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Modelling population dynamics in ecological systems reveals properties that are difficult to find by empirical means, such as the
probability that a population will go extinct when it is exposed to harvesting. To study these properties, we use an aquatic
ecological system containing one fish species and an underlying resource as our models. In particular, we study a class of
stage-structured population systems with and without starvation. In these models, we study the resilience, the recovery
potential, and the probability of extinction and show how these properties are affected by different harvesting rates, both in a
deterministic and stochastic setting. In the stochastic setting, we develop methods for deriving estimates of these properties.
We estimate the expected outcome of emergent population properties in our models, as well as measures of dispersion. In
particular, two different approaches for estimating the probability of extinction are developed. We also construct a method to

determine the recovery potential of a species that is introduced in a virgin environment.

1. Introduction

The dynamics in general ecological systems are very compli-
cated, and it is quite often difficult to draw appropriate pre-
cise conclusions. In spite of this difficulty, some properties
are well-defined and commonly studied, such as biodiver-
sity, stability, and food webs; see, e.g., Bardgett and van der
Putten [1], Brannstrom et al. [2], Flores et al. [3], Loreau
[4], and Loreau and de Mazancourt [5]. In this article, we
have used a small aquatic ecological system as the base
model, but the results herein can be applied to other types
of ecological systems. More precisely, we assume that our
ecosystem consists of one fish species and an underlying
food resource.

The field of stage-structured population models has
attracted much attention; see, e.g., Lundstréom et al. [6],
Meng et al. [7], Ackleh and Jang [8], Aiello et al. [9], Liz
and Pilarczyk [10], Soudijn and de Roos [11], and de Roos
et al. [12]. The stage-structured population model can be
derived from the general physiologically structured popula-
tion model; see, e.g., de Roos et al. [13]. In this paper, the

models we use are stage-structured models with and without
starvation, in which we assume that the fish population is
divided into two stages: the juveniles and the adults, and
the food resource is treated as an unstructured entity.
Emergent properties of the stage-structured population
model are normally studied in deterministic models. The
main purpose of this project is to develop methods to under-
stand the emergent properties in stochastic models. One
commonly uses a system of deterministic partial differential
equations to model physiologically structured populations
and from these equations derives stage-structured popula-
tion models. In this paper, we introduce randomness in the
stage-structured models by adding randomness in the
growth rate models for the resource. There is of course a
wide variety of possibilities to include randomness in the
models, but for the sake of clarity, we restrict ourselves to
this extension. Randomness in the growth rate of the food
resource is a natural adaptation to capture environmental
variations such as the daily changes in temperature and
sun exposure. Stochastic stage-structured models have been
studied for some time; see, e.g., Burgman and Gerard [14],
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Castaflera et al. [15], and Scranton et al. [16]. A major
advantage in the stochastic setting is that, in addition to
the expected values, we also get the dispersion of the differ-
ent emergent properties of the population and resource. We
have used Monte Carlo methods to evaluate the resilience,
the recovery potential, and the probability of extinction. In
Appendix C, we have also studied estimates for the juve-
nile/adult/resource biomass, yield, impact on biomass, and
impact on size structure.

In deterministic population models, the population
either goes extinct or it stays positive for all future periods
of time. However, in stochastic population models, depend-
ing on the choice of parameters, the population goes extinct
within a finite period of time, with probability 0 < p < 1. We
call this the probability of extinction, which is closely con-
nected to the minimum viable population (MVP) size. This
property (MVP) is also investigated in, e.g., Wang et al.
[17], Flather et al. [18], and Shaffer [19]. The MVP formula-
tion of the probability of extinction is based on Monte Carlo
simulations. We have also constructed a more natural
approach to find the probability of extinction by utilizing
the fact that when the recovery potential is larger than one,
there is no extinction. This formulation, called RP formula-
tion, uses statistical methods on the recovery potential (Sec-
tion 3.5). The RP formulation corroborates well with the
MVP formulation (see Section 4.3). In addition, we compare
the emergent properties of the stage-structured population
model, when starvation mortality is included or excluded.

As proved by Abrams [20], Abrams and Matsuda [21],
in some structured population models, an increase of bio-
mass of a certain species can be obtained by increasing the
mortality rate, which is called the hydra effect. We find that
in some of our models, a hydra effect is present (see Conclu-
sions and Discussion). The hydra effect was first noted by
Ricker [22] and has later been incorporated in different
models; see, e.g., Abrams [20], Adhikary et al. [23], and
Ghosh et al. [24].

This article is structured as follows: in Section 2, we pres-
ent the stage-structured population models investigated in
this paper, both with the deterministic and stochastic
resource dynamics. In Section 3, we define and discuss the
emergent population properties: yield, impact on biomass
and size structure, resilience, recovery potential, and the
probability of extinction. In Section 4, the simulation results
of these emergent properties are presented; the yield and
impact on biomass and size structure are presented in
Appendix C. In Section 5, we compare the simulation results
with and without starvation mortality rates for all emergent
properties. In Section 6, we end the paper with a discussion
and conclusions of our findings.

2. The Stage Structured Population Models

In this paper, we consider an ecological model that consists
of a single species and a food resource. The model is a
two-staged structured fish population model with an
unstructured resource. First, we describe the model in a
deterministic setting; then, we change the growth rate of
the resource from deterministic to stochastic. In our models,
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FiGure 1: Graphs for the semichemostat, logistic, threshold-
logistic, and semilogistic curves, used in the growth rate models
for the resource.

the proportional harvesting rates for the juvenile and adult
stages are assumed to be equal. We investigate the impact
on the solutions to our model when starvation mortality
on the juvenile and the adult stages is included or not. We
also describe and investigate emergent properties such as
yield, impact on biomass, impact on size structure, resil-
ience, and the recovery potential. When considering the sto-
chastic stage-structured models, the probability of extinction
is investigated by using two different methods.

2.1. Population Stage Dynamics. The individuals of the spe-
cies are modeled by a stage-structured biomass model which
is derived by formulating a size-structured population model
on the individuals’ life history. More precisely, Individuals
are divided into two stages: juveniles and adults, based only
on their size. For many relevant properties of the species, a
two-stage model is often enough; see, e.g., Ackleh and Jang
[8], de Roos et al. [13], Lundstrom et al. [6], and Meng
et al. [7]. Individuals are assumed to have the same size
Spirn, At birth, and the maximum size of individuals is
denoted by s,,... Both stages forage for the shared resource,
R=R(t), and the metabolic requirement, T, is assumed to
be constant. The growth rate depends on the available
resource ([25]) and varies with population density ([26,
27]). Juvenile and adult biomasses are denoted by J = J(¢)
and A = A(t), respectively.

The derivation of the stage-structured biomass model is
investigated by formulating a size-structured population
model. We give a brief description of the model and refer
the reader to de Roos et al. [13] for further details and moti-
vations. The population is composed of juveniles, J, and
adults, A, which forages on a shared resource R. Juvenile
individuals use all the consumed energy for growth, develop-
ment, and maintenance, whereas adult individuals use all
their energy for maintenance and reproduction (see, e.g.,
[6], [7], and [13]). The biomass production rate of juveniles
and adults depend on the resource abundance. Both foraging
rate and metabolic requirements increase with body size.

The dynamics of our stage-structured population models
consist of three ODEs describing the rates of change of
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TaBLE 1: Summary of resource dynamic models in stochastic setting including consumption from population. The deterministic resource
dynamics are given by analogous equations, where terms involving dW are excluded; that is, we set the volatility p = 0.

Semichemostat: dR, = r(R
Logistic: dR, = rR(R,,
Threshold-logistic: dR, = rR(R,, —

max

Semilogistic: dR, =r((1 - p)R+p)(R

max

R)dt + ppdW" + (1-p)pRAW” —T

—R)dt + pdW, — I, (RI(H + R))(j + qA)dt
—R)dt + pRAW, I
Rydt + pRAW, =1, (R=Ro)/(H + (R=Ry)))(j + qA)dt

R/(H +R))(j+qA)dt

max (

(R/(H+R))(j+qA)dt

max
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F1GURE 2: The recovery potential is calculated by using the algorithm described in Appendix B.2. Meng et al. recovery potential (red curve)
and nonequilibrium recovery potential (blue curve) w.r.t. harvesting rate for deterministic case (a, ¢). The mean value of the stochastic
nonequilibrium recovery potential (yellow curve) and the interval of standard deviation (68%) of the stochastic nonequilibrium recovery

potential (light blue curves) w.r.t. harvesting rate (b, d).

juvenile biomass (J), adult biomass (A), and food resource
(R) which are

%: (w(R) = v(w)(R)) = My(R) = F)] + wp(R)A, (1)
A vy (R)T ~ (MA(R) + P)A, @
X _op,aR), ©

Here, w;(R) and w, (R) are the net biomass production

per unit of body mass of juveniles and adults, respectively.
Furthermore, M;(R) and M, (R) denote the mortality rates
of juveniles and adults, respectively. The mortality rates are
studied with the inclusion and exclusion of the additional
starvation. The interaction function @ described below
depends on what resource dynamic model we choose.

The stage-dependent harvesting rates (in this study, to
demonstrate the results in an elegant way and for the sim-
plicity of implementing the model, we will assume uniform
harvesting rates, i.e., equal proportional harvesting rates F
= F;=F, on both stages. Compare this with [6], in which
they conclude that uniform harvesting rates are a good



Deterministic semi-logitics

1600
1400
1200
1000 210
800 o0
600 +
400 + 1%

0
03 0305 031 0 320325 0.33

Recovery potential

200

0 0.5 1 1.5 2 2.5
Harvesting rate
(@

Deterministic threshold-logistic

1600
1400
1200
1000
800
600
400
200

Recovery potential

0 0.5 1 1.5 2 2.5
Harvesting rate

(0

Journal of Applied Mathematics

Stochastic semi-logitics
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FIGURE 3: The recovery potential is calculated by using the algorithm described in Appendix B.2. Meng et al. recovery potential (red curve)
and nonequilibrium recovery potential (blue curve) w.r.t. harvesting rate for deterministic case (a, c¢). The mean value of the stochastic
nonequilibrium recovery potential (yellow curve) and the interval of standard deviation (68%) of the stochastic nonequilibrium recovery

potential (light blue curves) w.r.t. harvesting rate (b, d).

strategy) of juveniles and adults are both proportional to the
corresponding biomasses; the probability constant is F. The
maturation rate, v(w;(R)), is the resource-dependent rate at
which juveniles mature and become adults. The net biomass
production rates for juveniles and adults are given by

wy(R) = max {w;(R), 0},
w, (R) = max {w, (R), 0},

(4)

where
R
a)I(R) EImaxH+R -4
(5)
R) =egl -T,
wA( ) €q maxH+R

where € is the efliciency coefficient for the assimilated
ingested resource. Here, H is the half-saturation constant
of consumers and I, is the maximum ingestion rate for
juveniles. The mass-specific metabolic rate is denoted by T.

The ratio between the adult and juvenile feeding rates is
denoted by g. The factor q phenomenologically captures
stage-specific differences in resource availability and
resource use between juveniles and adults; see de Roos and
Persson [28] for a detailed explanation. Here, we use a
default parameter q=0.85 given in [12]. We set z = s,/
Smax to reduce the number of parameters. In the stage-
structured models, the juvenile maturation rate is given by

R
Xffﬂ%§2, w;(R) # M, + F,
v(wy(R)) = M, + F, - (6)
W, otherwise,

where y=y(R)=1-((Mj+ F;)/wy(R)). In equations
(1)-(6), the constant H is measured in biomass per unit of
volume, while the constants T, r, and I, as well as the
mortality rates M, and M; are expressed per unit of time.
All parameters as well as the biomass densities J, A, and R
can be considered nondimensional after rescaling.
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TaBLE 2: Ecological and economic parameters. The column Unit is the unit dimensions before rescaling into nondimensional parameters.

Symbol Value Unit Interpretation
H 1 kg/a.u. Half-saturation constant of consumers
T 1 Day™! Mass-specific metabolic rate
r 1 Day ™! Resource turnover rate
R 2 kg/a.u. Maximum resource density
0.5 — Efficiency of resource ingestion
p 0.955 — Proportion of logistic vs semichemostat
&4 0.01 — Deterministic error bound for resilience
£ 0.1 — Stochastic error bound for resilience
Shirth 0.1 cm Size at birth
Smax 10 cm Size at maturation
I 10 Day ! Maximum ingestion rate per unit of biomass
q 0.85 — Proportionality constant of ingestion ability between juveniles and adults
M, 0.1 Day ™! Natural mortality rate
F — Day ! Harvesting rate of juveniles and adults
P 0.2 — Volatility in resource growth
Ry 0.035 — Threshold value of resource density
MVP 0.009 — Minimum viable population
Deterministic semi-chemostat Stochastic semi-chemostat
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FIGURE 4: The resilience for deterministic (a, ¢) and stochastic (b, d) growth rates is calculated by using the algorithm described in Appendix
B.1. The mean (yellow curve) and the standard deviation (68%) (light blue curves) of the resilience are shown for all models.



Deterministic semi-logistic
0.16 |
0.14 ¢
0.12
0.1}
0.08

Resilence

0.06 -

0.04

0.02

0 . 7. S8 F 0.12 N

0 0.5 1 1.5 2
Harvesting rate

(a)

Deterministic threshold-logistic

2.5

0.16
0.14
0.12 ¢
0.1}
0.08
0.06

Resilence

0.04
002t ———

008 01 012
s

0 0.5 1 1.5 2 2.5
Harvesting rate

(0

Resilence

Resilence

Journal of Applied Mathematics

Stochastic semi-logistic
0.16

0.14 ‘
012}

0.1}
0.08 |
0.06 |
0.04 |

0.02

0 0.5 1 1.5 2 2.5
Harvesting rate

(b)

Stochastic threshold-logistic
0.14

0.1F
0.08 |
0.06 |

0 0.5 1 1.5 2 2.5

Harvesting rate

(d)

F1GURE 5: The resilience for all deterministic (a, ¢) and stochastic (b, d) growth rates is calculated by using the algorithm described in
Appendix B.1. The mean (yellow curve) and the standard deviation (68%)(light blue curves) of the resilience are shown for all models.

Two models for mortalities are considered. In one
model, mortality is not due to starvation which we call nat-
ural mortality. In the other model, mortality depends on
natural cases as well as starvation. In the model with starva-
tion, the mortality rate functions are given by (we use the
same model as [13])

M, R> L
M;(R) = €l /T =1 (7)
M, - EUI(R), otherwise,
H
M,, R> —— |
MA (R) = €quax/T -1 (8)
M, —w,(R), otherwise,

where M, is the natural mortality rate for juvenile and adult
individuals. The model we use for morality without starva-
tion (given in [6]) assumes constant mortality rates M;(R)
=M, (R)=M,. The ecological-mathematical correlations
and derivations of expressions (5)-(8) can be found in de
Roos et al. [13] where these equations are explained in a
clear and instructive manner.

2.2. Resource Dynamics. In most aquatic stage-structured
models, the resource growth rate is assumed to be of either
semichemostat growth or logistic growth [29-31]. However,
logistic growth might not be suitable for ecological purposes
[32], and in this paper, we have found that the simulated
solutions become asymptotically periodic solutions under
low harvesting rates and asymptotically stable solutions oth-
erwise. The reason for this periodicity is that the logistic
growth rate curve has a horizontal tangent line at the origin
(see Figure 1). To handle the periodicity in the logistic case,
we use the mean value of the juvenile biomass and the adult
biomass over a timespan of one solution cycle. The same
timespan is used to find the average of the resource density.

Moreover, the obstacle of cyclic solutions that arise in
the logistic growth model can be overcome in several ways.
To overcome this obstacle, we present and investigate two
variations of the logistic model: (1) we assume that the fish
are not able to find the resource if the resource density is less
than a certain threshold, which we call a threshold-logistic
growth model. (2) We assume that the resource is available
in all densities with a small influx from the surrounding eco-
system. We call this variant as the semilogistic growth model.

As we see in Figure 1, all the curves, except the logistic
growth curve, have a positive slope at the origin, which will
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F1GURE 6: The yield of semichemostat, logistic, semilogistic, and threshold-logistic growth rates at steady state w.r.t. harvesting rate. The grey
trajectories show the yield from different simulations for the stochastic case. The yellow curve represents the yield mean value of the
simulations. The light blue curves represent the interval of standard deviation (68%) of the yield. The black curve represents the yield for

the deterministic case.

stabilize the solutions in such a way that they approach a
steady-state solution in finite time. In the remainder of this
paper, our discussion will focus on the four basic growth rate
models that are semichemostat, logistic, threshold-logistic,
and semilogistic.

In alignment with known stochastic growth models, we
have converted the aforementioned deterministic growth
rate models to stochastic growth rate models by adding a
white noise. The stochastic semichemostat growth rate
model is the same as the deterministic stochastic growth rate
model with the addition of a white noise in terms of a Brow-
nian motion multiplied with a constant volatility. As for the
deterministic logistic and threshold-logistic growth rate
models, we include stochasticity with the same white noise
added, but with volatility proportional to the resource den-
sity. The stochastic model for semilogistic growth rate is cre-
ated by adding a linear combination of the stochastic
semichemostat and stochastic logistic growth rate models.

2.2.1. Deterministic Setting. In the stage-structured popula-
tion models, the growth rate models we consider are semi-
chemostat, logistic, threshold-logistic, and semilogistic
growth. The semichemostat growth rate is a natural model
when plants or phytoplankton are considered as the food
resource, but it may also be appropriate to use for zooplank-

ton and insects when such food resources migrate into the
relevant ecosystem. The logistic growth rate may be consid-
ered when the resource consists of zooplankton and insects
in a closed ecosystem, but in general, the fish population will
not be able to reach all of the resource, due to coverage or
other types of inaccessibility (see, e.g., [32], for a deeper dis-
cussion of these phenomena in ecosystems).

In our models, the population stages utilize one unstruc-
tured resource. We incorporate the resource models as
derived by de Roos et al. [13], which are given by

=7(Rpx — R) (J+4A),

max

Semich tat dR 1 R
emicnemostat : — — _—
dt M+ R

-R)-1 (J +g4),

max

Logisti d R (R
ogistic : — =7 —_
& dt ( M+ R

©)

where r is the resource turnover rate and R, is the carrying
capacity of resource density. In addition, when we simulate
the ecosystem with logistic growth, we get asymptotically
periodic or stable solutions for the region of small harvesting
rates. To handle this periodicity, the mean values of juvenile,
adult biomasses, and resource density are used instead of the
stable solutions for the deterministic case. To compensate
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FIGURE 7: Probability of extinction (PoE) with respect to the harvesting rate is calculated by using the algorithm described in Appendix B.3.
The yellow curve (a, ¢, e, g) shows the mean of the MVP formulation of the probability of extinction, and the light blue curves represent the
interval of three standard deviation (68%) of this probability of extinction. For the RP formulation of the probability of extinction (b, d, f, h),
the mean is shown by the yellow curve and the three standard deviations by the light blue curves.

for influx and inaccessibility of the resource, we have also
defined the logistic growth rate with threshold and a new
growth rate model, which we call logistic-threshold and
semilogistic growth, respectively. The semilogistic growth
model is a linear combination of the other two models, in
which only a small portion of semichemostat growth is used.

To stabilize the cyclic solutions that appear in the logistic
growth model, we modify the dynamics (see Resource
dynamics or Conclusions and Discussion, for a biological

interpretation of these modifications) in the following ways:

R-R,
"+ (R—Ry)

dR
Threshold - logistic : i TR(Rpax — R) = 1 (J+44),

(10)

oo dR _ _ oy R
Semilogistic : m =pr(Rpy — R) + (1 =p)rR(R . — R) Imaxm (J+qA).
(11)
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Note that in the threshold-logistic growth model, the
function R — R, means that the resource available for con-
sumers is the resource density above the threshold R,. When
using the semilogistic growth rate model, we use the param-
eter 0 < p < <1 to denote the proportion of the semichemo-
stat growth and 1 — p for the proportion of logistic growth.

2.2.2. Stochastic Setting. In this section, the resource dynam-
ics described in Section 2.2.1 is modified by including envi-
ronmental randomness; i.e., we include a stochastic term in
the growth rate of the food resource. In the natural environ-
ment, it is reasonable to include the randomness on the
weather, disease outbreaks, water stress, deforestation, over-
grazing, and overcultivation. Basing on these factors, the
dynamics of the stochastic food resource are introduced in
this paper. We have presented the randomness by Brownian
motions (see Section 6 for a discussion about this choice).

We extend the abovementioned deterministic resource
models by first rewriting the dynamics in differential forms,
and secondly, we add appropriate noise terms. In the
absence of consumers, four different types of stochastic
resource dynamics are as follows:

Semichemostat: this type is used in, e.g., Singh [33]
(equation (10)). The semichemostat growth rate dynamics
is given by

dR, =r(R,, — R)dt + pdW,, (12)

where W, is a Brownian motion and p is the standard devi-
ation parameter (in finance, this model is often referred to as
the Vasicek model).

Logistic and threshold-logistic: these types are used in,
e.g., Shah [34] and Roughgarden [35]. The growth rate
dynamics for these models are given by

dR, = rR(R,,, — R)dt + pRAW,. (13)

max

Note that the same resource growth rate is used in both
these models, but when consumers are introduced, not all of
the resource is available in the threshold-logistic model (see
in Table 1 how the consumption of the resource differs in
these models). The threshold idea is in line with the argu-
mentations made by Persson et al. [32].

Semilogistic: the resource dynamics in this model is a lin-
ear combination of the stochastic semichemostat and the
logistic growth rates. Given a constant 0 < p < 1, we define
the semilogistic dynamics as

dR, =p(r(Rmax —R)dt + deEl)) +(1-p) (rR(an —R)dt+ pR dwfz))
=1((1= )R +P)(Rypgy — R)t + ppd W) + (1 p) pRAW
(14)

where WEI) and Wgz) are independent Brownian motions.
When consumers are introduced to these models, the
rate of change of the available resource biomasses, R, is given
by the stochastic differential equations in Table 1.
A bit of caution might be needed here. The stochastic
models have quite a complicated feedback interaction

between the juveniles, the adults, and the resource, and the
expectation of the solutions in the stochastic models will
thus not always be the solution of the corresponding deter-
ministic models. If the models had a simpler setting, we
would be able to compensate for this difference using tech-
niques similar to the theory developed in, e.g., Giet et al.
[36].

3. Population Properties of the Stage-
Structured Model

3.1. Yield. The stage-structured models are examined by
introducing a wide range of equal harvesting rates of juve-
niles and adults with different consequences for the yield.
The yield is defined as the continuous outtake of biomass
by harvesting. The juvenile and adult biomasses at equilib-
rium are denoted by J* =J*(Fj, F,) and A* = A*(F, F,),
respectively, where F; and F, are the proportional harvest-
ing rates. The yield objective function is defined by

Yield = F;J* + F,A*. (15)

In the absence of harvesting, J = J*(0,0) and A = A*(
0,0) denote the juvenile and adult biomasses, respectively,
at equilibrium.

In the stochastic setting, the yield is calculated, using
equation (15), where J* and A* are replaced by the mean
biomasses of juveniles and adults.

3.2. Impact on Biomass and Size Structure. For the models
abovementioned, we investigate the impact of harvesting
on the consumer population. In addition to harvesting, the
biomasses of juveniles and adults also depend on the amount
of resource which in turn decreases due to the consorted for-
aging of all consumers on it.

The impact on biomass is a measure of how much bio-
mass of the population has decreased with respect to the
harvesting rate. It is defined as

*

Impact on biomass =1 — (16)

B’
where B*=]*+A" and B =]’ +A;. The value of the
impact on biomass is zero when no harvesting is done and
increases up to one when the harvesting rate depletes the
population. In some of our models, the impact on biomass
temporary decreases as harvesting rate increases, which
implies an increase in the population biomass; that is, these
models exhibit the hydra effect. Similarly, the impact on size
structure measures the relative change of biomasses of the
adult population versus the juvenile population with respect
to different harvesting rates. It is evaluated by the expression

* * -1
Impact on size structure = ——— [ — Ju -l -1. (17)
JT+ A" |J)+ A

If the impact on size structure is positive at a certain har-
vesting rate, then the fraction of juveniles in the population
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FI1GURE 8: Impact on size structure and biomass of threshold-logistic growth rate without starvation (a, ¢) and with starvation (b, d) at steady
state w.r.t. harvesting rate. The grey trajectories show the impact on size structure and biomass from different simulations for the stochastic
case. The yellow curve represents the mean value of the simulations. The light blue curves represent the interval of standard deviation (68%).
The black curve represents the impact on size structure and biomass for the deterministic case. Equations (17) and (18) are used to derive
the above graphs for the impact on size structure and biomass, respectively.

has increased compared to the nonharvesting scenario; cf.
Lundstrom et al. [6].

Moreover, the impact on biomass of harvesting in the
stochastic case is measured by the expression

(18)

Impact on biomass =1 —

where E[B*] = E[B*|(F) is the steady state of the expectation
of the total biomass under a harvesting rate F and E[B}] =
E[B;)(0).

The impact on size structure for stochastic case is

explored in a similar way using equation (17).

3.3. Resilience. Resilience is one of the important compo-
nents of stability of an ecosystem. It is a measure of how fast
the ecosystem recovers after population perturbation. It is
strongly influenced by the types of environmental fluctua-
tions commonly encountered by an ecosystem [37].

We consider the resilience of the population, for both
deterministic and stochastic cases by measuring the recipro-
cal of the time needed for the population to recover to the
positive equilibrium given a random perturbation [6]. We

denote the equilibrium of biomasses as (J*, A*,R*). Let «
> 0; this constant scales the maximum displacement of the
population from the equilibrium. A trajectory of the stage
model is started from a random point uniformly distributed
in the cube (0, xJ*) x (0, kA*) x (0, kR*).

We then find the return time as the time needed for this
trajectory to be close enough to the equilibrium in the sense
that

()5 ()
(19)

for some small error bound &, > 0 in the deterministic case.
To find the resilience, we use the definition introduced in
[6]. That is, after repeating this procedure N times, the resil-
ience is defined by

1

. 20
average value of the return times (20)

Resilience =
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FIGURE 9: Impact on size structure and biomass of threshold-logistic growth rate without starvation (a, c) and with starvation (b, d) at steady
state w.r.t. harvesting rate. The grey trajectories show the impact on size structure and biomass from different simulations for the stochastic
case. The yellow curve represents the mean value of the simulations. The light blue curves represent the interval of standard deviation (68%).
The black curve represents the impact on size structure and biomass for the deterministic case. Equations (17) and (18) are used to derive
the above graphs for the impact on size structure and biomass, respectively.

The higher the resilience, the smaller the risk of extinc-
tion due to random drift [6]. To estimate the resilience in
the stochastic case, we find the mean value of the biomasses
of the resource, the juveniles, and the adults. This is done by
performing a number of simulations using the stochastic
model, in which the initial values are randomly picked in
the cube defined above. The value of the error bound for
the stochastic case, ¢, has to be larger than the one for the
deterministic case according to the variance of the mean
values. We then find the return time to be the time it takes
for the solution to come close enough to the equilibrium in
the sense of equation (19) by using the mean values and &
in place of ;. This procedure is repeated to find the average
value of return times. The average return time is used to find
the resilience by again using equation (20). Finally, many
samples of the resilience are drawn and used to find its mean
and standard deviation.

3.4. Recovery Potential. We consider the basic reproduction
ratio which represents the average number of offspring pro-
duced over the lifetime of an individual in the absence of
density-dependent competition. The measure of recovery
potential is closely related to the basic reproduction ratio

in a virgin environment. For the deterministic stage model,
the recovery potential, introduced in [7], is defined by using
the steady-state equation as follows:

v(wy(R))
v(w)(R)) —wy(R) + M+ Fy

_ wa(R)
( )_MA+FA

(21)

In a virgin environment, Meng et al. [7] defined the
recovery potential, as a function of harvesting rates, given
by the expression

v(“‘)] (Rmax)) .
V(Wy(Rpax)) = Wy(Rypay) + M + Fy
(22)

X

Wa (Ryay)
R tentia] = —A~ max
ecovery potential = —= TF,

Meng et al. proved that a unique positive equilibrium of
resource, juvenile, and adult biomass density exists when the
recovery potential is larger than 1. However, extinction of
the population follows when the recovery potential is smaller
than 1. They derived this recovery potential, equation (22),
by assuming A'=]"=0in equations (1) and (2). However,
in the stochastic approach, we will never reach an
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F1Gure 10: Impact on size structure and biomass of semichemostat growth rate without starvation (a, ¢) and with starvation (b, d) at steady
state w.r.t. harvesting rate. The grey trajectories show the impact on size structure and biomass from different simulations for the stochastic
case. The yellow curve represents the mean value of the simulations. The light blue curves represent the interval of standard deviation (68%).
The black curve represents the impact on size structure and biomass for the deterministic case. Equations (17) and (18) are used to derive
the above graphs for the impact on size structure and biomass, respectively.

equilibrium and therefore, we will not be able to use equa-
tion (22) to find the recovery potential. Therefore, we will
derive a similar expression for the recovery potential of our
models in the stochastic setting. This new recovery potential
expression coincides with the old definition, which we have
corroborated in the Appendix; see Figures 2 and 3.

We consider the following equations for the rates at
which the biomass of juveniles and adults changes:

J' =wy (R)A + (wy(R) - v(wy(R)) -M; - F))J,  (23)
A" =v(w)(R))] - (M, + F,)A. (24)
Rearranging equation (24) yields

J

Note that the right-hand side does not explicitly depend
on R. In what follows, our goal is to derive an expression for
the recovery potential that does not include R. When this
has been achieved, we can use the expectation of the recov-

ery potential to find the probability of extinction. When wy
(R) # Mj + Fj, we substitute equation (25) into equation
(6) yielding

A+ (M, +F,)A R

The right-hand side of this equation is an increasing
continuous function with respect to R (see Appendix A.1)
and hence, we can find the unique solution wy (R) of equa-
tion (26).

By substituting equation (25) and wy (R) into equation
(23), we get

]_’ wi (R)] . A+ (M, +FyA ) (M +F)J]

A A A A

J' - (w (R) - My - F)J + (A’ + (M, + FA)A)
K .

(27)

Recall that, in this paper, we assume F=F, = F;. By
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FiGure 11: Impact on size structure and biomass of logistic growth rate without starvation (a, ¢) and with starvation (b, d) at steady state
w.r.t. harvesting rate. The grey trajectories show the impact on size structure and biomass from different simulations for the stochastic case.
The yellow curve represents the mean value of the simulations. The light blue curves represent the interval of standard deviation (68%). The
black curve represents the impact on size structure and biomass for the deterministic case. Equations (17) and (18) are used to derive the
above graphs for the impact on size structure and biomass, respectively.

using equations (25) and (27) and the unique solution wy (R),  the recovery potential
we have derived an alternative expression for the recovery
potential, defined by equation (22), as i ( A"+ (M, +F) A)
R(F) =
(F) A(My +F)
IO 1 ot L (4"+ (0, + P)A) A"+ (M, +F)A
= X 30
AMy ) (28) A+ (My+ F)A— (M;+ F- M, - F)] (30)
o A +(My+F)A
A"+ (My + F)A— (wj (R) - M, - F)J’ ]'+<A'+(MA+F)A)
- A(M, +F)

when wy (R) # M; + F. . _ _
In the case w (R) = M; + F, equation (27) may be writ- ' Eq}latlons (28) gnd (30) can be.used directly in the defter—
ministic case, but in the stochastic case, we use equations
(28) and (30) to find the mean and standard deviation of
the recovery potential.

ten as

J'+ (A’ + (M + F)A) 3.5. Probability of Extinction for Stochastic Case. An impor-

w,(R) = A : (29)  tant feature in population dynamics is the possibility of
extinction, which has been studied in a variety of stochastic

model formulations [34, 38, 39]. Population size can cause

By using equations (25) and (29) in equation (22), we get  the extinction of a species through overharvesting, habitat
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FiGURE 12: The resilience for semichemostat, logistic, semilogistic, and threshold-logistic stochastic growth rate with nonstarvation (a, ¢, e,
¢) and starvation (b, d, f, h). The mean (yellow curve) and the standard deviation (68%) (light blue curves) of the resilience are shown for all
models. The detail explanation for the simulation can be seen in Section 4.1.

distribution, disasters, and other factors [40-42]. One way of
finding the probability of extinction is through the mini-
mum viable population (MVP).

The MVP is an estimate of the minimum number of
individuals in the population that is capable of persisting
in the wild life [43, 19]. In our models, we define the proba-
bility of extinction by the probability that, during any time,

A+p,] <MVP, (31)

where p, is the survival probability for juveniles to become
adults. The expression for p, is given by

e—MU+F/2v(w(Rmax) ) (32)

pa=pa(F)=

See Appendix A.l for a detailed explanation of this
formula.

In this paper, we present an alternative approach to
investigate the probability of extinction, which is based on
the results of recovery potential. The recovery potential pro-
vides an indication of the population’s probability of surviv-
ing a potential extinction caused by, e.g., environmental
stochasticity or overexploitment. In other words, the bio-
mass of an initially small population will increase in a virgin
environment when the recovery potential is larger than 1
and the population will go extinct when the recovery poten-
tial is smaller than 1. We then find the probability of extinc-
tion, which is calculated by investigating the mean of
recovery potential.

To do this, we use initial data R=R_,, J=],, and A=
Ay, where ], and A are close to zero. We then simulate sys-
tems (1)-(3) to find the solution for two short time steps and
use the central difference quotient to find an estimate for J'
and A'. The simulations are done for a range of harvesting
rates F=F,, F,,---, Fy. Since the model is stochastic, we
repeat this procedure many times and use the central limit
theorem to estimate the recovery potential of our models.

That is, we estimate the expected recovery potential,

(33)
where % (F) is the mean value of the simulated recovery
potentials for fixed harvesting rate F. The standard devia-
tion, o, of the recovery potential is estimated by 0, in a
similar way.

In view of the central limit theorem, the mean of the
recovery potential with harvesting rate F is assumed to be
a random sample from a normal distribution with cumula-
tive distribution function, CDF(x, y,0). The constants u
and o represent mean and standard deviation, respectively.
That is, we assume that

R(F) ~N(t g (F), 0 5(F)) (34)
and get the probability of extinction by
P((F) < 1) =CDF(L iy (F), G (F)).  (35)

The reason for evaluating the cumulative distribution
function at x =1 is that if the recovery potential is smaller
than 1, then the population goes extinct; compare this with
Meng et al. [7] for the deterministic setting.

4. Simulation Results

The emergent properties are investigated in the stage-
structured biomass models, systems (1)-(3), including star-
vation mortality. The properties we study in this section
are resilience, recovery potential, and probability of extinc-
tion. These properties are compared between the different
models, under a range of harvesting rates. In particular, the
models are differentiated by the growth model for the
resource dynamics; semichemostat growth, logistic growth,
semilogistic growth, and threshold-logistic growth. The
models are also differentiated by using deterministic vs. sto-
chastic growth. In Appendix C, the steady-state biomasses,
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FIGURE 13: Impact on size structure of semichemostat, logistic, semilogistic, and threshold-logistic growth rate at steady state w.r.t.
harvesting rate. The grey trajectories show the impact on size structure from different simulations for the stochastic case. The yellow
curve represents the mean value of the simulations. The light blue curves represent the interval of standard deviation (68%). The black
curve represents the impact on size structure for the deterministic case. Equation (17) is used to derive the above graphs.
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FIGURE 14: Impact on biomass of semichemostat, logistic, semilogistic, and threshold-logistic growth rate at steady state w.r.t. harvesting
rate. The grey trajectories show the impact on biomass from different simulations for the stochastic case. The yellow curve represents the
mean value of the simulation. The light blue curves represent the interval of standard deviation (68%). The black curve represents the
impact on biomass for the deterministic case. The above graphs are calculated using equation (18).
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black curve represents the resource for the deterministic case.

yield, impact on biomass, and impact on size structure for
these growth models are investigated numerically.

From here on, all parameters as well as the biomass den-
sities for the stage-structured biomass models are considered
nondimensional, using rescaling as in [6, 13]. In our simula-
tions, we use the parameters given in Table 2.

When solving the stochastic models, we have simulated
each model 10,000 times in order to find good estimates
for the expectation and standard deviation, using the sample
mean and the sample standard deviation.

4.1. Resilience. Resilience is increasingly used in ecology and
fishery management context [6]. In simple terms, one can
say that the higher the resilience value, the shorter it takes
for a disturbance in the population to converge back toward
its steady-state solution. We find the resilience of the popu-
lation in the different resource growth models by using the
mathematics in Section 3.3 together with the method and
algorithms in Appendix B.1. The resource growth models

investigated are semichemostat, logistic, semilogistic, and
threshold-logistic resource dynamics (see Table 1), both in
the deterministic and the stochastic settings.

We observe that the resilience for both the determinis-
tic models and the stochastic models (see Figures 4 and 5)
achieves its maximum around the same harvesting rates as
the corresponding maximum values for the yield (see
Figure 6). If this is not the case, one might want to aim
for a slightly lower yield in order to increase the resilience;
compare this with the concept of pretty good yield as
defined in [6]. We notice that the resilience in the stochas-
tic models vanishes at a lower harvesting rate than the
deterministic equivalent models; this phenomenon is
explained by the differences in the probability of
extinctions.

4.2. Recovery Potential. The recovery potential is the gener-
ational net biomass production (per unit of biomass) in a
virgin environment. It approximates the net reproduction
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(expressed in biomass) of a small population introduced in
an environment which is close to its maximum value R ,;
see Meng et al. [7]. We have named the recovery potential,
expressed by equation (22), the Meng et al. recovery poten-
tial. As mentioned above, the Meng et al. recovery poten-
tial is evaluated in a virgin environment at equilibrium.

Since our stochastic models never reach equilibrium, we
reformulate the recovery potential in nonequilibrium terms
through equations (28) and (30). We denote this formula-
tion as nonequilibrium recovery potential.

Figures 2 and 3 show that two above formulations for the
recovery potential in the deterministic case produce almost
identical values. In view of this, we will use the nonequilib-
rium recovery potential when finding the probability of
extinction (see Section 4.3).

4.3. The Probability of Extinction. Stability in ecological sys-
tems is important since a lack of stability promotes extinc-
tion. Under a random environment (in the deterministic
setting, the probability of extinction can be evaluated using
equation (31), which produces a graph with zero probability
of extinction up to a certain point, and after this point, the
probability of extinction is one), the lack of steady state
can amplify the probability that the population goes extinct.
We have two ways of finding the probability of extinction:
we can either use the MVP formulation, equation (31), or
we can use the method explained in Section 3.5, which we
call RP formulation (here, RP stands for the recovery poten-
tial formulation used to find the probability of extinction).
For MVP formulation, the number of minimum viable pop-
ulation of individuals is set to be 117; this is the average
MVP value for fresh water fish species, given in [17].

As can be seen in Figure 7, the two formulations for the
probability of extinction give similar results, the MVP for-
mulation is presented in (a), (c), (e), and (g), and the RP for-
mulation is presented in (b), (d), (f), and (h); each row
corresponds to a specific growth rate model, defined in
Table 1.

5. Comparison Results with the Starvation
Mortality Rate

In nature, animals that suffer starvation experience a higher
mortality rate; see, for example, de Roos et al. [13] and Mir-
iam and Ana [44]. Simulating our models with and without
starvation, we investigate the differences in emergent prop-
erties. We include starvation in our models by changing
from constant mortality rate to food-dependent mortality
rate according to equations (7) and (8).

In all stage-structured population resource growth rate
models, the outcome of the impact on size structure is low-
ered when including starvation; this means that the propor-
tion of the juvenile population increases (see Figures 8 and
9). This change appears because the adult population experi-
ences starvation at a higher resource density than the juve-
niles (see equations (7) and (8)), since we have set our
parameter g to be less than one.

Comparing the properties of impact on biomass and
resilience shows a small variation when starvation is
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included or not in the models (see Figures 10-12). The var-
iations of the other properties in the simulations are minus-
cule between starvation and nonstarvation; i.e., steady state
biomasses for resource, juvenile, and adult and yield and
recovery potential as well as both formulations of the prob-
ability of extinction are not drastically changed by including
starvation (see Appendix D for simulation results).

6. Conclusions and Discussion

Models of an aquatic ecological system consisting of one fish
species and its food resource were considered. Our models
were two-stage-structured population models; we have
investigated the impact of emergent properties of the popu-
lation and resource in these models with respect to uniform
harvesting rates. The models under consideration were char-
acterized by two main features: (1) the growth rate dynamics
choice for the resource and (2) whether the population expe-
riences starvation mortality or not.

The main purpose of this paper was to investigate prop-
erties of the population and the resource, both in determin-
istic growth rate models and the corresponding stochastic
growth rate models. A major biological implication when
including natural variations in the model is that the proba-
bility of extinction becomes a threat even at lower rates of
harvesting, which indicates that when deterministic models
are used for aquaculture, one should not harvest close to
the extinction harvesting level.

Many authors have investigated the behavior of stage-
structured models; deterministic growth rate models have
been studied by, e.g., Lundstrom et al. [6], Meng et al. [7],
Ackleh and Jang [8], Aiello et al. [9], and de Roos et al.
[13], and some stochastic growth rate models have been
considered by, e.g., Rup$ys et al. [45], Lv and Pitchford
[46], Giet et al. [36], and Shah [34].

Some of the population properties defined in the deter-
ministic models was naturally transferable to the stochastic
setting and evaluated by estimating the expectation and var-
iance via Monte Carlo simulations. These properties
included, e.g., biomasses, yield, impact on biomass, and
impact on size structure. Among these properties, we found
that all models under consideration shift their size structure
toward juvenile individuals as harvesting is increased (see
Figure 13 in Appendix C). We would like to note that a shift
in the size structured toward adult individuals, as harvesting
was enhanced, may occur if the proportionality constant of
ingestion is greater than one; see de Roos et al. [12]. This
phenomenon may also occur if adult individuals cannibalize
on the juveniles; see, e.g., Soudijn and de Roos [11] and Nan-
kinga et al. [47].

In contrast to the similar shifts in size structure, there is
a big discrepancy between the models in that the total bio-
mass in the logistic, semilogistic, and the threshold-logistic
growth rate models is not much affected under moderate
harvesting rates, whereas the total biomass in the semiche-
mostat growth rate model declines rapidly with increasing
harvesting rates (see Figure 14 in Appendix C). In these
three scenarios, we can in fact detect a small hydra effect;
i.e., the biomass increases with increasing mortality, which
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is reflected by negative values of the impact on biomass at
small harvesting rates in the logistic, semilogistic, and the
threshold-logistic growth rate model (see Figure 14). As
explained by Schroder et al. [30], the reason for this hydra
effect is that moderate harvesting rates can reduce the strong
competitions between individuals, leading to the higher bio-
mass or less influence on the declination of the biomass.
Since we could not detect the hydra effect in the semichemo-
stat growth rate model, we deduced that the hydra effect
depends on the rate of change for the resource growth at
low levels (see Figure 1). Both the hydra effect and the dis-
crepancy between the semichemostat and the other three
models were explained by the difference of the rate of change
of the resource production at low levels of the resource (see
Figure 1).

We have also compared the models with and without
starvation mortality (we have chosen the same formula as
[13]; see equations (7) and (8)). The main difference
between including and excluding starvation mortality was
manifested in the impact on biomass and impact on size
structure as we discussed in Section 5. Furthermore, only
minor effects were found in any of the resource growth rate
models concerning the resource biomass, juvenile biomass,
adult biomass, yield, resilience, recovery potential, and prob-
ability of extinction.

Turning the attention to properties that cannot directly
be translated from the deterministic case to the stochastic
case. For example, the recovery potential defined in [7] is
evaluated under the assumption that there is an equilibrium
in the governing differential equations, and since this cannot
be achieved with a stochastic growth rate, we have, in Sec-
tion 3.4, derived an equivalent formulation in a nonequilib-
rium setting. Furthermore, new emergent properties become
available when stochastic models are used; for example, the
probability of extinction. In the literature (see, e.g., [17]),
the probability of extinction can be evaluated by comparing
the number of individuals of the population to the minimum
viable population (MVP). We argued that the MVP is an
inexact measure and hard to estimate in different environ-
ments. In Section 3.5, we proposed an alternative approach
to evaluate the probability of extinction, called the RP for-
mulation. In Section 4.3, the RP formulation was corrobo-
rated with the MVP formulation, resulting in similar
shapes of the probability of extinction, but with a smoother
shape in the RP formulation.

The stochasticity that we introduced was focused on ran-
dom growth rate for the resource. This is a natural assump-
tion, since the resource depends on fluctuations in the
environment. Another feature that cannot be naturally con-
trolled is the harvesting. It is important to choose an optimal
harvesting strategy since it affects the population survival
probability, as well as the yield and other population proper-
ties. There is a variety of harvesting strategies and equipment
used in the commercial fish farming industry. According to
unpredicted conditions, such as weather, diseases, and cli-
mate change, the harvesting rates are stochastic in reality
which is not studied in this paper. The randomness is intro-
duced by Brownian motions; if one would like to study envi-
ronmental factors including catastrophic events, other
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stochastic processes might be a more accurate choice. Fur-
thermore, the simulations revealed the need of the two
stages, juveniles and adults, of the fish when absolute har-
vesting was enforced; that is, one cannot reduce this system
to a single state of biomass for the fish population, in partic-
ular, when probability of extinction or resilience is studied.

The stage-structured population dynamics have been
derived by bookkeeping properties for local averages of the
population; in this paper, we have introduced stochasticity
in the dynamics of the stage-structured population models.
However, our next aim is to include the randomness in the
basic assumptions of the individual state models. This will
lead to a physiologically structured population model, con-
sisting of a system of stochastic partial differential equations,
from which we would like to derive the stochastic stage-
structured models.

Appendix

A. Mathematical Derivations

A.1. Uniqueness Proof of the Solution wj(R). In Section 3.4
we stated that the right-hand side of equation (6) is an
increasing continuous function with respect to R. Since wy(
R) is a strictly increasing function when it is positive, it has
an inverse function. Hence, for simplicity, we use the substi-
tution 6 = w;(R) and K = M + F}. Equation (6) then becomes

0-K 04K
[ _owmy  UFS
v(0) = (A1)
K
- , 0=K.
In (2)

Our goal is to show that this function is injective. Since
this function is continuous for all 8 > 0 (this function is actu-
ally not defined at 6 = 0 but the limit exists and equals zero)
and differentiable for all 8 > 0 such that 8 # K, we study its
derivatives. We find the derivative of v(6) to check if v(0)
is an increasing function.

-2
dz(:) = (z’K/QG'Z <ﬁ - 1) ) (ZK/QGZ -260* — K%z In (2) + Kz0 In (z)).
z

(A2)

We see that the first factor in the above differential equa-
tion is positive; thus, it is enough to show that the second
factor is positive; we rewrite

ZK9? — 26> ~ K*z In (z) + Kz In (z)

=0 (sz9 ~z- (g) 2z In (2) + (g) zln (z)> .

=9(5)

(A.3)



Journal of Applied Mathematics

Then, g(K/0) is zero when 0 = K (remember that K is a
constant); we are left to show that g is positive when 0 # K.
Setting t = K/0 gives

t)=(z'-z) -tz In(z) +tz In(z
o= FrmErenE
= (2" —2) +t(1 - t)z In (2).
We must show that g(¢) >0 when ¢ >0 and ¢ # 1. The
derivative of g(t) is

w =In (z)(z-2tz+2") =z In (z)(l —2t+z(H)).

dt
(A.5)

Observe that, since 0 < z = $y;,/Simax < 1, We get z In (2)

< 0. We now denote
L(t)=1-2t+z7Y. (A.6)
It is now sufficient to show that L(¢) <0 when ¢ > 1 and

L(t) >0 when 0 < t < 1. This follows from the fact that the
derivative of L(t) is

Ly

i 2 1n (z) -2 <0.

(A7)

The calculations above in fact show that the function v is
bijective, and therefore, the solution is unique, which com-
pletes the proof.

A.2. Deriving p,. In this section, we derive an estimate for
the probability of juveniles becoming adults, p,. The current
amount of juveniles which do not reproduce obeys the equa-
tion

N' (1) =-N(t), (A8)
for which we get the solution as
N(t+1t)=N(t)e . (A.9)

Let 7 be the average time to become adult (assuming an
equal spread of ages in the juvenile population), i.e., T = 1/2v,
where v is the juvenile maturation rate. The total death rate
for the juvenile population is y = M; + F.

The expected number of adults from current population
is proportional to the biomass

A(t)+p,(F,R)J(1). (A.10)

When this population is close to extinction, i.e., close to
zero, the resource is close to its maximum and since the pop-
ulation is small, we have zero starvation mortality; hence, we
assume R~ R, and M; = M,. Thus, we get from equation
(A.9)

PA(F) — e—T(MO+F) — e—MnJrF/Zv(w(Rmﬂx). (All)
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We will be using this p, (F) in the calculations for the
MVP formulation of the probability of extinction, because
we are only interested in knowing when the expected popu-
lation goes extinct, and in this circumstance, the population
will be close to zero.

B. Algorithms

Algorithms of our simulations are presented in this section,
both in deterministic and stochastic settings.

B.1. Algorithm of Resilience. For the resilience, the initial
values in each simulation are chosen at random for the
resource, the juvenile, and the adult biomass in the cube.
We then run the simulations, and for each trajectory, we
determine the return time by using inequality (19). The
resilience is measured by taking the reciprocal of the average
value of the return times over a large number of simulations
by the use of equation (20).

B.1.1. Algorithm of Resilience in Deterministic Setting

(i) The reciprocal of the mean value of return time is
taken over the number of simulations with each ran-
dom initial values for the deterministic case

(ii) We find the return times when the solution trajec-
tory is close enough to the equilibrium in the sense
of Equation (19) by the mean value of 50 such
simulations

B.1.2. Algorithm of Resilience in Stochastic Setting

(i) The reciprocal of the mean value of return times is
taken over the number of simulations. The mean
value of 20 simulations is used in equation (19) to
find the value of return times by using the same ran-
dom initial values

(ii) We then find the average value of the return times
after repeating the above procedure 20 times by
using equation (20) when the solution trajectory is
sufficiently close to the equilibrium in the sense of
equation (19)

(iii) Finally, we repeat the above procedure 15 times to
find the mean and standard deviation of the
resilience

B.2. Algorithm of Recovery Potential. For the recovery poten-
tial, we use the solutions of the juvenile, adult, and resource
through the number of simulations. For the deterministic
Meng et al. recovery potential, equation (22) is used. For
the nonequilibrium recovery potential, equations (28) and
(30) are utilized.

B.2.1. Algorithm of Nonequilibrium Recovery Potential in
Deterministic Setting

(i) We use initial data R=R, ., J=],, and A=A,
where ], and A, are close to zero
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(ii) We then simulate systems (1)-(3) to find the solu-
tion for two short time steps and use the central dif-
ference quotient to find an estimate for J' and A’

(iii) Finally, equations (28) and (30) are used to find the
nonequilibrium recovery potential

B.2.2. Algorithm of Nonequilibrium Recovery Potential in
Stochastic Setting

(i) We use initial data R=R,,,, J=], and A=A,
where ], and A, are close to zero

(ii) We then simulate systems (1)-(3) to find the solu-
tion for two short time steps and use the central dif-
ference quotient to find an estimate for J' and A’

(iii) We repeat this procedure 10,000 times to find the
nonequilibrium recovery potential for each simula-
tion by using equations (28) and (30)

(iv) Finally, the mean and standard deviation of the
nonequilibrium recovery potential are calculated

B.3. Algorithm of Extinction Probability

B.3.1. Algorithm of Extinction Probability in Stochastic
Setting. The algorithm of extinction probability and the
numerical values in the calculations are presented as follows:

(i) Each model in systems (1)-(3) is run for 10,000
simulations

(ii) For the MVP formulation of the probability of
extinction, we have used p,, which we deduced
from our simulations and the value of MVP =
0.009, which is based on the assumptions that (1)
the simulated lake contains an expected value of
10,000 adult individuals at steady state without har-
vesting and (2) the steady state of the expected den-
sity A+p,(0)-7=0.38+p,(0)-0.44 (weight/
volume) in our simulations

(iii) For the RP formulation of the probability of extinc-
tion, we find the mean value of the nonequilibrium
recovery potential for 20 simulations and call this
stochastic variable %,. We then repeat this proce-
dure 500 times and follow the explanations given
in Section 3.5 to find the probability of extinction

C. Further Simulation Results

C.1. Stage-Structured Biomass Model with Resource
Dynamics. For completeness, in this appendix, we study
the steady-state biomasses, yield, impact on biomass, and
size structure with starvation mortality for all growth rates.

C.2. Stage-Structured Biomass Dynamics and Yield. Our
consumer-resource models are based on the models derived
by de Roos et al. [13], which are reliable approximations of a
fully size-structured population models. They showed that
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stage-structured population models formulated in this way
incorporate key individual life-history processes. In this sec-
tion, we investigate the model with starvation mortality for
four types of resource dynamics which depend on the differ-
ent harvesting rates for the stochastic case and include the
deterministic model as a base case.

The stochastic models are the same as the deterministic
models, with the exception that a random perturbation is
added to the resource growth rate (see Section 2.2.2). We
investigate the mean value and standard deviation of all
our findings when the solution has reached a steady state
according to equation (19).

We see that the resource density is increased with the
harvesting rate in Figure 15 as the population becomes over-
exploited. In addition, when the biomasses of the juveniles
(Figure 16) and the adults (Figure 17) are decreased, the
population also goes extinct (Figure 7). We see that the
resource reaches R, after all individuals die out, due to
the harvesting strategies.

In Figure 16, for all growth models, the juvenile biomass
first increases with harvesting rate as they can synthesize
more proteins at metabolic costs close to the theoretical
minimum compared to the adults, due to the difference in
ingestion rates, which compensates the reduction of repro-
duction of offspring. At higher harvesting rates, the incre-
ment in food cannot compensate the loss of reproduction
of offspring any longer and the juvenile biomass will there-
fore start to decrease. When the harvesting rate becomes
too high, both the juvenile and the adult populations go
extinct (see Figures 16 and 17).

In Figure 17, we see that the adult biomass decreases, for
all models, as the harvesting rate increases.

Figure 6 represents how the yield changes with respect to
harvesting rates. The yield for semichemostat first increases
faster than the vyield for logistic, semilogistic, and
threshold-logistic as harvesting rate increases. The yield
decreases as the population approaches the MVP; the yield
for semichemostat, logistic, semilogistic, and threshold-
logistic growth approaches zero as the harvesting rate
becomes too large. The logistic, semilogistic, and
threshold-logistic models reach the maximum yield closer
to the point of extinction, than in the semichemostat model.
In our models, the harvesting rate is deterministic, but in
real life, this is not realistic and might also cause extinction
(see Conclusions and Discussion for a deeper discussion).

C.3. Impact on Biomass and Size Structure. The population
size structure is completely determined by the distribution
of biomass between juveniles and adults, as compared to
the distribution of the same stages at steady state without
any harvesting. We investigate changes in population bio-
mass and size structured in response to harvesting of juve-
niles and adults at equal rates. In the deterministic model
by Meng et al. [7], harvesting juveniles and adults equally
always leads to an increase in the percentage of juvenile bio-
mass in the population, but in other deterministic stage-
structured models, this percentage might decrease, e.g., in
cannibalistic models. We follow these ideas and hence study
the consequences of harvesting through the impact measures
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which influence biomass and size structure for deterministic
and stochastic cases.

The mean value of the impact on size structure in sto-
chastic simulations is always lower than the corresponding
deterministic simulation (see Figure 13). We find that the
mean value of the logistic model is relatively close to the
deterministic solution, whereas in the other three growth
rate models, the mean value of the stochastic case is signifi-
cantly more than one standard deviation below the corre-
sponding deterministic growth rate. The reason why the
stochastic growth rate models on average has a lower impact
on size structure compared to the deterministic models can
be understood by a careful examination of how the net bio-
mass production fluctuates under stochastic growth rates.
The net biomass production rates, defined by equations (4)
and (5), are strictly positive at steady state in the determin-
istic models; otherwise, we would not get any flux of biomass
between the two stages; and therefore, the population would
die out due to background mortality, hence not a steady
state. In the stochastic setting, on the one hand, starvation
will occur more often when the harvesting rate is zero, com-
pared to higher harvesting rates. This is due to the fact that
the population is larger, forcing the food demand to be
higher, which causes the mean value J:/(J: +A}) to be
higher than the corresponding deterministic value. On the
other hand, when the harvesting rate is larger, thus, the pop-
ulation demands less of the food resource, and consequently,
the stochasticity will not cause the values of the net biomass
production to become negative and therefore not cause star-
vation. But when the resource is above the mean value, the
net biomass production for the juveniles will increase more
than the corresponding adult term (because we have chosen
the proportionality constant of ingestion ability g =0.85),
giving a higher rate of maturation of juveniles to adults, than
the rate of reproduction. This difference shifts the mean
value of the fraction J*/(J* + A*), in equation (17) toward
a lower value.

The impact on size structure in all our models is positive;
the main reason for this is the choice of q. A more careful
exploration of the shape of impact on size structure can be
found in de Roos and Persson [28].

Figure 14 shows that the impact on biomass, in the semi-
chemostat case, increases almost linearly from zero up to
one, whereas in the logistic, semilogistic, and threshold-
logistic case, the impact on biomass resembles an exponen-
tial growth curve. The relative flatness in the logistic, semilo-
gistic, and the threshold-logistic cases of the impact on
biomass implies that the population size is hardly affected
for low harvesting rates; this is further discussed in Conclu-
sions and Discussion. Furthermore, when the harvesting rate
is absent, the impact on biomass and size structure will not
be affected. In Figures 13 and 14, this condition is not
included when we simulate the impact on size structure
and biomass.

It is also worth noting that, in contrast to the intuitive
feeling that a population must decrease when harvesting is
introduced, in the stochastic logistic, semilogistic, and
threshold-logistic cases, the mean value of the impact on
biomass may be negative. This implies that the total popula-
tion biomass can increase under small harvesting rates in
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comparison with the steady-state solution without any har-
vesting. This phenomenon has also been observed by Schro-
der et al. [30] but does not occur in our deterministic model.

C.4. Resilience and Recovery Potential. The emergent proper-
ties in the stage-structured biomass models which are resil-
ience and recovery potential for the semilogistic and
threshold-logistic growth rates are presented in this section
under the deterministic and stochastic settings.

In Figures 2 and 3, we estimate the recovery potential in
stochastic settings, using the nonequilibrium recovery
potential. The Meng et al. recovery potential in the deter-
ministic equivalence is plotted in the same figure to show
that the stochastic recovery potentials do not diverge much
from the deterministic recovery potentials.

D. The Impact of Starvation in the Models

The simulations of the emergent properties for the stage-
structured population models are investigated with and
without starvation. The changes in the general outcome for
the resilience and impact on size structure and biomass are
presented when the model is simulated to compare the
results with and without starvation.
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