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Maize yield prediction in the sub-Saharan region is imperative for mitigation of risks emanating from crop loss due to changes in
climate. Temperature, rainfall amount, and reference evapotranspiration are major climatic factors affecting maize yield. They are
not only interdependent but also have significantly changed due to climate change, which causes nonlinearity and nonstationarity
in weather data. Hence, there exists a need for a stochastic process for predicting maize yield with higher precision. To solve the
problem, this paper constructs a joint stochastic process that acquires joints effects of the three weather processes from joint a
probability density function (pdf) constructed using copulas that maintain interdependence. Stochastic analyses are applied on
the pdf and process to account for nonlinearity and nonstationarity, and also establish a corresponding stochastic differential
equation (SDE) for maize yield. The trivariate stochastic process predicts maize yield with R2 = 0:8389 and MAPE = 4:31%
under a deep learning framework. Its aggregated values predict maize yield with R2 up to 0.9765 and MAPE = 1:94% under
common machine learning algorithms. Comparatively, the R2 is 0.8829% and MAPE = 4:18%, under the maize yield SDE.
Thus, the joint stochastic process can be used to predict maize yield with higher precision.

1. Introduction

Seasonal realizations of variation in climatic factors are
responsible for loss in maize yield recorded in the sub-
Saharan Africa. It has been shown that patterns in major
weather elements have considerably changed in the region.
In addition to factors emanating from adaptation to popula-
tion rise, such as increase in cultivation area and the use of
improved technology, climatic factors like temperature, rain-
fall, and reference evapotranspiration are the most signifi-
cant determinants for maize yield in the region [1]. These
climatic factors exhibit both comonotonic and counter-
monotonic dependence nature [2], which makes derivation
of maize yield forecast from them a difficult undertaking.
Maize yield prediction is imperative in the process of allevi-
ating the risk of loss in maize grain harvest due to weather
changes through correct pricing of a crop harvest insurance
or weather derivative hedge instruments.

The oldest approach of predicting maize yield is that of
using a multivariate linear regression with climate, produc-

tion potential, and management factors as explanatory vari-
ables. One challenge of this approach is the difficulty of
collecting the data for climate and management factors
simultaneously [3]. Secondly, management data is usually
unavailable. Lastly, interdependence of climatic factors and
linearity assumptions in the model imply that the model
cannot accurately predict maize yield because the relation-
ship between climate factors and yield is nonlinear [4]. To
take care of error independence violation for incorporation
of dependent weather variables in a linear regression, a time
series model can be fitted which does not violate first order
Markov-Chain assumption [5]. Most time series model
might fail to account for change in climate because of sta-
tionarity assumption [6], which might lower crop prediction
precision [7].

Another classical approach in literature [8] is that of fit-
ting multivariate regressions through random forests, sup-
port vector machines, and artificial neural network in
which both climate and nonclimate data are used to predict
maize yield. These machine learning models can be trained
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to recognize nonlinearity in a data set [9]. This approach is
suitable for experimental data set [10] in which a number
of explanatory variables can be collected almost simulta-
neously. Precise crop yield forecast using one weather vari-
able only at a time has been reported in many research
works [11]. This approach has been more successful at pre-
dicting crop yield especially through quantile random forest
and decision trees regression (DTR). The common problem
of these approaches is that they do not account for simulta-
neous or joint effect and interdependence of weather ran-
dom variables.

A viable way of constructing a process with joint effect of
the weather variables is through construction of a joint prob-
ability distribution of rainfall, temperature, and reference
transpiration, which, by definition, is a probability that
the three weather conditions attain at most some values at
a point simultaneously. To derive a multivariate distribu-
tion function, authors use a variety of methods such as
mixtures, convolutions, variable transformations, and cop-
ulas [12]. In the case of obtaining probability distribution
of a sum of random variables, the use of convolutions can
be important [13]. In a mixture the domains of marginal
probability distributions should be identical. Variable trans-
formations usually assume independence or identical prob-
ability distributions [14].

A copula is different in a joint distribution that is formed
from cumulative distribution functions rather than the prob-
ability distribution functions themselves. This eliminates the
need for ensuring that domains are identical. This is so
because it can be proved that a cumulative distribution func-
tion is a uniform random variable in the domain ½0, 1� [15] .
In addition, a copula obeys invariance property under como-
notonic transformation like the cumulative distributions
themselves. Therefore, a copula itself is a measure of depen-
dence among random variables for which a joint distribution
is to be formulated. Perfect comonotonic and counter-
monotonic properties are satisfied by Fletcher-Hoeffding
bounds [16].

It is very common, in literature, that authors use copulas
to measure dependence; derive joint probability distribu-
tions; and calculate covolatility. The applications range from
image processing, flood, to weather modeling in physics, sta-
tistics, and finance. The pioneering use of copulas in order to
achieve similar aims of this paper can be seen in the works of
Leobacher and Ngare [17] where they are using them to
combine a Markov-Chain probability density with that of a
gamma random variable for rainfall modeling. A composite
modeling could as well achieve the same as seen in Dzupire
et al. [18], because the Markov chain variable for rainfall fre-
quency could simply be modeled as a Poisson or Negative
binomial process. The trend was maintained till the work
of Dzupire et al. [19] extended the modeling to two different
weather processes of rainfall and temperature. The research
was replicated by Bressan and Romagnoli [20] who never
extended to three weather variables.

Common methods of constructing multivariate copulas
include direct substitution method, conditioning, and nest-
ing. The direct method involves that of simply substituting
the cumulative distribution functions into a copula [21].

The only advantage of this method is that it is simple. It
requires one to know exact formulas of copula. Archime-
dean copulas are well suited to this method. In addition this
method requires variables to exhibit positive dependence.
That is, it cannot be well suited to weather modeling that
exhibit negative dependencies in some cases.

Once copulas are constructed, authors like Pietsch et al.
[22], use uniform distribution sampling techniques that
investigate whether pairwise dependencies are preserved in
the distribution. Whenever these algorithms are applied to
copulas obtained through the use of direct substitution
method, pairwise dependencies preservation cannot be satis-
fied. Nesting also faces the same problem. It can pass on
some but not all pairwise dependencies.

The most successful way of constructing copulas in a
way that preserves pairwise dependencies is through use of
conditioning. In this method, the copula is expressed as a
product of two or three probabilities in lower variables. Acar
et al. [23] used this type of method to construct trivariate
copulas of vine type. Sometimes, components of the product
cannot be easily constructed or their closed forms are not
known. In Salvadori and De Michele [24] methods of
approximating product components are presented. This
clearly means that this method may not give unique copulas
because the final copula is dependent on the method used to
approximate a conditional copula in the product.

To take care of problems such as these, Plackett [25]
derived a class of copulas called Plackett Family that are con-
structed by making sure that pairwise dependence is satisfied
through a measure called product ratio. A trivariate copula is
then constructed using another ratio by solving a fourth
order polynomial. This method has been used to model
drought variables by Song and Singh [26]. Further applica-
tions in engineering as well as advantages of this copula
including easiness of getting measures pairwise dependence
are fully described in Zhang and Singh [27].

In summary, there are three problems exhibited in lit-
erature. The first problem is that of existence of a joint
stochastic process of the three major processes of tempera-
ture, rainfall amount, and reference evapotranspiration that
affect maize yield, given that there are interdependent and
have significantly changed over time. Weather data shows
not only nonlinearity but also nonstationarity due to climate
change. The second problem is of existence of stochastic
model of maize yield that takes in the joint process as argu-
ment. In other words, how can the joint stochastic process
be incorporated in a multivariate stochastic differential to
predict maize yield? The last problem which is dependent
on the first two problems is this: given such model is derived,
how does it compare with common and most recent methods
of grain yield prediction in sub-Saharan Africa?

The aim of this paper is to model and predict maize yield
using a stochastic weather process of rainfall amount, tem-
perature, and reference evapotranspiration. Specifically, we
construct the stochastic process in a manner that takes care
of joint or simultaneous effect of the three weather processes
as well as the impact climate change which causes nonlinear-
ity and nonstationarity in the weather data. By deriving
these qualities from trivariate joint probability distribution

2 Journal of Applied Mathematics



and the Fokker-Planck equation, the joint process increases
accuracy in weather elements and maize yield prediction.

In summary, this paper makes the following
contributions:

(i) We construct a joint stochastic process from the
weather processes of temperature, rainfall amount,
and reference evapotranspiration. Through copulas
and sampling from solutions of Fokker-Planck
equation in ℝ3, the trivariate joint process captures
interdependence, simultaneous weather events, and
nonlinearity and nonstationarity information in
the data that are caused by climate change. This
makes it give precise prediction of weather variables
even before using it in forecasting maize yield.

(ii) We model maize yield in terms of the joint stochas-
tic process. This model captures volatility variation,
usual linear trend in maize yield, and also significant
nonlinear and nonstationary trend caused by simul-
taneous effects of the weather variables.

(iii) We predict maize yield using the stochastic maize
yield, and the joint stochastic weather models con-
structed. The two stochastic processes give accurate
and precise maize yield predictions under Monte-
Carlo simulations, and machine learning methods.
The results show that the joint stochastic process
increases the performance of models in predicting
maize yield.

The rest of this paper is organized as follows: stochastic
models for each random variable are analyzed or derived
in Section 2; joint probability densities of rainfall, tempera-
ture and reference evapotranspiration are derived and ana-
lyzed in Section 3; a joint stochastic process that follows
the joint probability density is constructed and validated in
Section 4, which is used to predict maize yield in Section 5.
Conclusions are presented in the last section.

2. Stochastic Models

2.1. Rainfall Amount. In order to model rainfall process for
derivative pricing or crop yield prediction, authors have used
models that are based on Poisson, Gamma, and mixed Expo-
nential distributions. Rainfall is considered to be a stochastic
process consisting of two random variables: one represent-
ing frequency, which is a two state Markov Chain, and the
other for rainfall amount. These variables can be modeled
separately as in Cabrales et al. [5]. They can also be com-
bined as a composite variable as in Dzupire et al. [18]. They
are also studied jointly through copulas as in Leobacher and
Ngare [17]. This paper considers modeling rainfall amount
only. With respect to the data collected for this study, from
Chitedze in Malawi, rainfall amount follows Gamma proba-
bility distribution (Figure 1(a)).

Let random variable RðtÞ represent daily rainfall
amounts, then the probability density of the R is given by
the form in

f R rð Þ = rα−1e−rβ
−1

βαΓ αð Þ , r > 0, β > 0, α > 0: ð1Þ

It can also be assumed that R’s are autocorrelated, that is
ℂovðRðtÞ, Rðt + ΔtÞÞ/VarðRÞ = exp ð−γ1ΔtÞ, 0 < γ1 < 1. If the
probability density [23] satisfies Fokker-Planck partial dif-
ferential equation, then the corresponding stochastic differ-
ential is given by

dRt = γ1 tð Þ β α − 1ð Þ − Rtð Þdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ1 tð ÞβRt

p
dW 1ð Þ tð Þ, ð2Þ

where WðtÞ is a standard Brownian motion. Ross [28]
defines the Wiener Process as the stochastic process fWðtÞ
, t ≥ 0g such that ℙðWð0Þ = 0Þ = 1, EðWðtÞÞ = 0, VarðWðtÞ
Þ = t, WðtÞ ~Nð0, tÞ, and fWðtÞ −WðsÞ, 0 < s < tg is the
independent process. The model in Equation (2) is an exam-
ple of Ito’s diffusion equality of the form

dRt = μ Rt , tð Þdt + σ Rt , tð ÞdWt , ð3Þ

where μðRt , tÞ is called drift coefficient and σðRt , tÞ the diffu-
sion coefficient. Thus, Model [29] can be derived by using
the method in Bykhovsky [30] as follows:

σ2 Rt , tð Þ = −2
τf R rð Þ

ðr
0
s − E Yð Þð Þf Y sð Þds

= −2
τf R rð Þ

ðr
0
s − αβð Þ s

bα−1e−sbβ−1

bβbαΓ bαð Þ ds
= −2
τf R rð Þ −βrð Þf R rð Þ = 2βr

τ
, τ

= Δt
−log ℂov R tð Þ, R t + Δtð Þð Þ/Var R tð Þð Þð Þ

= 1
γ1

= 2γ1βr⇒ σ Rt , tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ1 tð ÞβRt

p
,

μ Rt , tð Þ = σ2 Rt , tð Þ
2

∂
∂r

log σ2 Rt , tð Þf R rð ÞÀ ÁÂ Ã
= βr

τ

∂
∂r

log 2β
τBα

� �
−

r
β
+ α − 1ð Þ log rð Þ

� �

= β α − 1ð Þ − r
τ

⇒ μ Rt , tð Þ = γ1 β α − 1ð Þ − Rtð Þ:
ð4Þ

Putting ([7, 8] in Equation (3) gives [29].

2.2. Reference Evapotranspiration. The following formula is
used to calculate daily reference evapotranspiration (Et) data
for Malawian conditions [2]

Et =
0:408Δ Rn −Gð Þ + γ 900/T + 273ð Þu2 es − eað Þ

Δ + γ 1 + 0:34u2ð Þ : ð5Þ

Et is the reference evapotranspiration measured in mm,
Rn is solar radiation in mega joules per square meter, G is
soil heat flux density in the same units of solar radiation, T
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is the average of maximum and minimum temperatures in
degree Celsius, u2 is the wind speed in meters per second,
ea is the actual water vapor measured in kilo pascals, Δ is
the pressure gradient in kilo pascals per unit of temperature,
and γ is the constant of phychometry.

There has been no consensus in the suitable type of
probability distribution for evapotranspiration. Khanmo-

hammadi [31] fitted annual reference evapotranspiration
data to Lognormal, generalized logistic, and Pearson III dis-
tributions and realized that Pearson III was the most appro-
priate. Uliana et al. [32] fitted evapotranspiration to Gamma
distribution, which is a type of Pearson III distribution. Mso-
woya et al. [33] fitted the evapotranspiration data to the gen-
eralized logistic distribution. This suggests that for daily data
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Figure 1: Probability density of daily rainfall amount for Chitedze.
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and sub-Saharan conditions, the best candidate distributions
are generalized logistic and the Gamma distribution. The
data used for this study shows that reference evapotranspira-
tion also follows gamma distribution (Figure 2).

Therefore, reference evapotranspiration can also be
modeled by the stochastic differential equation of the form
in

dEt = γ2 tð Þ β2 α2 − 1ð Þ − Etð Þdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2 tð Þβ2Et

p
dW 1ð Þ tð Þ:

ð6Þ

2.3. Daily Temperature. Authors usually model temperature
(Zt) using the mean reverting Ornstein–Uhlenbeck process
[34] of the form

dZt = dst − κt Tt − st½ �dt + σtdWt , ð7Þ

where st is cyclic seasonal mean, Tt = 0:5 min ðTÞ + 0:5
max ðTÞ is daily average temperature, κt is rate of mean
reversion, and σt is seasonal volatility of Tt . The advantages
of using this model is that the model takes into account of
the fact that, given a source of randomness Ht in tempera-
ture, Zt tends to move back to its seasonal trend say st and
the speed of doing that is captured by κt .

Dzupire et al. [19] assume that Ht is Normal Inverse
Gaussian Levy process. This would mean that fHt1

−Ht2
, 0

≤ t2 < t1g is an independent process [35]. To use this model

in maize prediction, one can derive a new partial differential
equation of the Ornstein-Unlenbeck process, and then, cal-
culate derivative predictions using Alaton or finite difference
method. Such forecasts could not be computationally realis-
tic as temperature is also dependent on rainfall as well as ref-
erence evapotranspiration. Alternatively, one could assume
that Ht is fractional Brownian motion. Under this assump-
tion, the model would take the following form [36]

dZt =
dst
dt

+ κt st − Ztð Þ
� �

dt + σtdHt: ð8Þ

This would explain how the seasonal mean temperature
would be updated by mean reverting process. The disadvan-
tage of such assumption would be that predictions estimated
from a stochastic equations realized from such assumption
would not be computationally more realistic than that one
assuming Levy Process. The stochastic differential equation
in Model [30] can be expressed in the form

d Zt − stð Þ = −κt Tt − st½ �dt + σtdWt

= −κt Tt − st − 0½ �dt + σtdWt:
ð9Þ

Therefore, if −1 < κt < 0, then Zt − st is approximately
normally distributed with mean 0 and variance σ2t [37]
whenever Zt ⟶ Tt and σt ⟶ 0. Similarly, if Zt − st ⟶
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Figure 2: Probability density for Et:
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Tt , then Tt is approximately normally distributed with mean
st and variance σt .

To prove this, consider

T ~N st , σtð Þ⇒ f Tt
tð Þ = 1

σt
ffiffiffiffiffiffi
2π
p exp −

1
2

t − st
σt

� �2
 !

, t ∈ℝ,

ð10Þ

and that

dTt = F Tt , tð Þdt +G Tt , tð ÞdWt: ð11Þ

Then by the method in Bykhovsky [30], we have

G2 Tt , tð Þ = −2
τf Tt

tð Þ
ðt
−∞

w − E Ttð Þð Þf Tt
wð Þdw

= −2
τf Tt

tð Þ
ðt
−∞

w − stð Þ 1
σt

ffiffiffiffiffiffi
2π
p exp −

1
2

w − st
σt

� �2
 !

dw

= −2
τf Tt

tð Þ f Tt
tð Þ −σ2t
À Á

= 2σ2
t

τ
= 2γ3σ2t ⇒ G T , tð Þ

=
ffiffiffiffiffiffiffi
2γ3

p
σt ,

F T , tð Þ = G2 T , tð Þ
2

∂
∂t

log G2 Tt , tð Þf Tt
tð Þ

� �h i

= 2γ3σ2
t

2
∂
∂t

log 2σtffiffiffiffiffiffi
2π
p exp −

1
2

t − st
σt

� �2
 ! !" #

= −
2γ3σ2

t

2 × t − st
σ2t

= −γ3 t − stð Þ⇒ F T , tð Þ
= −γ3 Tt − stð Þ:

ð12Þ

Hence, the stochastic differential equation in Model [14]
can be expressed in the form

dTt = −γ3 Tt − stð Þdt + ffiffiffiffiffiffiffi
2γ3

p
σtdWt

= γ3 st − Ttð Þdt + ffiffiffiffiffiffiffi
2γ3

p
σtdWt:

ð13Þ

The stochastic models in Equations (13) and (10) are
suitable for the temperature data at hand (Figure 3).
Table 1 shows that we cannot reject the null hypothesis that
the data for the variables at hand follow the assumed proba-
bility distributions.

3. Trivariate Probability Density

3.1. Verification of Pairwise Dependence. The bivariate
copulas, from Frank family, are used to find joint cumula-
tive distributions FR,TðR, TÞ, FR,EðR, EÞ, and FE,TðE, TÞ.
Frank family of copulas are picked because, unlike other
types of copula, they admit both negative (counter mono-
tonic) and positive (comonotonic) dependencies [27]. This
is done to ensure preservation of pairwise dependencies in

the trivariate copula. The bivariate Frank copula is given
by Equation [38].

Cθ v1, v2ð Þ = −
1
θ
ln 1 + e−θv1 − 1

À Á
e−θv2 − 1
À Á

e−θ − 1
À Á

" #
, θ ≠ 0,

ð14Þ

τ = 2
n n − 2ð Þ〠

n−1

i=1
〠
n

j=i+1
sign xi − xj

À Á
yi − yj
� �� �

: ð15Þ

Since θ is related to Kendall’s τ by the formula τ = 1
− ð4/kÞðDð−θÞ − 1Þ where DðθÞ = −1/θ

Ð θ
0ðt/exp ðtÞ − 1Þdt,

τ is estimated using nonparametric method in Equation
(15). Upon estimating three values of Kendall’s τ, corre-
sponding θ values are estimated using τ = 1 − ð4/kÞðDð−θ
Þ − 1Þ in MATLAB2021a. The results (Table 2) are
summarized.

The estimates of both τ and θ for rainfall and tempera-
ture are found to be negative and smaller in magnitude,
which suggests slight counter-monotonic dependence. Simi-
lar interpretation can be conveyed for rainfall and evapo-
transpiration pair, where the negative dependence seems to
be slightly higher. The values for the relationship between
reference evapotranspiration and temperature are all posi-
tive and bigger in magnitude, which suggests higher positive
dependence (Figure 4(b)). Hence, the joint cumulative dis-
tribution were found using the relations: FR,TðR, TÞ =
Cbθ ðR,TÞ ðu,wÞ, FR,EðR, EÞ = Cbθ ðR,EÞ ðu, vÞ, and FE,TðE, TÞ =
Cbθ ðE,TÞ ðv,wÞ, where u =ℙðR ≤ rÞ, v = ℙðEt ≤ etÞ, and w = ℙð
T ≤ tÞ.

To verify pairwise dependence, the random variable Hi
, i = 1, 2, 3 that follow each of the joint distribution is calcu-
lated using the nonparametric method in Equation (16)

Hi =
∑n

j=11 xj ≤ xi, yj ≤ yi, i ≠ j
� �

n − 1 , ð16Þ

Wi:n = nnn−i

ð1
0
−w ln wð Þ w −w ln wð Þð Þi−1
�

Á 1 −w +w ln wð Þð Þn−i
�
dw:

ð17Þ

The expected values of this random variable are then cal-
culated using the method in Equation (17). Then, a KK −
plot, which is a graph of the order statistic HðiÞ against
Wi:n is plotted. The curve ðHðiÞ,Wi:nÞ existing below line h
=w represents counter-monotonic dependence; coinciding
with h =w implies independence, and moving above h =w
represents comonotonic dependence [38].

Figure 5(a) suggests that there is higher comonotonic
(positive) dependence between temperature and reference
evapotranspiration ðET0Þ, because the curve ðHðiÞ,Wi:nÞ is
on the upper side of the diagonal line h =w and much closer
to the curve of perfect positive dependence. For rainfall and
evapotranspiration, and also rainfall and temperature, the
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Figure 3: Probability density of daily temperature for Chitedze.

Table 1: Kolmogorov test.

Random variables K-statistic
P value at 5%

significance level

R versus gamma quantiles 0:03947 0:549
T versus normal quantiles 0:0119 0:165
E versus gamma quantiles 0:0132 0:277

Table 2: Parameters for copulas.

bθ Estimate τ Estimate

bθ R,Yð Þ -2.018 bτ R,Yð Þ -0.216

bθ Y ,Zð Þ 3.654 bτ Y ,Zð Þ 0.362

bθ R,Zð Þ -1.219 bτ R,Zð Þ -0.133
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curve ðHðiÞ,Wi:nÞ is located below the line h =w, which sug-
gests negative (counter-monotonic) dependence. However,
Figure 5(c) suggests that there is slight dependence between
temperature and rainfall, because the curve is much closer to
the line h =w. The curve ðHðiÞ,Wi:nÞ does not coincide with
the independence straight line h =w, which suggests that
there is interdependence among the three variables. To get
significant evidence of interdependence among the three

variables, cross product ratios are calculated among pairs
using the following formula in Equation [9].

ψUV u, vð Þ = ℙ U ≤ u, V ≤ vð Þℙ U > u, V > vð Þ
ℙ U > u, V ≤ vð Þℙ U ≤ u, V > vð Þ

= CUV u, vð Þ 1 − u − v + CUV u, vð Þ½ �
u − CUV u, vð Þ½ � v − CUV u, vð Þ½ � :

ð18Þ
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In addition, a nonparametric form of the above equation
can also be used. Its formula is given by formula in

bψUV = ∑1 U < u∗, V < v∗ð Þ∑1 U > u∗, V > v∗ð Þ
∑1 U < u∗, V > v∗ð Þ∑1 U > u∗, V < v∗ð Þ , ð19Þ

where v ∗’s are medians. Both methods were used to calcu-
late the values of the cross-product ratios. Nonparametric
method allows for checking whether the data can give reli-
able estimates of the ψ’s or not.

Figure 6 shows that the cross-product ratio for the three
pairs are constant (Figure 6), which agrees with hypothesis
in Plackett [25]. The central lines (averages) are summarized
in Table 3.

Clearly, ψðR,EÞ = 0:374 < 1, and ψðR,TÞ = 0:546 < 1
(Table 3), which implies that there is significant negative
dependence between rainfall and evapotranspiration, and also
between rainfall and temperature. Similarly, ψðT ,EÞ = 5:609 >
>1 which means there is significantly high positive interde-
pendence between temperature and evapotranspiration. In
addition, the nonparametric estimations from the data set
are close to the parametric ones because the sample size is
high. Hence, nonparametric method are used for ψUVW .

3.2. Trivariate Probability Density. The trivariate cross prod-
uct ratio is given by formula in

ψUVW = P000P011P101P110
P111P100P010P001

, ð20Þ

where P000 = CUVWðu, v,wÞ, P100 = CVwðv,wÞ − P000, P010 =
CUWðu,wÞ − P000, P001 = CUVðu, vÞ − P000, P110 =w − P010 −
CVWðv,wÞ, P101 = v − P001 − CVWðv,wÞ, P011 = u − P010 −
CUVðu, vÞ, and P111 = 1 − u − v −w + CUVðu, vÞ + CVWðv,wÞ
+ CUWðu,wÞ − P000.

Since P000 = CUVWðu, v,wÞ, and there is need to calculate
the trivariate copula, nonparametric methods are applied to
estimate ψ. In order to use such methods as these, the prob-
abilities are replaced by counts that satisfy the conditions for
which the probabilities in the formula can be calculated. For
example, P000 is replaced by ∑1ðU < u∗,V < v∗,W <w ∗Þ
and P001 can also be substituted by ∑1ðU < u∗,V < v∗,W
>w ∗Þ [39], where v ∗’s are medians. The estimates are
done using the data sets for R, Et , andT , and also using u,
w, and v estimated in the first section. The results in
Table 4 are obtained. The fourth order polynomial in Equa-
tion (21) is solved to get trivariate copula of the form
CUVWðu, v,wÞ by using the results in all previous steps

0 = ψUVW a1 − z0ð Þ a2 − z0ð Þ a3 − z0ð Þ a4 − z0ð Þ
− z0 z0 − b1ð Þ z0 − b2ð Þ z0 − b3ð Þ, ð21Þ

where z0 = CUVWðu, v,wÞ, a1 = CVWðv,wÞ, a2 = CUWðu,wÞ
, a3 = CUVðu, vÞ, a4 = 1 − u − v −w + CVWðv,wÞ + CUWðu,
wÞ, b1 = −w + CUWðu,wÞ + CVWðv,wÞ, b2 = −v + CUVðu, vÞ
+ CVWðv,wÞ, and b3 = −u + CUWðu,wÞ + CUVðu, vÞ. Fac-
tor method is used instead of Newton-Raphson method,
because by fundamental theorem of algebra, every poly-
nomial has a solution in ℂ. The Newton-Raphson

(c) Temperature vs. rainfall

Figure 5: KK − plots for the three 2-Copulas.
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method requires one to guess the initial value of z0,
which is difficult in Plackett copulas [40]. The factor
method gives four solutions at each value of coefficient. The
cross-product ratio is always constant. The solution that sat-
isfies definition of copula and Frechet-Hoeffding bounds is
chosen. The results are summarized in Figure 7. This figure
shows how the values of trivariate joint cumulative distribu-
tion change with time in the growing seasons between 2019
and 2021. It also shows changes in rainfall in the same grow-
ing seasons.

Since the cumulative marginal distribution functions are
continuous, Sklar’s Theorem [16] guarantees existence of a
copula C such that Fðr, y, zÞ = CðFEðyÞ, FTðzÞ, FRðrÞÞ =
CUVWðu, v,wÞ. Assuming smoothness of C and the defini-
tion of joint probability density function
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Figure 6: Parametric estimate of ψ’s

∂3F y, r, zð Þ
∂y∂r∂z

= ∂3C F yð Þ, F zð Þ, F rð Þð Þ
∂x∂r∂z

,

f y, r, zð Þ = c F yð Þ, F zð Þ, F rð Þð Þf yð Þf zð Þf rð Þ,

f X
 
, t

� �
=
c F yð Þ, F zð Þ, F rð Þð Þrα1−1yα2−1 exp −r/β1 − y/β2 − 1/2 z − bμ/bσð Þ2

� �
βα1
1 β

α2
2
ffiffiffiffiffiffiffiffiffiffi
2πσ2
p

Γ α1ð ÞΓ α2ð Þ
:

ð22Þ

Table 3: Bi-variate cross product ratios.

Cross product ratio Nonparametric Parametric

ψ R,Eð Þ 0.430 0.374

ψ R,Tð Þ 0.548 0.546

ψ T ,Eð Þ 4.510 5.609

Table 4: Estimates of ψUVW .

Method of estimation Value of bψUVW

Using raw data 1.1424

Using CDF’s 1.3914
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Since there is no closed form of CðFðyÞ, FðzÞ, FðrÞÞ, the
values of cðFðyÞ, FðzÞ, FðrÞÞ are calculated using algorithm
in Zhang and Singh [27] and also using the fact that

∂3C F yð Þ, F zð Þ, F rð Þð Þ
∂x∂r∂z

= c F yð Þ, F zð Þ, F rð Þð Þf yð Þf zð Þf rð Þ

⇒ log ∂3C F yð Þ, F zð Þ, F rð Þð Þ
∂x∂r∂z

 !

= log c F yð Þ, F zð Þ, F rð Þð Þf yð Þf zð Þf rð Þð Þ:
ð23Þ

Figure 8 shows three scatter plots of the joint f ðX , tÞ
against each weather variable for data sampled during the
maize growing seasons only. The patterns are different and

points rise considerably to greater height which informs
uniqueness and maintenance of pairwise dependence.

The trivariate Frank copula that is not symmetric is
given by the Formula (24). This is calculated through nesting
method of the form Cθ1

ðu, Cθ2
ðv,wÞÞ [41]. A closed form of

cUVWðu, v,wÞ = ∂3CUVWðu, v,wÞ/∂u∂v∂w can be calculated
using symbolic integration in MATLAB2021a or Python
3.10.1. Such expression is very complicated but it is the exact
copula density. Figure 9 are scatter plots of f R,E,Tðr, y, zÞ =
cUVWðu, v,wÞf EðyÞf RðrÞf TðzÞ against the weather variables.
The points pattern are different which suggests that the
information of pairwise dependence is passed on to the tri-
variate copula. However, the points are dense at the bottom
which suggests that uniqueness is not guaranteed by the
copula.

where θ1 = θðY ,ZÞ, θ2 = θðR,YÞ.
The definition of conditional probability density pro-

vides that f ðyjxÞ = f ðr, yÞ/f ðrÞ⇒ f ðr, yÞ = f ðrÞf ðyjrÞ. It can
also be proved that

f r, y, zð Þ = f rð Þf yjrð Þf zjr, yð Þ, ð25Þ

f Y jR yjrð Þ = cUV u, vð Þf Y yð Þ, ð26Þ

f zjx, yð Þ = cWV jU FZjX , FY jX
� �

cWU u,wð Þf Z zð Þ: ð27Þ
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Figure 7: Values of CUVWðu, v,wÞ.

CUVW u, v,wð Þ = −
1
θ1

ln 1 − 1 − e−θ1w
À Á

1 − 1 − e−θ2u
À Á

1 − e−θ2v
À Á

/ 1 − e−θ2
À ÁÀ Á

1 − e−θ1
À Á

" #
, ð24Þ
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Thus, Equation (25) can be expressed as follows

f r, y, zð Þ = f rð ÞcUV u, vð Þf Y yð ÞcWV Uj

Á FZ Xj , FY Xj
� �

cWU u,wð Þf Z zð Þ
= f rð Þf Y yð Þf Z zð ÞcUV u, vð ÞcWU

Á u,wð ÞcWV Uj FZ Xj , FY Xj
� �

:

ð28Þ

Using results in the previous section

f R rð Þf E yð Þf T zð Þ = rα1−1yα2−1

βα1
1 β

α2
2
ffiffiffiffiffiffiffiffiffiffi
2πσ2
p

Γ α1ð ÞΓ α2ð Þ
exp

Á −
r
β1

−
y
β2

−
1
2

z − bμbσ
� �2 !

:

ð29Þ

Uniqueness of f ðr, y, zÞ can be affected if one chooses
cWV jUðFZjX , FY jXÞ to be cWVðFZjX , FY jXÞ. However, for
Frank copula, cWVjUðFZjX , FY jXÞ, can attain the following
form

cWV jU s1, s2ð Þ = 2s1s2 + s1 − 3s1s2 + s2ð Þe−θu + 1 − s1ð Þ 1 − s2ð Þe−2θu
1 + 1 − s1ð Þ 1 − s2ð Þ e−θu − 1

À ÁÀ Á3 ,

ð30Þ

where s1 = FZjX , s2 = FY jX , θ = θWV jU > 0.
The parameter θWV jU is estimated by pseudo-maximum

likelihood estimation method [42]. Let Aij = 2sisj, Bij = ðsi
− 3sjsi + sjÞ, Cij = ð1 − siÞð1 − sjÞ. We have
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(c) f R,E,T ðr, y, zÞ vs. evapotranspiration

Figure 8: f R,E,Tðr, y, zÞ estimated from Plackett 3-copula.

Y
w,v

cWVjU =
Y
i,j

Aij + Bije
−θu + Cije

−2θu

1 + Cij e−θu − 1
À ÁÀ Á3 ,

L =〠
i,j

log Aij + Bije
−θu + Cije

−2θu
� �

− 3〠
i,j

log 1 + Cij e−θu − 1
� �� �

,

∂L
∂θ

=〠
i,j

C2
iju + 2C2

ijue
θu − Bijue

2θu − 2Cijue
θu + 3AijCijue

2θu + 2BijCijue
θu + BijCijue

2θu

Aije3θu + Bije2θu + Cijeθu + C2
ij − C2

ije
θu + AijCije2θu − AijCije3θu + BijCijeθu − BijCije2θu

:

ð31Þ
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Let Πij = Aije
3θu + Bije

2θu + Cije
θu + C2

ij − C2
ije

θu + AijCij

e2θu − AijCije
3θu + BijCije

θu − BijCije
2θu, which is the

denominator.
Let L3 =∑i,jðC2

ij/ΠijÞ, which is the coefficient of ue0 in
right hand side.

Let L2 =∑i,jð2C2
ij − 2Cij + 2BijCij/ΠijÞ, which is the coef-

ficient of ueθu in the numerator. Let L1 =∑i,jðBijCij + 3Aij

Cij − Bij/ΠijÞ, which is the coefficient of ue2θu in the right
hand side.

Then, the whole expression is reduced to

∂L
∂θ

= u L1e
2θu + L2e

θu + L3
� �

, ð32Þ

If ∂L/∂θ = 0, then

θ = 1
u
log −L2 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L22 − 4L1L3

p
2L1

 !
: ð33Þ

This is an implicit function of θ because Πij contains e
θ.

Thus, it can be solved recursively. It is also solved explicitly
by assuming Πij = 1, because by putting ∂L/∂θ = 0 the
numerator tends faster to 0 than the denominatorΠij. Using
MATLAB, under the second assumption we have

θWVjU = −1:5031
u

or 0:1996
u

: ð34Þ

Since θWVjU > 0, we choose the parameter to be θWV jU
= 0:1996/u. Assuming that Πij ≠ 1, we solve this equation
recursively for θWV jU . Since θWV jU > 0, we initialize θWV jU
to 0:0001. The results are compared with those for θWV jU
= 0:1996/u, where Πij is assumed to be 1, in Figure 10.

Clearly, the estimate of θWV jU wheneverΠij ≠ 1 reverts to
that of calculated upon assuming that Πij = 1 (Figure 10).
Hence, we take θWVjU = 0:1996/u as reasonable estimate of
θWV jU . In Acar et al. [23] such estimate as this is also a func-
tion of u. However, this quantity is estimated as cubic regres-
sion which is avoided in the estimation adopted in this study.

Figure 11 suggests also that the dependence structure of
the three variables is maintained since the scatter plots are
different. It also suggests that there is higher level of unique-
ness because the points are not clustered at the bottom. It
also suggests that the vine copula is better than the other
copulas with respect to the data at hand.

Akaike Information Criterion (AIC) is given by AIC =
2ðdÞ − 2L, where L is the maximum value of likelihood func-
tion (MLF), and d is the number of parameters in the joint
distribution function. Let Lp, Lf and Lc be MLF’s for f ðr, y,
zÞ determined through Plackett copula, Frank copula, and
conditioning method.

Lp,f = 〠
n

i=1
log cUVW ui, vi,wið Þð Þ + 〠

n

i=1
log f rið Þf yið Þf zið Þð Þ,

Lc = 〠
n

i=1
log cUV ui, við ÞcWU ui,wið ÞcWV jU si1, si2ð Þf rið Þf yið Þf zið Þ
� �

:

ð35Þ
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Figure 9: f R,E,Tðr, y, zÞ estimated from Frank 3-copula.
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The Schwartz Bayesian Information Criterion (SBIC) is
given by BIC = log ðndÞ − 2L. Table 5 shows that the Frank
trivariate copula obtained through nesting is not well suited
to the data at hand because it has high value of AIC. It also
suggests that copula vine, copula found through condition-
ing is comparable to the Plackett copula.

4. Joint Stochastic Process

Definition 1. An Ito’s differential equation is the one of the
form

dX
 
= μ
 dt +DdW

 
, ð36Þ

where

μ
 =

μR t, Rtð Þ
μE t, Eð Þ
μT t, Tð Þ

0
BB@

1
CCA,

D =
σR t, Zð Þ 0 0

0 σE t, Eð Þ 0
0 0 σT t, Tð Þ

0
BB@

1
CCA,

X
 
=

Rt

Yt

Zt

0
BB@

1
CCA,

ð37Þ

and

W
 

=
WR

WE

WT

0
BB@

1
CCA, ð38Þ

μ’s are drift functions, σ’s are diffusion coefficient functions,
ρ’s are correlation coefficients, and W’s are Wiener
processes.

Definition 2. Let

X
 
=

R

E

T

0
BB@

1
CCA =

X1 tð Þ
X2 tð Þ
X3 tð Þ

0
BB@

1
CCA, ð39Þ

and f ðX , tÞ = cðFðx1Þ, Fðx2Þ, Fðx3ÞÞf ðx1Þf ðx2Þf ðx3Þ
where c = cðFðx1Þ, Fðx2Þ, Fðx3ÞÞ is copula density. Then the
Kolmogorov forward (Fokker-Planck) [43] equation is given

∂f X
 
, t

� �
∂t

= −〠
3

i=1

∂μ Xi, tð Þf X
 
, t

� �
∂xi

+ 〠
3

i=1
〠
3

j=i

∂2

∂xixj

1
2 〠

3

k=1
σikσkj f X

 
, t

� �" #
:

ð40Þ

In order to use the Fokker Plank equation we put a11ðRiÞ
= γ1ðtÞðβ1ðα1 − 1Þ − RtÞ, aiiðXiÞ = μðXi, tÞ and b11ðRÞ =

Figure 10: Maximum likelihood estimation of θWVjU
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ1ðtÞRt

p
, bij = σikσkj. The Fokker-Planck equation can be

solved by an operator splitting technique with six split sub-
problems. Thus,

f rð Þf yð Þf zð Þ
6

∂c
∂t

� �
∗
= 1
2
∂2

∂r2
21/2γ1/2 f X

 
, t

� �� �

= K∗r−3/2rα1−1e−r/β1

4β2
1

4α21 − 8α1 + 3
À Á

β2
1

À
− 4β1 2α1 − 1ð Þr + 4r2

Á
,

ð41Þ

where K∗ = ðγ1/2cðFðyÞ, FðzÞ, FðrÞÞyα2−1/2βα1
1 β

α2
2
ffiffiffiffiffiffiffiffiffiffi
2πσ2
p

Γð
α1ÞΓðα2ÞÞ exp ð−y/β2 − 1/2ðz − bμ/bσÞ2Þ:

Solving for γ1/2 yields the following equation that also
depends on copula density c = cUVWðu, v,wÞ

γ1/2i =
x3/2i 4

ffiffiffi
2
p

β2
1/6cUVW u, v,wð Þ

� �
∂c/∂tð Þ∗ exp xi/βið Þ

4α2i − 8αi + 3
À Á

β2
i − 4βi 2αi − 1ð Þxi + 4x2i

À Á , i = 1, 2:

ð42Þ

This result is also true for the second split subproblem
because both rainfall and reference evapotranspiration fol-
low gamma distribution. This mean Xi = xi ∈ fri, yig. Hence,
without loss of generalization, the third and forth split sub-
problems can also be expressed as follows

f rð Þf yð Þf zð Þ
6

∂c
∂t

� �
∗

= −
∂
∂r

γ1 tð Þ β1 α1 − 1ð Þ − rð Þf X
 
, t

� �� �
= −γ1K

∗ α1β1 − r
β1

exp −
r
β1

� �
rα1−1

+⋯γ1K
∗ α1β1 − r − β1

β1
exp −

r
β1

� �
rα1−1r−1:

ð43Þ

Solving for 1/cð∂c/∂tÞ∗ yields the following

1
c

∂c
∂t

� �
∗
= 6γi tð Þ βi − 1ð Þ

rβi
: ð44Þ

Coupling results in Equations (42) and (44) yields

γi tð Þ−1/2 =
4
ffiffiffi
2
p

βi βi − 1ð Þx3/2i exp xi/βið Þ
4α2i − 8αi + 3
À Á

β2
i − 4βi 2αi − 1ð Þxi + 4x2i

À Á , i = 1, 2:

ð45Þ
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Figure 11: f R,E,Tðr, y, zÞ estimated from conditioning.

Table 5: Comparing methods of finding densities.

Method AIC SBIC

Plackett copula 4:8147 × 104 4:8166 × 104

Conditioning method 4:7605 × 104 4:7643 × 104

Nesting frank copula 1:0227 × 105 1:0229 × 105
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Considering the fifth split subproblem and also the fact
that a3ðzÞ = γ3ðtÞðσðμ − zÞ and b33ðzÞ = 21/2σγ1/23

f rð Þf yð Þf zð Þ
6

∂c
∂t

� �
∗
= 1
2
∂2

∂z2
21/2σγ1/23 f X

 
, t

� �� �

= 1
2
∂2

∂z2
K∗ exp −

1
2

z − μ

σ

� �2� �� �
,

ð46Þ

where K∗ is a constant that does not explicitly contain z var-
iables. That is,

K∗ = 21/2σγ1/23 crα1−1yα2−1

βα1
1 β

α2
2
ffiffiffiffiffiffiffiffiffiffi
2πσ2
p

Γ α1ð ÞΓ α2ð Þ
exp −

r
β1

−
y
β2

� �
: ð47Þ

Finding the second order partial derivatives results in

f rð Þf yð Þf zð Þ
6

∂c
∂t

� �
∗

= 1
2
K∗ z2 − 2μz + μ2 − σ2À Á

σ4
exp −

1
2

z − μ

σ

� �2� �
:

ð48Þ

Solving this for γ1/23 gives the following results

γ1/23 = σ4/3
À Á

1/cð Þ ∂c/∂tð Þ∗
z2 − 2μz + μ2 − σ2ð Þ

ffiffiffi
2
p : ð49Þ

Picking the last split subproblem, we have

f rð Þf yð Þf zð Þ
6

∂c
∂t

� �
∗
= −

∂
∂z

γ3 tð Þ σ μ − Ztð Þð f X
 
, t

� �� �

= K∗ 2z − 2μ
2σ2 exp −

1
2

z − μ

σ

� �2� �

+ K∗ z
2 − μz − σ2

σ2
exp −

1
2

z − μ

σ

� �2� �
:

ð50Þ

Isolating 1/cð∂c/∂tÞ∗ yields the following

1
c

∂c
∂t

� �
∗
= 6
σ2

z − μ + z2 − μz − σ2
À Á

γ3: ð51Þ

Combining the results in Equations (49) and (51) yields

γ−1/23 = σ2 z − μ + z2 − μz − σ2
À Á ffiffiffi

2
p

z2 − 2μz + μ2 − σ2 : ð52Þ

Thus, the whole Fokker-Planck equation is reduced to
the form

∂c
c∂t

= L1 + L2 + L3 + L4 + L5 + L6,

where,

L1 =
γ1/21
8β2

1

�
r−3/2 4α21 − 8α1 + 3

À Á
β2
1

À
− 4β1 2α1 − 1ð Þr + 4r2

Á
exp −

r
β1

� � ffiffiffi
2
p �

,

L2 =
γ1 tð Þ β1 − 1ð Þ

rβ1
,

L3 =
γ1/22
8β2

2
y−3/2 4α22 − 8α2 + 3

À Á
β2
2

ÀÀ
− 4β2 2α2 − 1ð Þy + 4y2Þexp −

y
β1

� � ffiffiffi
2
p �

,

L4 =
γ2 tð Þ β2 − 1ð Þ

yβ2
,

L5 =
γ1/23
2σ4 z2 − 2μz + μ2 − σ2

À Á
,

L6 =
γ3
σ2 z − μ + z2 − μz − σ2
À Á

:

ð53Þ

Since ∂c/c∂t = ð∂/∂tÞ log ðcÞ ≈ ðd/dtÞ log ðcÞ, then the
copula density c = cUVWðu, v,wÞ can also be approximated
by the formula in Equation [44].

c = c0 exp
ðt
0
〠
6

i=1
Li sð Þds

 !
: ð54Þ

Numerical values of γi, i = 1, 2, 3, using results in Equa-
tions (45) and (52) give values that are in the interval 0 <
γi < 1.

In order to use γi’s, μ = μðtÞ, βi, and αi in the Stochastic
Differential Equations (2), (3), and (6), their values were
modeled by use of truncated Fourier series. Temperature
and evapotranspiration data for cool and hot dry seasons
were omitted in the analysis. The stochastic differential
equations were solved through Monte Carlo Euler-
Muruyama method. The results (Figures 12, 13(d)–13(f)),
show that the stochastic differential equations predict
weather variables are with higher precision.

We propose a joint process V = Vγ1,γ2,γ3ðR, Y , ZÞ such
that

dVt = μV t,Vð Þdt + σV t, Vð ÞdWV , ð55Þ

where μVðt, VÞ = ZtRtμðYt , tÞ + ZtYtμðRt , tÞt + RtYtμðZt , tÞ
+ σðRt , tÞσðZt , tÞρRYZt + σðRt , tÞσðYt , tÞρRYYt + σ2ðYt , tÞ
RtσVðt,VÞ, dWV = ZtRtσðYt , tÞdWYt

t + ZtYtσðRt , tÞdWRt
t +

RtYtσðZt , tÞdWZt
t . To derive V , let process V = RtYtZt , Yt

= E, Zt = T , which is a random variable whose probability
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Figure 12: Prediction of weather data.
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Figure 13: Predictions from stochastic processes.
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density is f R,E,Tðr, y, zÞ. Assume dWR
t dW

Y
t = ρRYdt, dW

R
t d

WZ
t = ρRZdt, and dWZ

t dW
Y
t = ρZYdt, where ρ’s are cross-

correlations among the standard Brownian motions. By Ito’s
lemma we have

d RtYtZtð Þ = d RtYtð ÞZtð Þ = d XtYtð Þ, Xt = RtYt

= ZtdXt + XtdZt + dXtdYt

= ZtRtdYt + ZtYtdRt + ZtdRtdYt

+ RtYtdZt + RtdYt + YtdRt + dRtdYtð ÞdYt

= ZtRtdYt + ZtYtdRt + RtYtdZt

+ σ Rt , tð Þσ Rt , tð ÞρRYZtdt

+ σ Rt , tð Þσ Yt , tð ÞρRYYtdt

+ σ2 Yt , tð ÞRtdt⇒ dVt

= μV t, Vð Þdt + σV t, Vð ÞdWV ,

where,

μV t,Vð Þ = ZtRtμ Yt , tð Þ + ZtYtμ Rt , tð Þt
+ RtYtμ Zt , tð Þ + σ Rt , tð Þσ Rt , tð ÞρRYZt

+ σ Rt , tð Þσ Yt , tð ÞρRYYt + σ2 Yt , tð ÞRt ,

σV t, Vð ÞdWV = ZtRtσ Yt , tð ÞdWYt
t

+ ZtYtσ Rt , tð ÞdWRt
t

+ RtYtσ Zt , tð ÞdWZt
t :

ð56Þ

If W∗ is a Wiener process that is independent of both
WZt

t and WRt
t , then it can be proved that WYt

t = ρYZW
Z
t +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ρ2YZ
p

W∗. Similarly, WZ
t = ρRZW

Rt
t +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2RZ

p
W∗.

Therefore, WYt
t = ρYZðρRZWRt

t +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2RZ

p
W∗Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ρ2RZ
p

W∗. Choosing σðRt , tÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ1ðtÞRt

p
, σðZt , tÞ = σðtÞffiffiffiffiffiffiffiffiffiffiffiffi

2γ3ðtÞ
p

, σðYt , tÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2ðtÞYt

p
, μðRt , tÞ = γ1ðtÞðβ1ðα1 − 1Þ

− RtÞ, μðYt , tÞ = γ2ðtÞðβ2ðα2 − 1Þ − YtÞ, and μðZt , tÞ = γ3ðtÞ
ðσðμ − ZtÞ, the process V defined by Equation (56) is the
proposed multivariate process whose probability distribu-
tion is given by Equation (22). The results of modeling the
process V , both under uniform and nonuniform noises
assumption, are given in Figures 13(a) and 13(b).

The coefficients of determination in predicting V from
Model [11] are per season (Figure 13(c)). The overall coef-
ficient of determination is for the model is under corre-
lated W’s assumption is 0.8899 and was estimated using
the formula R2 = 1 −∑n

i=1ðyi − ŷiÞ2/∑n
i=1ðyi − �yiÞ2. The

values of R2 were also estimated per growing season
(Figure 13(c)) and 95% confidence intervals for each

values was estimated using R2 ± 2bσR2 , where σR2 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2ð1 − R2Þ2ðN − p − 1Þ2/ðN2 − 1ÞðN + 3Þ

q
[45, 46], N is

length of growing season, and p is number of parameters
in the SDE. Therefore, the stochastic process predict
wether variables with high precision.

5. Maize Yield Modeling and Prediction

The aim of this section is to model maize yield through sto-
chastic models. According to Allen [29], amount ymi ðtÞ pro-
duced by unit change in Vi follows the differential equation

dym tð Þ = −σymy
m tð Þdt + 〠

N

i=1
βi Vi −Vi−1ð Þdt

+ 〠
N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βi Vi − Vi−1ð Þ

q
dW tð Þ,

ð57Þ

where σym is the volatility of process ymðtÞ =∑N
i=1y

m
i ðtÞ, β’s

are weight parameters, and N is the number of times Vi’s
are observed in time ½0, τ�. The Equation (57) has continu-
ous form below

∂ym t, Vð Þ
∂t

= −σymy t, Vð Þ +
ðv
0
β v′
� �

dv′ +
ðv
0

∂2W t, x′
� �
∂t∂v

dx′:

ð58Þ

Maize yield is realized once at the end of growing season.
We assume that the mass of grains of the maize seed only
represents the maize yield. As such we can put y1 = 0 = y2
=⋯ = yN−1 and therefore, ymðtÞ =∑N

i=1y
m
i ðtÞ = yN . This

assumption means that record of maize yield are taken at
the end of the growing season. Thus, it can be assumed that
yðt, VÞ is a function of time t in years only, that is yðt, VÞ
= yðtÞ. Under this assumption, we have ∂ymðt, VÞ/∂t = dym

ðtÞ/dt so that the model in Equation [32] can be expressed as

dym tð Þ = −σymy tð Þdt +
ðv
0
β v′
� �

dv′dt +
ðv
0

∂2W t, x′
� �
∂t∂v

dx′dt:

ð59Þ

The definition of Riemann integral requires that

ðv
0
β v′
� �

dv′dt = lim
n⟶∞

〠
n

i=1
β Við ÞΔVidt: ð60Þ

The number of days in a season to which maize plants
are exposed to rainfall, temperature, and evapotranspiration,
respectively, is constant. The plants are exposed to the last

Table 6: Precision metrics for BT.

Model MAPE R-squared RMSE

Multivariate SDE (66) 0:0239 0:8312 2:82
Decision trees (70) 0:0112 0:9622 2:98
Neural network (72) & Plackett 0:0327 0:8127 3:15
Neural network (72) & vine 0:0242 0:8208 2:78
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two processes continuously but rainfall does not fall every
second. Hence, it can be assumed that n⟶N . Thus,

ðv
0
β v′
� �

dv′dt = lim
n⟶∞

〠
n

i=1
β Við ÞΔVidt ≈ 〠

N

i=1
β Við ÞΔVidt:

ð61Þ

The changes in the processes have an effect on variations
in yields. However, the amounts of temperature, rainfall, and
evapotranspiration have significant impact on maize yield in
the region. Under such a scenario ΔVi is replaced by Vi.
Thus, this section assumes that

ðv
0
β v′
� �

dv′dt = lim
n⟶∞

〠
n

i=1
β Við ÞΔVidt ≈ 〠

N

i=1
β Við ÞVidt:

ð62Þ

The weights βðViÞ can also be assumed to be constant in
one growing season only and hence, one can write βðViÞ = β
so that

ðv
0
β v′
� �

dv′dt = lim
n⟶∞

〠
n

i=1
β Við ÞΔVidt

≈ 〠
N

i=1
β Við ÞVidt = β〠

N

i=1
Vidt:

ð63Þ

Considering the last components of Equation (59), the
definition of integration, assumptions made in this subsec-
tion, and properties of partial derivatives require that

ðv
0

∂2W t, x′
� �
∂t∂v

dx′dt = d
dt

ðv
0

∂W t, x′
� �
∂v

dx′dt

= d
dt

〠
N

i=1

W tj, Vi

À Á
−W tj−1, Vi

À Á
ΔVi

Á Vi − Vi−1ð Þdt = d
dt

〠
N

i=1
W tj, Vi

À Á
−W tj−1, Vi

À Á
dt:

ð64Þ

Since WðtÞ is not a smooth function, it can be assumed
that

d
dt

〠
N

i=1
W tj, Vi

À Á
−W tj−1, Vi

À Á
dt∝ 〠

N

j=1
W tj
À Á

−W tj−1
À Á

= 〠
N

j=1
k′ V j

À Á
W tj
À Á

−W tj−1
À ÁÀ Á

:

ð65Þ

The constant of proportionality is chosen to be k′ðV jÞ
= β1/2 ffiffiffiffiffi

Vi
p

and hence, the whole model for maize yield can

be expressed as

dym tð Þ = −σymy
m tð Þdt + β〠

N

i=1
Vidt + β1/2 〠

N

i=1

ffiffiffiffiffi
Vi

p
dW tð Þ: ð66Þ

This stochastic maize model(SMM) is slightly different
from the model in Equation (57). The constant β for each
growing season can be estimated through a pseudo-
maximum likelihood techniques according to

bβ = arg max
β

N
2 log 2πG∗ −

1
2〠

N

i=1

yi − F∗

G∗

� �2
, ð67Þ

where F∗ = −σymyi + β∑N
j=1V j = −σymyi + βF, and G∗ = β

∑N
i=1

ffiffiffiffiffi
Vi
p = βG. Thus, F =∑N

j=1V j and G =∑N
i=1

ffiffiffiffiffi
Vi
p

. Finding

∂L/∂β, where L = ðN/2Þ log 2πG∗ − 1/2∑N
i=1ðyi − F∗/G∗Þ2

yields

∂L
∂β

= −
N
2β + 2〠

N

i=1

yi + σyið Þ2
β2G

−
F
βG

〠
N

i=1
yi + σyið Þ: ð68Þ

Putting ∂L/∂β = 0, gives

bβ = 2∑N
i=1 yi + σyið Þ2

GN + F∑N
i=1 yi + σyið Þ

: ð69Þ

The variable yðtÞ is modeled as simple linear regression
first to take on impacts of time or technological changes and
also to be consistent with the assumptions above. Then, σðtÞ
is found by calculating standard deviation of each random
error of the regression ŷðtÞ and then finding a quadratic linear
regression of the standard deviations. These are included in
model in the Equation (66) to include the effect ofV’s onmaize
yield. Thus, the proposed maize yield model is taking into
account both linear trend model ŷðtÞ and the joint model V .
Another model to predict maize could be that of choosing
intervals Ii, i = 1, 2,⋯,m, such that for each realization Vi of
Model [26],

〠
N j

i=1
Vi,j ∈ Ii ⇒ ŷi = E yjIið Þ = lim

nj⟶∞

1
ni

〠
〠N j

i=1Vi, j∈Ii

yi, ð70Þ

Ii = arg min
Ii

〠
m

i=1
〠

〠N j
i=1Vi, j∈Ii

yi − ŷið Þ2: ð71Þ

This is modeling is called decision tree regression [47] and
it was implemented in python. The most common method for
predicting crop yield is the neural network (NN) model of the
form [9]

yk V ,Wð Þ =H4 WT
4H3 WT

3H2 WT
2H1 WT

1V
À ÁÀ ÁÀ ÁÀ Á

: ð72Þ
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In the context of this study, V stands for the vector of
values estimated by model in Equation (55), W’s are vec-
tors of parameters to estimated in order to estimate ykðV
,WÞ, and H’s are activation functions. In this case, H is
chosen to be Hðx ∗Þ =max f0, x ∗g to minimize computa-
tional time [44]. The advantage of model in Equation (72)
is that values of V which are calculated daily need not to
be aggregated. Their contribution to a single annual value
of yield is determined by weights. Another advantage is
that different joint probability densities, estimated in previ-
ous sections, can be compared through the loss function of
the form

L =〠
∀i

yk Vi,Wið Þ − yið Þ2

+λ
ð∞
−∞

ð∞
0

ð∞
0

∇yk Vi,Wið Þk k2p r, y, zð Þdrdydz,
ð73Þ

where λ is Lagrange multiplier. In order to find W’s and λ
that minimize L, gradient descent optimization method of
the form Wði+1Þ =WðiÞ − η∇LðWðiÞÞ, where 0 < η < 1, is
applied. Numerical methods are implemented in python.

Thus, maize yield estimate is ŷmðtÞ = ŷðtÞ + ykðV ,WÞ.
The metrics are summarized in Table 6. Similarly, we also
predict maize yield by finding Support vector machine
regression (SVM) of the form [48]

ŷ tð Þ = 〠
N

i1=0
Δλi1V

T
i1
V + ε, ð74Þ

λi1 , ε = arg min
λi1 ,ε

0:5 〠
N

i1=0
〠
N

i2=0
Δλi1Δλi2V

T
i1
Vi2

+ ε 〠
N

i1=0
λi1 + λ∗i1

� �
+ 〠

N

i1=0
yi1Δλi1 ,

ð75Þ
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Figure 14: Summary of methodology

Table 7: Efficiency of models.

Model MAPE R2 RMSE training RMSE testing BIAS SI

SMM (66) 0:0418 0:8829 7:34 3:42 −0:9389 1:214
SVM (74) 0:0363 0:9227 2:783 1:945 −0:5446 2:729
DTR (70) 0:0194 0:9765 8:18 1:54 0:0519 3:424
NN (72) & Plackett 0:0431 0:8389 3:24 4:02 −1:4210 3:758
NN (72) & Frank 0:1242 −0:0256 4:82 10:12 −5:8045 8:3094
NN (72) & Vine 0:0615 0:7108 1:44 5:38 0:5256 5:357
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(a) Yield from SVM (74)
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(b) Yield from neural network (72)

Figure 15: Continued.
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where λ’s are Lagrange multipliers, yi1 are maize yield data
values from training sample, and ŷ is the model used to pre-
dict maize yield. Figure 14 summarizes the methodology
used to achieve the objectives in order to derive maize yield
yðtÞ.

The results in Table 7 shows that Frank-Copula is not
suitable for modeling the trivariate density in order to pre-

dict maize yield because R2 is negative. This can also be seen
in Figure 15(b) in which the maize yield prediction is always
lower than the actual values. Similarly, the forecast from
Plackett density and V in the neural network is accurate with
R2 = 0:8389 and MAPE = 4:31%. The seasonal aggregates of
V ’s in SVM predict maize yield with R2 = 0:9227 and MAP
E = 3:63% which a bit lower than those of Decision trees
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(c) Yield from decision trees (70)
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(d) Yield from multivariate SDE (66)

Figure 15: Maize yield prediction from the joint stochastic process up to R2 = 0:9765 and MAPE = 1:94%.
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where R2 = 0:9765 and MAPE = 1:94%. These results are
better than the training sample is for 28 growing seasons
between 1981 and 2006.

We also conducted backtesting (BT), for the models that
performed well, using historic data set between 1970 and
1980. The results show that the probability density for Vine
and Placket have comparable precision. In fact, the vine
probability density gives R2 and MAPE values that are
slightly better than those for Plackett probability density.

We also conducted uncertainty and reliability analysis
using common formulas in literature [49].

The results are summarized (Table 8). It is clear, from
uncertainty analysis, that if the study is replicated using the
same methods, then the interval for which results can be
found to be different are quite similar for all the methods.
Reliability was calculated as the probability that absolute
percentage error (APE) is less than 5% = 0:05. This cut off
point was arrived from the results in Table 7 in which the
MAPE for models with high performance is generally less
than 5%. It is very plausible to note that the stochastic maize
yield model, despite having modesty R2 = 0:8389 and slightly
higher of MAPE= 0:0418, has lowest scatter index (SI= 1:214
) and highest reliability (ℙðAPE < 5%Þ = 0:9998). This is a
strong evidence that the trivariate stochastic model can pre-
dict maize yield with higher accuracy in many models. The
low reliability for Frank copula is an indication that it is
not suitable for modeling the joint stochastic model.

6. Conclusion

The main aim of this paper is to predict maize yield from a
stochastic process of rainfall amount, temperature, and ref-
erence evapotranspiration. To achieve this, trivariate proba-
bility distribution functions were derived through Plackett,
Frank asymmetric, and vine copulas. It is clear that the
Frank asymmetric 3-copula, derived through nesting, is not
suitable for both modeling the joint stochastic weather and
maize yield processes. The Plackett and vine copulas are
suitable for modeling the joint stochastic weather and maize
yield processes.

The stochastic process derived the quality to account for
nonlinearity and nonstationarity through satisfaction of
Fokker-Planck equation with much success. The evidence
for this is the fact that it has led to precise and accurate
maize yield forecasts in frameworks of the derived multivar-
iate stochastic maize yield process, the neural networks, and
the common machine learning methods. Thus, the joint sto-
chastic weather process is suitable for predicting maize yield.
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