies in Ghana.

1. Introduction

The exchange rate, which measures the price of one currency
in terms of some others, is one of the most important topics
in international finance and policymaking. The exchange
rate has been a mechanism for regulating trade and capital
flows by many developing economies. Direct and indirect
shifts in the exchange rate can affect all sorts of assets’ prices
[1, 2]. Exchange rates have a great significance for a
country’s economy, particularly its foreign trade; hence, the
ability to predict its future value, how volatile the rates
would be, and its stability in the face of changing economic
variables is necessary. Models of exchange rate reflect the
relative prices of one country about households, the technol-
ogy of firms, and institutional agreements besides taxes and
tariffs between two countries. Recent papers on exchange
rate prediction and forecasting are done using nonlinear
models such as machine learning [3–5] and random walk
[6, 7]. For instance, Ranjit et al. [4] use machine learning

techniques such as artificial neural network (ANN) and
recurrent neural network (RNN) to develop a prediction
model between Nepalese rupees against three major curren-
cies euro, pound sterling, and US dollar. Ca’Zorzi and
Rubaszek [6] examined the regularities in foreign exchange
markets in advanced countries with flexible regimes using
panel data techniques and nonlinear models. Wang et al.
[7] used a nonlinear smooth transition regression (STR)
approach to model and forecasted the exchange rate. They
found out that the STR models offered evidence of nonline-
arity in the variables used.

Due to challenges of volatility and randomness, which
bedevil most statistical time series models, some researchers
have resorted to nontraditional time series models, including
Markov chains ([8–13]; etc.) and support vector regression-
based models [14–16]. For example, Zhang and Hong [14]
forecast electric load using electric load forecasting by com-
plete ensemble empirical mode decomposition adaptive
noise and support vector regression with quantum-based
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dragonfly algorithm. Zhang and Hong [15] applied varia-
tional mode decomposition and chaotic grey wolf optimiser
with support vector regression for forecasting electric loads
(time series data). Zhang et al. [16] proposed a model called
the EMD-SVRCKH model, which combines support vector
regression (SVR), empirical mode decomposition (EMD),
the krill herd (KH) algorithm, and a chaotic mapping func-
tion used to forecast time series data.

This paper considers the analysis of exchange rate as
time inhomogeneous Markov chain with finite states since
analysing exchange rates as Markov chain is rare in the liter-
ature. A Markov chain model is a stochastic model with the
property that future states are determined only by the cur-
rent state [17]. If the states of the chain are countably finite,
then it is called a Markov chain with finite states; however, if
the state is countably infinite, then it is called a Markov
chain with infinite states. When a Markov chain is subject
to a different stochastic matrix at each step (time), it is
termed as inhomogeneous, but if it is subject to the same sto-
chastic matrix all the time, then it is termed as time-
homogeneous. The application of Markov chains is found
in diverse fields such as finance and health.

The Markovian property which makes life easier is the
assumption of time-homogeneity. Many studies done on
Markov chains assumed time-homogeneity without testing
([10, 11, 18–21]; etc.), which is hardly the case in real-life
situations even though, under certain conditions, the results
may be very close to those of the time-inhomogeneous
model. This is arguably so because there is scanty literature
on the methodology for the analysis of time-inhomogeneous
chains. However, some researchers [22] have considered a
periodic point of view that theMarkov chain will follow a peri-
odic path which is also not random in some sense. This study
proposed a method where the Markov chain is assumed to be
time-inhomogeneous and follows some random sample path
that is more realistic in real-life situations. The proposed
method was used to analyse exchange rates in Ghana as
Markov chains with finite states.

The rest of the paper is organised as follows. The follow-
ing section is Materials and Methods, including Theoretical
Framework, Model Specification, and Analysis Strategy.
We then have Results and Discussions leading to conclu-
sions of the study.

2. Material and Methods

As alluded to, this section entails a theoretical framework
that reviews the relevant definitions and theorems (with
proofs where necessary) upon which the methodology is
based, followed by the model specification, which discusses
the estimation of parameters of the models to be used from
the available data and, lastly, the analysis strategy which
gives a detailed description of the data used and application
of the method to address the study’s objectives.

2.1. Theoretical Framework. The various definitions and
theories that are relevant in this study are discussed in
this section.

Definition 1. A stochastic process is a set of random variables
fXt : t ∈ Tg where T is called the parameter space of the
process and the range of values assumed by Xt is called the
state space S of the process. Each of the spaces S and T can
be continuous or discrete. Hence, one can talk about four
types of stochastic processes depending on the type of
spaces. This paper considers the processes with discrete state
spaces, with fXðtÞ: t ∈ Tg and fXt : t ∈ Tg denoting pro-
cesses with continuous and discrete parameter space,
respectively.

2.1.1. Probability Distribution. Suppose that t0, t1 ∈ T ; t0 < t1.
Then, the function,

F x0, x1, t0, t1ð Þ = P X t1ð Þ ≤ x1jX t0ð Þ ≤ x0½ �, ð1Þ

is called the conditional distribution function of a stochastic
process fXðtÞ: t ∈ Tg.

For a process with discrete parameter space fXðtÞ: t ∈ Tg,
we have

Pij
m,nð Þ = P Xn = j ∣ Xm = ið Þ, ð2Þ

where i, j ∈ S is the state space and m, n ∈ T is the parameter
space. The probabilities in (1) and (2) are called transition
probabilities.

Definition 2. The stochastic process fXðtÞ: t ∈ Tg and
fXn : n ∈ Tg are said to be time-homogeneous if, respectively,

F x0, x, t0, t0 + tð Þ = F x0, x, 0, tð Þ,
Pij

t,n+tð Þ = P Xn = jjX0 = ið Þ:
ð3Þ

Thus, the probability in each case depends on the time dif-
ference and not on the points in time. If they do not, the pro-
cesses are not time-homogeneous.

Definition 3. The stochastic process fXðtÞ: t ∈ Tg and
fXn : n ∈ Tg are said to exhibit Markov dependence if,
respectively,

P X tð Þ ≤ xjX tnð Þ = xn, X tn−1ð Þ = Xn−1,⋯, X t0ð Þ = x0½ �
= P X tð Þ ≤ xjX tnð Þ = xn½ �, ð4Þ

P Xn = jjXn1 = i1, Xn2 = i2,⋯, Xnk = ik½ � = P Xn = jjXn1 ∈ i1½ �,
ð5Þ

for n > n1 > n2>⋯>nk and n1, n2,⋯, nk ∈ T and all i, j ∈ S.
Stochastic processes with discrete state space satisfying

(4) and (5) are called Markov process or Markov chains.
We now define the most powerful equations in the anal-

ysis of Markov chains known as the Chapman-Kolmogorov
equations.
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2.1.2. The Chapman-Kolmogorov Equations. For a Markov
process with continuous parameter space

Pij t + sð Þ =〠
k∈S

Pik tð ÞPkj sð Þ∀s ≥ 0, t ≥ 0, ð6Þ

where Pijðt + sÞ = ½Xðt + sÞ = j ∣ Xð0Þ = i�.
For a Markov process with discrete parameter space

P m,nð Þ
ij =〠

k∈S
P m,rð Þ
ik P r,nð Þ

kj , ð7Þ

where m < r < n, i, j ∈ S.

2.1.3. One-Step Dependence Assumption. For a Markov chain
with discrete parameter space, the probability of state j at
time t given at time t = 1 is

Pij tð Þ = P Xt = jjXt−1 = i½ �: ð8Þ

The time-homogeneity (stationary) assumption implies
we can write

Pij tð Þ = Pij∀t ∈ T: ð9Þ

If (9) does not hold, we have a nonhomogeneous first-order
Markov chain; otherwise, we have a time-homogeneous first-
orderMarkov chain. In the latter case, if PjðtÞ = PðXt = jÞ, then
assuming finite state space S = f1, 2, 3,⋯, ng, it can be shown
by the total probability rule that

Pj tð Þ =〠
i∈S
Pi t − 1ð ÞPij ; j = 1, 2,⋯,m ; t = 0, 1, 2,⋯, ð10Þ

with t = 0 being the initial time.
In the matrix form, (10) can be written as

P tð Þ = P t − 1ð ÞP, ð11Þ

where PðtÞ = ðp1ðtÞ, p2ðtÞ,⋯, pmðtÞÞ and P = ðpijÞ is a square
matrix of order m.

Repeating the application of (11) gives

P tð Þ = P 0ð ÞPt , ð12Þ

where Pt is the matrix P raised to the power t. The matrix
P = ðpijÞ satisfies the following postulates.

(a) 0 ≤ Pij ≤ 1

(b) ∑j∈SPij = 1

A square matrix which satisfies these two postulates is
said to be a stochastic matrix or a transition probability
matrix or simply a transition matrix.

If the Markov chain is nonhomogeneous, equation (11)
becomes

P tð Þ = P t − 1ð ÞPtn, ð13Þ

where Pt = ð∗PijÞ and ∗Pij = PðXt = j ∣ Xt−1 = iÞ, t = 0, 1,
2,⋯.

Repeating the application of (13) gives

P tð Þ = P 0ð ÞP0P1P2 ⋯ Pt−1 = P 0ð Þ
Yt−1
k=0

Pk: ð14Þ

Theorem 4. If P1, P2, P3,⋯, are stochastic matrices of the
same order, then the products of length nðn = 2, 3,⋯Þ
P1, P2, P3,⋯, Pn and Pn, Pn−1,⋯, P1 are also stochastic
matrices.

Proof. The proof can easily be obtained by mathematical
induction.

Corollary 5. If Pk = P∀k = 1, 2,⋯, then Pn is a stochastic
matrix.

Definition 6. A set of stochastic matrices fP1, P2,⋯, Pn,⋯g
of the same order is said to be ergodic in the manner of Haj-
nal [23, 24] or primitive according to Cohen [25] if equation
(15) exists,

lim
n⟶∞

P1P2 ⋯ Pn = π, k = 1, 2, 3,⋯, ð15Þ

and π is a stable stochastic matrix (i.e., π has identical rows).

2.1.4. n-Step Transition Probability. For a Markov chain with
state space S, irrespective of being time-homogeneous or
not, the probability of getting from state i to state j.

Theorem 7. If a Markov chain is not time-homogeneous and
subject to the transition matrix Ptðt = 0, 1, 2,⋯Þ at time t,
then n-step probabilities are the elements of the product
matrix P0P1P2 ⋯ Pn−1.

Proof. By using the Chapman-Kolmogorov equations and
acknowledging the Markovian property, the proof can be
established by mathematical induction.

Corollary 8. If a Markov chain is time-homogeneous such
that the transition matrix at time t is Pt = P, t = 0, 1, 2,⋯,,
then the n-step transition probabilities are elements of the
matrix P~n (i.e., P raised to power n).

Proof. The proof is obvious by noting that P0P1 ⋯ Pn−1 = Pn

if Pt = P, ∀t = 0, 1, 2,⋯.

Theorem 9. Let Ptðt = 0, 1, 2,⋯Þ be the transition matrix to
which an m-state time-inhomogeneous Markov chain is sub-
ject at time t. If Pt , t = 0, 1, 2,⋯ are members of an ergodic
set, then the following limit

lim
n⟶∞

P0P1P2 ⋯ Pn = A ð16Þ

exists, where A is stable with common row a = ðα1, α2,⋯, αnÞ
with 0 < αj < 1∀j and ∑m

j=1αj = 1 and hence
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(a) PðtÞA = a, t = 0, 1, 2,⋯, where PðtÞ = ðP1ðtÞ, P2ðtÞ; ;
⋯, PnðtÞÞ

(b) There exist constants c1 and r1ðc1 > 0 and 0 < r1 < 1Þ
such that

∗P
nð Þ
ij − αj

��� ��� ≤ c1r
n
1∀i,j=1,2,⋯,m, ð17Þ

where ∗P
ðnÞ
ij is the ði:jÞm element of P0P1P2 ⋯ Pn−1.

(c) PtA = APt = A ∀t = 0, 1, 2,⋯

The convergence in property (b) is known as “weak” geo-
metric ergodicity.

Proof. The proof is trivial by acknowledging Definition 6.

Theorem 10. Let P be the transition probability matrix of an
ergodic m-state time-homogeneous Markov chain. Then, the
limit,

lim
n⟶∞

Pn = π, ð18Þ

exists, where π is stable with common rows a = ðπ1, π2,⋯,
πmÞ

with 0 < πj < 1 ; j = 1, 2,⋯,m and ∑m
j=1πj = 1 and hence

(a) PðtÞπ = α, t = 0, 1, 2,⋯ where PðtÞ = ðP1ðtÞ, P2ðtÞ,
⋯, PmðtÞÞ

(b) There exists constant c and rðc > 0, 0 < r < 1Þ such
that

P nð Þ
ij − πj

��� ��� ≤ crn ∀i, j = 1, 2,⋯,m ð19Þ

(c) Pπ = πP = π

The convergence in property (b) is known as “strong” geo-
metric ergodicity.

Proof. See Bhat and Miller [26] for the proof.

Definition 11. Let fXng be a Markov chain with state space
S = f0, 1, 2,⋯,m − 1g. The probability f ij

ðnÞ of first passage
transition i⟶ j and the expected value μij of first passage
time are defined, respectively, as

f ij
nð Þ = P Xn = j, Xr ≠ j ; r = 1, 2,⋯, n − 1 X0 = ij½ �, ð20Þ

μij =∑∞
n=1 f

ðnÞ
ij :

If i = j, then f ðnÞii is the recurrence time distribution of
state i and μii = μi is the mean recurrence time of state i.

We now turn our attention to definitions of some close-
ness quantities which will play significant roles in the simu-
lation study. The values of these measures will be used to
assess the relationship between the limiting (or long-run)
behaviours of time-homogeneous and time-inhomogeneous
chains based on the same data set.

Definition 12. For a finite ergodic set fP1, P2,⋯, Pωg of sto-
chastic matrix each of order m, define a measure of closeness
γ1 and an index of closeness I1 as follows.

Let dkl be the Euclidian distance between the elements of
the matrices Pk and Pl given as

dkl = 〠
m

i=1
〠
m

j=1
kpij − lpij
� �2" #1/2

, k ≠ l ; k, l = 1, 2,⋯ω, ð21Þ

where Pk = ðkpijÞ, k = 1, 2,⋯, ω. The measure of closeness γ1
of the set is given as

γ1 =
Ym
k=1

Ym
j=k+1

dij

 !2/ω ω−1ð Þ
: ð22Þ

Next, let Ikl be the geometric mean of the ratio of corre-
sponding elements of the matrices Pk and Pl given as

Ikl =
1
m2 〠

m

i=1
〠
m

j=1

kpij

lpij
, k ≠ i ; k, l = 1, 2,⋯,m, ð23Þ

where kPij, k = 1, 2,⋯, ω are as previously defined. The
closeness index I1 is the geometric mean of Iklðk ≠ lÞ given as

I1 =
Ym
i=1

Ym
j=i+1

Iij

 !2/ω ω−1ð Þ
: ð24Þ

Definition 13. For two probability vectors α1 = ðα11, α12,⋯,
α1mÞ and α2 = ðα11, α12,⋯, α1mÞ, define a measure of close-
ness γ2 and index of closeness I2, respectively, as follows:

γ2 = 〠
m

i=1
α1i − α2ið Þ2

 !1/2

, ð25Þ

I2 =
Ym
i=1

α1i
α2i

 !1/m

: ð26Þ

The smaller the values of γ1 and γ2, the closer the
transition matrices and the vectors are, respectively. Also,
the values of I1 and I2 close to unity imply closeness of the
elements being compared.

2.1.5. Two-State Markov Chains. We now turn our attention
to discussing Markov chains with only two states. This is
because for easy analysis, chains with more than two states
can be converted to a chain with two states by considering
the state of one’s interest as the first state and all other states
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lumped together as the other state. All subsequent discus-
sions also apply to chains with more than two states.

We continue by first stating without proofs, some theo-
rems concerning two-state time-homogeneous Markov
chains according to Bhat and Miller [26]. These will be
followed by statements of some corresponding theorems
for the time-inhomogeneous case with proofs.

Theorem 14. For a two-state time-homogeneous Markov
chain with state space f0, 1g and transition matrix

P =
1 − α α

β 1 − β

 !
, 0 ≤ α, β ≤ 1 and 1 − α − βj j < 1,

ð27Þ

we have

(a) f ð1Þ00 = 1 − α and f ðnÞ00 = αβð1 − βÞn−2, n ≥ 2

(b) f ðnÞ01 = αð1 − αÞn−1, n ≥ 1

(c) f ðnÞ10 = βð1 − βÞn−1, n ≥ 1

(d) f ð1Þ11 = 1 − β and f ðnÞ11 = αβð1 − αÞn−2, n ≥ 2

(e) ∑∞
n=1nf

ðnÞ
ii = 1/f lim

n⟶∞
PðnÞ
ii g

(f) lim
n⟶∞

1/n∑n
k=1P

ðkÞ
ij = 1/∑∞

n=1nf
ðnÞ
ii

(g) lim
n⟶∞

1/n∑n
k=1P

ðkÞ
ij = 1/∑∞

n=1nf
ðnÞ
jj

As indicated earlier, the proofs can be found in Bhat and
Miller [26]. Options (e) to (g) establish the relationship
between the limiting probabilities of the states and the mean
recurrence times of the corresponding states.

Theorem 15. For a two-state time-inhomogeneous Markov
chain subject to the transition matrix Pt at time tðt = 0, 1, 2
,⋯Þ given by

Pt =
1 − αt αt

βt 1 − βt

 !
, 0 < αt , βt < 1 and 1 − αt − βtj j < 1,

ð28Þ

where Pt is a member of an ergodic set, we have

(a) ∗ f
ð1Þ
00 = 1 − α0 and ∗ f

ðnÞ
00 = α0ð1 − β1Þð1 − β2Þ⋯ ð1 −

βn−2Þβn−1, n ≥ 2

(b) ∗ f
ðnÞ
01 = ð1 − α0Þð1 − α1Þ⋯ ð1 − αn−1Þ, n ≥ 1

(c) ∗ f
ðnÞ
10 = ð1 − β0Þð1 − β1Þ⋯ ð1 − βn−1Þ, n ≥ 1

(d) ∗ f
ð1Þ
11 = 1 − β0 and ∗ f

ðnÞ
00 = α0ð1 − β1Þð1 − β2Þ⋯ ð1 −

βn−2Þ, n ≥ 2

Proof [case (a)]. Clearly f ð1Þ0 0 = 1 − α0.
Now for n ≥ 2, we have by definitions

f nð Þ
00 = P Xn = 0 ; Xr ≠ 0, r = 1, 2,⋯, n − 1 ∣ X0 = 0½ �

= P Xn = 0 ; Xr = 1, r = 1, 2,⋯, n − 1 ∣ X0 = 0½ �
= P Xn = 0 ∣ Xr = 1, r = 1, 2,⋯, n − 1 ; X0 = 0½ �P Xr = 1, r = 1, 2,⋯, n − 1 ∣ X0 = 0½ �
= P Xn = 0 ∣ Xn−1 = 1½ �P Xr = 1, r = 1, 2,⋯, n − 1 ∣ X0 = 0½ �,

ð29Þ

using the Markov property.
By continuous use of the Markov property and the defi-

nition of conditional probability, we have

f nð Þ
00 = βn−1

Yn−1
r=2

P Xr = 1 ∣ Xr−1 = 1½ �
( )

P X1 = 1 ∣ X0 = 0½ �

= βn−1
Yn−1
r=2

1 − βr−1ð Þα0 = α0 1 − β1ð Þ 1 − β2ð Þ⋯

� 1 − βn−2ð Þβn−1, n ≥ 2
ð30Þ

Hence result.

Cases (b) to (d) can similarly be proved. This paper uses
simulation studies to see whether the limiting relationships
in cases (e) to (g) under Theorem 14 also exist for time-
inhomogeneous chains under certain conditions.

2.1.6. Mean Recurrent Times and Limiting Distribution for
Two-State Chains. With reference to definitions of the tran-
sition matrices in Theorems 10 and 14, the mean recurrence
time of the time-homogeneous Markov chains is given,
respectively, by

μ0 = μ10 =
β

α + β

� �−1
, μ01 = μ11 =

α

α + β

� �−1
, μij = 〠

∞

n=1
nf nð Þ

ij i, j = 0, 1

ð31Þ

where the first-time transition probabilities f ðnÞij are given in
Theorem 14.

The limiting distribution of the time-homogeneous
Markov chains is given by

π = π0 π1ð Þ, whereπ0 =
β

α + β
, π1 =

α

α + β
: ð32Þ

Those of the time-homogeneous chains are not straight-
forward, and estimates of them will be obtained based on
Definition 11.

2.2. Model Specification. For situations in which the test for
homogeneity of a Markov chain is significant, this paper
proposes the following method of analysis.

Assume the stochastic matrix PðtÞ to which a time-
inhomogeneous Markov chain is subjected at future time
tðt = 0, 1, 2,⋯Þ is selected randomly (repetition allowed)
from an ergodic set fA1, A2,⋯, Aωg, where ω may be
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finite or infinite. Then, without loss of generality, the lim-
iting distribution of the chain for the lth sample path can
be denoted by αi = ðαi1, αi2,⋯, αimÞ; assuming a chain of
m states is the row of the stable matrix A given by

lim
t⟶∞

Pð0ÞPð1Þ ⋯ PðtÞ = iA, i = 1, 2, ::, n0, where n0 is the

number of sample paths considered.
The paper proposes an estimate of the limiting distribu-

tion of a nonhomogeneous Markov chain to be the average

�α = 1
n
〠
n

i=1
ai = �α1, �α2,⋯, �αnð Þ, ð33Þ

where �αj = 1/n∑n
l=1αl j, j = 1, 2,⋯,m.

Clearly �α is a probability vector because it is easy to show
that 0 < �αj < 1 for all j = 1, 2,⋯,m and ∑m

j=1�αj = 1.
The n-step probabilities are also estimated by the average

of the corresponding probabilities for all sample paths. Thus

P nð Þ
ij = 〠

n0

l=1
lP

nð Þ
ij , i, j = 1, 2; ;⋯,m ; n = 1, 2, 3,:⋯ ð34Þ

The estimates of the mean recurrence times μij are pro-
posed to be

μij =
1
n0

〠
n0

l=1
lμij, i, j = 1, 2,⋯,m, ð35Þ

where lμij is the mean recurrence time from state i to j for

the lth sample path.
The limiting average at the left-hand side of options (e)

to (g) of Theorem 14 are estimated as follows:

ηij =
1
n0

〠
n0

i=1
lim

n⟶∞

1
n lP

nð Þ
ij ; i, j = 1, 2,⋯,m: ð36Þ

Next are definition of quantities that will be used to
assess whether time-inhomogeneous chains may have
similar limiting behaviours as in options (e) to (g) of
Theorem 14.

Definition 16. For a weak ergodic Markov chain, define a
measure of closeness γ3 and index of closeness I3, respec-
tively, as follows.

Let

vij = μijηij, i, j = 1, 2,⋯,m, ð37Þ

where μij are the mean recurrent times, then

γ3 = 〠
m

i=1
〠
m

j=1
ηij −

1
μij

 !2" #1/2
,

I3 =
Ym
i=1

Ym
j=1

vij

 !1/m2

:

ð38Þ

The smaller the value of γ3 or the closer the value of I3 is to
unity, the similar the tendency of the limiting behaviour of the
time-inhomogeneous chain will be to those of the time-
homogeneous chain in options (e) to (g) of Theorem 14.

To estimate the ergodic set fA1, A2,⋯, Aωg, suppose a
high frequency time series Yitðt = 1, 2,⋯, Ti ; i = 1, 2,⋯, ωÞ
is available, where Ti is the length of the time series in
time period i and ω is the number of time periods. Then,
in the manner of Mettle et al. [11], we define dit = Yit −
Yit−1 as a measure of the change in the series at time t
in period i. Let Xitðt = 1, 2,⋯, Ti ; i = 1, 2,⋯, ωÞ be defined
as follows:

Xit =
1 if dit >m0,
0 if dit ≤m0,

(
ð39Þ

where m0 is a real number greater than or equal to zero.
Without loss of generality, suppose t1, t2,⋯, tgi are times
in period i for which Xit = 0 and v1, v2,⋯, vsi are times
in period i for which Xit = 1 such that each of Xitgi

and

Xivsi
has at least one value beyond it in period i.

Assuming a two-state Markov chain, define the indicator
function δ∗it jðj = 1, 2,⋯, gi, i = 1, 2,⋯, ωÞ and δiv jðj = 1, 2,
⋯si ; i = 1, 2,⋯, ωÞ as follows.

δ∗it j
=

0 if Xitjþ1= 0,

1 if Xitjþ1= 1,

(

δiv j =
0 if Xivjþ1= 0,

1 if Xivjþ1= 1:

( ð40Þ

The transition frequencies are then given by

in00 = gi −
in01, in01 = 〠

gi

j=1
δ∗it j ,

in10 = si −
in01, in11 = 〠

si

j=1
δiv j ,

ð41Þ

n00 = 〠
w

i=1

in00, n01 = 〠
w

i=1

in01,

n10 = 〠
w

i=1

in10, n11 = 〠
w

i=1

in11, i = 1, 2,⋯, ω:
ð42Þ
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The estimates of the transition probabilities in element
Ai in the ergodic set are then given as

iP00 =
in00
gi

, iP01 =
in01
gi

,

iP10 =
in10
si

, iP01 =
in01
si

, i = 1, 2,⋯, ω:
ð43Þ

If the chain is assumed to be time-homogeneous, the
estimates of the elements of the transition matrix are given
as follows.

P00 =
n00
g

, P01 =
n01
g

, g = 〠
ω

i=1
gi,

P10 =
n10
s
, P11 =

n11
s
, s = 〠

ω

i=1
si:

ð44Þ

2.3. Analysis Strategy. The data used for the study were sourced
from the Bank of Ghana. They consist of daily closing rates of
three exchange rates, cedi-dollar, cedi-euro, and cedi-pound,
spanning over six years (January 2012 to December 2017).

One-step transition frequencies were obtained for each
exchange rate based on equations (41) and (42) for each of
the six years under consideration. Six transition matrices

Transition frequency and limiting closeness index γ1 transitional probabilities.
d5<-c(NA,NA,NA,NA,NA)
X<-datad4<-c(NA,NA,NA,NA)
N<-nrow(N)-1 d3<-c(NA,NA,NA)
Y<-c(rep(NA,N)) d2<-c(NA,NA)
D<-c(rep(NA,N)) euclidean<- function(a, b) sqrt(sum((a- )^2))
for (i in 1:N) {euclidean(SM[1,],SM[2,])
Y[i]<-X[i+1]-X[i] for (j in 2:6) {
} a=j-1
for (i in 1:1592) {d5[a]<-euclidean(SM[1,],SM[j,])
if (Y[i] <=0) D[i]<-0 else D[i]<-1}
}for (j in 3:6) {
A<-c(rep(NA,1592)) a=j-2
B<-c(rep(NA,1592)) d4[a]<- euclidean(SM[2,],SM[j,])
for (i in 1:N) { }
A[i]<-D[i] for (j in 4:6) {
B[i]<-D[i+1] a=j-3
M<-table(A,B) d3[a]<- euclidean(SM[3,],SM[j,])
} }
SM<-matrix(M, nrow =6,ncol=4) for (j in 5:6) {
SMa=j-4
Q<-matrix(data, nrow=30, ncol=2) d2[a]<- euclidean(SM[4,],SM[j,])
for (j in 1:30) {}
A<-SM[sample(3, siz =1, replace = FALSE), ]d<- euclidean(SM[5,],SM[6,])
AA<-matrix(A, nrow =2,ncol=2) v<-c(d5,d4,d3,d2,d)
P<-matrix(c(NA,NA,NA,NA),nrow =2,ncol=2) exp(mean(log(v)))
for (i in 1:29) {
Y<-c(0,0,0,0)
Y<-SM[sample(3, size = 1, replace = FALSE), ]
YY<-matrix(Y,nrow =2,ncol=2)
for (j in 3:6) {
AA<-P
}
Q[j,]<-AA[1,]
{
Col.Means(Q)
## SM is a 6 × 4 data matrix with ith row elements

being ith year transition probabilities arranged
in the order p00, p10, p01, and p11.
closeness indexI1
Similar procedure for index γ1 with second line after each “for” line replaced correspondingly by d5[a]<-mean(SM[1,]/SM[j,]), for
example, for the first “for” line.

Pseudocode 1: R-Codes.
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were then computed using equations (43) and (44) (one for
each year), which formed an ergodic set for each exchange
rate. Pulling information from all the six years, one transi-
tion matrix was estimated based on equation (44) which
were used under the assumption of time-homogeneity.
Table 1 presents the transition frequencies as well as the
transition probabilities by currency and year. The test for
time-homogeneity for each exchange rate was carried out
using the one-step transition frequencies (see Bhat and
Miller [26], for the test of time-homogeneity).

Two states were considered in all cases, where state 0
represents no increase in exchange rate and sate 1 represents
increase in exchange rate. Using thirty ðno = 30Þ sample paths,
estimates for limiting transition probabilities, n-step probabil-
ities, mean recurrence times, and limiting averages of transi-
tion probabilities based on equations (32), (34), (35), and
(36), respectively, were computed under time-inhomogeneity
for all the three exchange rates. The corresponding estimates
were also computed under time-homogeneity for the three
exchange rates.

Measures of closeness γ1 using equations (22) were com-
puted to see how close the matrices in the ergodic sets are. Mea-
sures of closeness γ2 using equation (25), were also computed to
see how close the limiting distributions of time-homogeneous
and time-inhomogeneous chains are. Using equation (38), mea-
sures of closeness γ3 were computed to determine the limiting
behaviours of the time-inhomogeneous chain under options
(e) to (g) of Theorem 14. Graphical representation of n-step
transition probabilities from state 1 to 1 was obtained for each
of the exchange rates under the time-homogeneous and time-
inhomogeneous chains to determine the best currency to invest

in. The analysis ended with the Wilcoxon signed ranks test to
compare the n-step transition probabilities from state 1 to 1
for each of the rates. The R software was used for laborious
computations during the analysis, while simple programs were
written in Microsoft Excel for the easier ones. See the Pseudo-
code 1 for the R-codes used.

3. Results and Discussions

This section discussed the descriptive statistics of the
exchange rates, the observed one-step transition frequencies
and the corresponding transition probabilities, test of time-
homogeneity, estimates of limiting averages of transition
probabilities, mean recurrence times, measures and indices
of closeness by the exchange rate and correlation between
the closeness of the matrices in the ergodic sets, and the
other measures of closeness.

3.1. Descriptive Statistics. The mean, standard deviation,
minimum, and maximum of the three exchange rates are
presented in Table 2. The exchange rates for the dollar, the
pound, and the euro spanned, respectively, over the ranges
1.58 to 4.6, 2.43 to 6.83, and 0.28 to 6.31 over the six years.
The pound recorded the largest mean rate (4.6432), followed
by the euro (3.8054) and then the dollar (3.1939) over the
period. The dollar rates over the period are less volatile com-
pared with the rest.

3.2. One-Step Transition Frequencies and Estimates of
Transition Probabilities. The observed one-step transition
frequencies and estimates of corresponding probabilities

2012 2013 2014 2015 2016 2017

year

0.5

0.6

0.7

0.8
Tr

an
sit

io
n 

pr
ob

ab
ili

ty

Dollar

Pound
Euro

Figure 1: Plots of probabilities of transitions ð1⟶ 1Þ for the study period by exchange rate. Notes: ð1⟶ 1Þ means one-step transition
frequencies from increase to increase.

Table 2: Descriptive statistics.

Variable N Minimum Maximum Mean Std. deviation

USD 1593 1.58 4.60 3.1939 .99862

Pound 1593 2.43 6.83 4.6432 1.20413

Euro 1593 .28 6.31 3.8054 1.03433
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for each year and for each exchange rate together with the
overall estimates are presented in Table 1. The dollar
recorded the highest probabilities of transition from increase
to increase in each of the six years as can be seen in Figure 1.

3.3. Test of Time-Homogeneity. Test for time-homogeneity
was carried out for the chain for each exchange rate. The
resulting values of the test statistic and corresponding
p values for the US dollar, the British pound, and the euro
are, respectively 32.389 (p < 0:001), 6.410 (p = 0:002), and
5.832 (p = 0:003), which signify time-inhomogeneity for all
chains. Despite these results, the paper went ahead to carry
out the analysis as if the chains were time-homogeneous
and compared the results with those of the proposed method
for time-inhomogeneity.

3.4. Estimate of Limiting Average of Transition Probabilities,
Mean Recurrent Times, Measures, and Indices of Closeness by
Currency. Table 3 represents the estimates of limiting aver-
ages of transition probabilities, mean recurrent times, mea-
sures, and indices of closeness for all the three exchange
rates by type of homogeneity.

The corresponding estimates for the time-homogeneous
and time-inhomogeneous chains are almost the same when
rounded to two decimal places for each exchange rate.

It can also be observed that the corresponding mean
recurrence times for the two types of homogeneity are close
for each exchange rate. In general, on average, it took a long
time for each of the rates to decrease after increasing with
the dollar recording the longest time. The results also show
that the mean recurrence times from increase to increase
for all the rates are comparably smaller, with the dollar
recording the least time. Thus, after increasing, it takes the

dollar a longer time to decrease and a shorter time to
increase again compared to the others. Hence, it can be
asserted that investing in dollars will yield good returns than
the other currencies in Ghana. This result confirmed with
Addae et al. [27] that the dollar exhibits less risk exposure
than the pound sterling in Ghana. Hence, investing in the
dollar is the best. In addition, according to Mensah and
Adam [28], investors in international financial markets
prefer to trade in the currency, where there is a more reliable
estimate for predicting the future rate of the currency for
portfolio optimisation and diversification of which dollar
exchange rate revealed more accuracy, therefore adding to
the fact that investing in the dollar in Ghana will yield good
returns. Furthermore, Faudot and Ponsot [29] position that
in international trade invoicing and international debt
issuance, the US dollar tops the hierarchy of currencies,
and its foundations are made up of the currencies of the
developing countries.

In the case of the measures of closeness, the euro
recorded the smallest values for closeness of ergodic matrices
and limiting relations in options (e) to (g) of Theorem 14
between the two types of homogeneity. However, the pound
recorded the smallest value for the measure of closeness of
the limiting distributions of the two types of homogeneity.
The observed values of the closeness indices portray the
same interpretations.

3.5. Correlation between the Measures of Closeness. The cor-
relation between the measure of closeness of the matrices in
the ergodic sets γ1 on one hand, the limiting distribution of
time-homogeneous and time-inhomogeneous γ2, and limit-
ing behaviours of time-inhomogeneous chain under options
(e) to (g) under Theorem 14 γ3 on the other were computed.

Table 3: Estimates of limiting average of transition probabilities, mean recurrent times, measures, and indices of closeness by currency and
type of homogeneity.

Statistic
USD Pound Euro

Inhomo Homo Inhomo Homo Inhomo Homo

η00 0.3840 0.3767 0.4583 0.4538 0.4512 0.4438

η01 0.6162 0.6232 0.5417 0.5462 0.5604 0.5562

η10 0.3599 0.3767 0.4478 0.4538 0.4489 0.4438

η11 0.6403 0.6232 0.5522 0.5462 0.5627 0.5262

μ00 2.5171 2.6542 1.9385 2.2036 2.1993 2.2531

μ01 2.1264 1.6045 1.8381 1.8309 1.8331 1.7980

μ10 3.4240 2.6542 2.0533 2.2036 2.2275 2.2531

μ11 1.5532 1.6045 1.7304 1.8309 1.8046 1.7980

γ1 0.2550 0.1096 0.0747

γ2 0.0232 0.0005 0.0025

γ3 0.1616 0.0743 0.0175

I1 1.0858 1.0131 1.0056

I2 0.9908 0.9999 1.0004

I3 1.1162 0.9389 1.0087

ηij represent one-step expected transition probability from state i to j (i,j =0 equivalent to no increase, 1 equivalent to increase).
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Figure 2: Plot of n-step transitional probabilities of Markov chains by homogeneity. Notes: HOMO means “time-homogenous”; INHOMO
means “time-inhomogeneous.”
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Figure 3: Plot of nth step transitional probabilities of time-homogenous and time-inhomogeneous by currency. Notes: HOMOmeans “time-
homogenous”; INHOMO means “time-inhomogeneous.”
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The results show that there is a strong positive relationship
between the measure of closeness of the matrices in the
ergodic sets and the closeness of the limiting distribution of
time-homogeneous and time-inhomogeneous ðr = 0:9663Þ
and the measure of closeness of limiting behaviour of the
time-inhomogeneous chain under options (e) to (g) of
Theorem 14 ðr = 0:9761Þ. This implies that the closer the
matrices, the closer the limiting distribution of time-
homogeneous case to that of the time-inhomogeneous case.
It can be inferred from these results that the value of the
measure of closeness γ1 among the transition matrices in the
ergodic set can determine whether the assumption of time-
homogeneity will provide reliable results irrespective of
whether the time-homogeneity test is significant or not.

3.6. n-Step Transitional Probabilities of Markov Chains.
Figure 2 shows the plots of n-step transitional probabilities
(p11) from state one to one (increase to increase). Plot “a”
represents the n-step probabilities of the chains of the cur-
rencies based on the assumption of time-homogeneity and
“b” represents those of the time-inhomogeneous chains of
currencies. Clearly, in both cases (homogenous and inhomo-
geneous), the n-step transitional probabilities decrease as the
number of steps increases, in general, with the pounds having
the lowest probabilities. In general, the two plots “a” and “b”
behave similarly with the dollar recording the highest transi-
tional probabilities followed by the euro and then the pound.

The n-step transition probabilities of time-homogenous
and time-inhomogeneous chains by currency are displayed in
Figure 3 to identify if there is a significant difference between
the n-step transition probabilities from increase to increase of
the time-homogenous and the time-inhomogeneous chains
for each currency. It is obvious that the corresponding n-step
transitional probabilities are close for some steps while they
are not close at other steps. The Wilcoxon signed ranks tests
were carried out to check the closeness of the corresponding
n-step transitional probabilities. With respect to the dollar,
there was a significant difference between the corresponding
n-step transitional probabilities for the two types of homogene-
ity. The resulting p values are indicated in Figure 3. Apart from
the dollar which recorded a significant difference, the rest did
not. This can be attributed to the fact that the dollar recorded
the largest measure of closeness of the transition matrices in
the ergodic set. Hence, the paper asserts that assuming time-
homogeneity without testing is a step in the right direction so
long as γ1 ≤ 0:2.

4. Conclusions

The authors successfully developed a methodology for ana-
lysing the limiting behaviours of Markov chains that exhibits
time-inhomogeneity. It was confirmed by the results that the
limiting behaviour of time-homogenous chain is similar to
those of the time-inhomogeneous chain under some close-
ness conditions. The smaller the measure of closeness (γ1)
of the matrices in the ergodic set of a chain, the closer the
limiting behaviour of time-inhomogeneous chains will be
to their homogeneous counterparts. The paper recommends
that it is a step in the right direction to analyse a Markov

chain as a time-homogeneous one even if the test for
homogeneity is significant, so long as condition ðγ1 ≤ 0:2
or jI1 − 1j ≤ 0:02Þ holds; otherwise, the proposed method is
recommended. These results are similar to those obtained
by Mettle [30] under demographic ergodicity.

The dollar reigned supreme among the currencies consid-
ered. Its rates take the longest time to decrease or remain
unchanged after increasing and the shortest time to increase
after increasing. It also has the highest n-step probabilities of
transition from increase to increase with largest limiting prob-
abilities (0.6232 and 0.6403) for the time-homogeneous and
time-inhomogeneous cases, respectively. Hence, investing in
dollars will yield more returns than in the other currencies.
The study, again per the findings, concludes that the cedi-
dollar exchange rates can be analysed by the proposed
method, while the exchange rate for the other currencies can
be analysed as time-homogeneous Markov chains. Future
research should consider analysing exchange rates as Markov
chain with infinite states under time-inhomogeneity.
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