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A maximum dynamic multicommodity flow problem concerns with the transportation of several different commodities through
the specific source-sink path of an underlying capacity network with the objective of maximizing the sum of commodity flows
within a given time horizon. Motivated by the uneven road condition of transportation network topology, we introduce the
dynamic multicommodity contraflow problem with asymmetric transit times on arcs that increase the outbound lane capacities
by reverting the orientation of lanes towards the demand nodes. Moreover, a pseudo-polynomial time algorithm by using a
time-expanded graph and an FPTAS by using a Δ-condensed time-expanded network are presented.

1. Introduction

Linear multicommodity flow problems are represented by
linear programs which can be characterized by a set of com-
modities and an underlying network. A commodity may be a
good data that has got to be shipped (transferred) from one
or more source nodes to at least one or more destination
nodes within the network. In this study, we consider the
multicommodity flow problems that concern with the rout-
ing of various commodities through a network to the unique
source-sink pairs. In day-to-day life, these commodities
might be telephone calls or messages in a telecommunica-
tions network or packages (goods) in a distribution network.
The commodities are not interchangeable due to their
unique characteristics. That is, demand for one commodity
cannot be satisfied by another. For more details, we refer
to [1–6].

The transportation network is considered a network in
which the supply points (origins), the demand points (desti-
nations), and the intersection of road segments constitute
the nodes. The arcs are line segments connecting two nodes.
Each arc has a positive rational capacity that limits the flow
amount (i.e., transported commodities) and the travel time.

If we do not distinguish the flow in the multicommodity
flow problem, then it becomes a single-commodity flow
problem. To model a variety of real-world problems, classi-
cal network flows are useful, but they fail to incorporate a
crucial element of many routing problems, i.e., time compo-
nent. Ford and Fulkerson [7] incorporated this component
and introduced a dynamic flow problem.

The pressure of highly competitive market places influ-
ences corporate operations, and as a result, a company
attempts to identify the best way to generate and transmit
goods to consumers. Business decision-makers choose how
and when items should be supplied to meet quality and quan-
tity requirements cost-effectively to maximize profit. Trans-
portation models provide a powerful framework to guide
decision-makers in the context. Transportation plays an
important part in the supply chain, and its value will not be
lessened regardless of how big or small a company is [4]. Com-
munication networks have become totally entwined with our
modern society as a result of technological advancements.
The application of communication networks ranges from
everyday devices to complex equipment in aircraft, computer
systems, and telecommunication as well as the Internet [8].
The multicommodity network flow may be used to create
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almost any communication network, including wireless and
fiber optic networks. Authors in [9] employed the multicom-
modity flow formulation as an extension of the Steiner tree
problem. Padmanabh and Roy [10] used a multicommodity
flow method to construct a wireless sensor network routing
protocol. A wireless sensor network is defined as a network
of nodes having communication devices. To overcome the
problem, they presented a golden ratio-based search method.

The multicommodity flow problem is more complex
than their single-commodity part. A static multicommodity
flow problem is solved in polynomial time by using ellipsoid
or interior-point methods. However, Hall et al. [11] have
shown that the dynamic multicommodity flow problem is
NP -hard even for series-parallel graphs or have only two
commodities. Kappmeier [12] provided a solution to the
maximum dynamic multicommodity flow problem using a
time-expanded network within pseudo-polynomial time
complexity.

Contraflow implies flipping of arc orientations to
amplify the flow and reduce the travel time by increasing
its capacity. Furthermore, increased traffic on roadways
causes a slew of mobility issues because of congestion. As a
result, contraflow plays a significant role in transportation
sector planning, rush hour traffic management, and emer-
gency evacuation planning.

Analytical solutions for two-terminal single-commodity
maximum and quickest contraflow problems with τe = τer
were obtained by Rebennack et al. [13] in strongly polyno-
mial time. The lane reversals are made at time zero and kept
fixed afterward. For more details on contraflow problems, we
refer to [14] and references therein. Flow with intermediate
storage was investigated by Pyakurel and Dempe in [15,
16]. Authors in [17–19] extended a partial contraflow

approach in multicommodity flow problems and provided
the solution.

Due to the uneven road network, transit time from v to
w of an arc ðv,wÞ is different from w to v which means that
it is asymmetrical, i.e., τe ≠ τer as shown in Figure 1(a). To
deal with this, we have the following assumptions.

(i) The capacities of auxiliary arcs is the sum of capac-
ities of arcs e and er , i.e., ua = ue + uer

(ii) The transit time of auxiliary arc τa is taken as transit
time of nonreversed arcs as shown in Figures 1(b)
and 1(c)

(iii) In the case of a single direction for each e ∈ A, there
exist er ∈ A and τa = τe = τer for contraflow
configuration

By modifying the algorithm of [13], Nath et al. [20]
solved the dynamic contraflow problems such that the rever-
sals use asymmetric transit times that should be taken by
unreserved ones. Recently, Gupta et al. [21] extended the
approach of Nath et al. [20] in case of lexicographic flow
and earliest arrival transshipment problems and presented
algorithms to solve them. The same authors in [22] also
introduced this approach in the case of a lossy network with
τe ≠ τer on arcs and provided the algorithms to solve the
problem in the discrete- and continuous-time setting for
single-commmodity. The extension of this problem in mul-
ticommodity was investigated in [23].

1.1. Contribution of the Paper. We introduce the contraflow
approach with τe ≠ τer in a multicommodity flow problem
and present an algorithm to solve the maximum dynamic

e er

(a)

e e

(b)

er er

(c)

Figure 1: (a) represents a two-way road network, (b) represents the network, if arc er is reversed in the direction of arc e, and (c) represents
the network, if arc e is reversed in the direction of arc er .
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Figure 2: (a) Given network and (b) auxiliary network of (a).
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multicommodity contraflow (DMCCF) problem on the
time-expanded graph in pseudo-polynomial time. We also
present a fully polynomial time approximation scheme
(FPTAS) to solve the same problem by using a Δ-con-
densed time-expanded network. This technique reduces the
congestion in rush hour traffic that minimizes the delivery
time of commodities (goods) from factory outlets to the
retailer and minimizes the transportation cost by maximiz-
ing the commodities. We only reverse the necessary arc
capacities and save the unused arc capacities that can be
used in case of emergency for logistic support by putting
the facility on the saved arcs (cf. Figure 2). It can also be used
to park the vehicle for a certain time to reduce congestion.
To the best of our knowledge, these contributions are new.

The paper is organized as follows. In Section 2, we pro-
vide some basic notations and models used in the article.
The maximum DMCCF problem with asymmetric transit
times on arcs is introduced in Section 3. We present a
pseudo-polynomial time algorithm and an FPTAS to solve
this problem in the same section. The paper is concluded
in Section 4.

2. Preliminaries

In this section, we give some basic notations and definitions,
with the flow models used in this paper to make it self-
contained.

The Flow Models. Let us consider the network topology
N = ðV , A, K , u, τ, di, S+, S−, TÞ, where V denotes the set of
nodes, A is the set of arcs, and K = f1, 2,⋯, kg is the set of
commodities with jV j = n and jAj =m. Each commodity i
∈ K is routed through a unique source-sink pair ðsi, tiÞ.
The sets S+ and S− ⊂V denote the source and sink sets of
all commodities, respectively. On each arc e = ðv,wÞ, the
capacity function u : A⟶ℝ≥0 restricts the flow of com-
modities, and a nonnegative transit time function τ : A
⟶ℝ≥0 measures the time to transship the flow from the
entry point v to the exit point w of arc e = ðv,wÞ. The num-
ber di denotes the demand and supply of commodity in each

commodity i. A static network is a network besides the tem-
poral dimension denoted by N = ðV , A, K , u, di, S+, S−Þ.
2.1. Dynamic Multicommodity Flow. A discrete dynamic
multicommodity flow Φ on the given network N with con-
stant transit time on arcs is a sum of flows defined by the
function Φi : Aa × T ⟶ℝ+ for given time T satisfying the
following constraints:

〠
e∈Bv

〠
T−τe

δ=0
Φi

e δð Þ − 〠
e∈Av

〠
T

δ=0
Φi

e δð Þ = 0,  v ∉ S+, S−f g, ð1Þ

〠
e∈Bv

〠
θ−τe

δ=0
Φi

e δð Þ − 〠
e∈Av

〠
θ

δ=0
Φi

e δð Þ ≥ 0, ∀θ ∈ T , v ≠ S+, ð2Þ

0 ≤ 〠
k

i=1
Φi

e θð Þ ≤ ue + uer , ∀e ∈ A, θ ∈ T : ð3Þ

The maximum DMCCF problem is to find a DMCCF of
maximum value ∑jΦij in

max 〠
i∈K

Φi�� �� =max 〠
e∈Bd

〠
T−τe

δ=0
Φi

e δð Þ: ð4Þ

The time period T is denoted by T = f0, 1,⋯, Tg in
discrete-time settings and T = ½0, T� in continuous-time set-
tings. The sets Av = fðv,wÞ ∣w ∈ Vg and Bv = fðw, vÞ ∣w ∈ V
g denote outgoing arcs from node v and incoming arcs to node
v, respectively, such that AS−

= BS+
=∅, except in the lane

reversal network. The constraints in (1) are flow conservation
constraints at intermediate nodes for time horizon T, whereas
the constraints in (2) represent nonconservation of flow at
intermediate time points. The constraints in (3) are capacity
constraints bounded by capacities of the auxiliary network.
Also, the maximum static flow problem has an analogous for-
mulation by dropping out the time parameters in constraints
(1)–(3) and the objective function (4), respectively.

Input: Given dynamic multicommodity flow network N = ðV , A, K , u, τ, di, S+, S−, TÞ
1. A given dynamic network is transformed into time-expanded network by N T = ðVT , AT = AM ∪ AH ∪ A+ ∪ A−, K , u, τ, di, S+′ ,

S−′ , TÞ
2. An auxiliary network N a

T = ðVT , Aa
T , K , ua, τa, di, S+′ , S−′ , TÞ is constructed with

u′a = ue + uer

τ′a =
τe if arc er is reversed in direction of e
τer if arc e is reversed in direction of er:

(

3. Compute the MSMCF f on the auxiliary network N a
T .

4. Decompose f along the si − ti, ∀i ∈ K paths and cycles and remove cycle flows and update f .
5. Reverse erðθÞ ∈ AT up to the capacity f aðθÞ − ue iff f aðθÞ > ue, ue replaced by 0 whenever eðθÞ ∉ AT where f e =∑k

i=1 f
i
e and ue

=∑k
i=1u

i
e.

6. For each eðθÞ ∈ AT , if e
rðθÞ is reversed, scðerðθÞÞ = ua − f eðθÞ and scðeðθÞÞ = 0. If neither e nor er is reversed, scðeðθÞÞ = ue − f e

ðθÞ > 0, where scðeðθÞÞ is the saved capacity of e.
Output: The Maximum DMCCF

Algorithm 1:Algorithm for maximum DMCCF.
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2.2. Δ-Condensed Time-Expanded Graph. For the network
N = ðV , A, K , u, τ, di, S+, S−, TÞ, authors in [24] introduced
the Δ-condensed time-expanded network N Δ

T = ðVΔ
T , AΔ

T =
AΔ
M ∪ AΔ

H ∪ AΔ
+ ∪ AΔ

− , K , u′, τ′, di, S+′ , S−′ , TÞ, where all transit
times on arcs are multiple of Δ > 0 such that dT/Δe is
bounded by a polynomial in the input size. The number
di,v denotes the supplies and demands for each vertex v ∈
V and each commodity i ∈ K . The nodes and arcs in the Δ
-condensed time-expanded network are defined as

VΔ
T = vθ : v ∈V , θ = 0, 1, 2,⋯, T

Δ

� �� �
∪ si′, ti′ : i ∈ K
n o

∪ s∗, t∗f g,

AΔ
M = vθ,wθ+τe

� �
: e = v,wð Þ ∈ A, θ = 0, 1,⋯, T − τeð Þ

Δ

� �� �
,

AΔ
H = vθ, vθ+1ð Þ : e = v,wð Þ ∈ A, θ = 0, 1,⋯, T

Δ

� �
− 1

� �
,

AΔ
+ = ∪ s∗, si′

	 

: i ∈ K

n o
∪ si′, sθ

	 
n
: i ∈ K , si′∈ S+′ , θ ∈ 0, 1, 2,⋯, T

Δ

� �� �
,

AΔ
− = ∪ ti′, t∗

	 

: i ∈ K

n o
∪ tθ, ti′

	 
n
: i ∈ K , ti′∈ S−′ , θ ∈ 0, 1, 2,⋯, T

Δ

� �� �
,

ð5Þ

where S′+ = fsi′g ∪ fs∗g and S′− = fti′g ∪ ft∗g for all i ∈ K .
The sets fsi′g and fti′g are superterminals for each commod-
ity, and fs∗, t∗g represents superterminals for the Δ-con-
densed time-expanded network. The capacities are defined
as

u′e′ =
ue, if arc e′ ∈ AΔ

M ∪ AΔ
H with e′ = eθ,

∞, else,

(
ð6Þ

if node balances are not given. The capacities are defined by

u′e′ =

ue, if arc e′ ∈ AΔ
M ∪ AΔ

H with e′ = eθ,

di,s, e′ = s∗, si′
	 


,

−di,t, e′ = ti′, t∗
	 


,

∞, else,

8>>>>>>><
>>>>>>>:

ð7Þ

if node balances are given as in [12].
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Figure 3: A network with the flow and saved capacities on arcs.
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Figure 4: Time-expanded network of Figure 2(b).

Table 1: Maximum dynamic multicommodity flow before and
after lane reversals.

Time-expanded graph

Path Time
Flow

before LR
Total
flow

Flow
after LR

Total
flow

s1 − v − x −w − t1 6 1 3 2 6

s1 − v − x − y −w − t1 7 1 2 1 2

s2 − v − y −w − t2 7 2 4 4 8

Total 9 16

LR = lane reversals.
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Figure 5: Comparison of flow before and after lane reversals.
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In time T = fαΔg for discrete-time or T = ½αΔ, ðα + 1ÞΔÞ
for continuous-time, the copies of VΔ

T correspond to flow
through V , where α = f0, 1, 2,⋯, dT/Δeg. For every arc cor-
responding to a discrete-time setting with multiple of Δ,
capacities are rescaled by Δue. If transit times on arcs are
not multiple of Δ, then they are rounded up to multiple of
Δ by τ′e = dτe/ΔeΔ and 0 ≤ τ′e − τe < Δ for all arcs e ∈ A. A
Δ-condensed time-expanded network reduces to the classi-
cal time-expanded network, if Δ = 1.

Example 1. Given a multicommodity network N with asym-
metric transit times on arcs, where s1, s2 are the source nodes
and t1, t2 are the sink nodes as shown in Figure 2(a), the arcs
between nodes v and w denoted by ðv,wÞ and ðw, vÞ repre-
sent two-way road segments. The first and second numbers
on the arcs represent capacity and transit time (cost) associ-
ated with the arcs. By adding two-way capacities of the arcs e
and er , an auxiliary network is formed with capacities ua and
transit time of nonreversed as τa shown in Figure 2(b).

3. Dynamic Multicommodity Contraflow

In this section, we introduce the maximum DMCCF by
reverting the necessary arc capacities. Hall et al. [11] proved
that the dynamic multicommodity flow problem is NP

-hard.

3.1. Pseudo-Polynomial Solution of Maximum DMCCF.
Time expansion is an important tool to solve dynamic flow
problems introduced by Ford and Fulkerson [7] for a
single-commodity flow problem. Further, it can be extended
to the case of the multicommodity flow problem. Kappmeier
[12] and Lozovanu and Fonoberova [25] have shown the
equivalency between static multicommodity flow on the
time-expanded network and dynamic multicommodity flow
on the original network as given below.

Lemma 1. Let N = ðV , A, K , u, τ, di, S+, S−, TÞ be a dynamic
network. For any time horizon T , in a feasible static S′+ − S′−
multicommodity flow f in the time-expanded network N T ,
there exists a feasible dynamic multicommodity flow Φ with
the sources S+ and sinks S− in network N that sends the equal
amount of flow within the same time horizon T , i.e., j f T j =
jΦj and vice versa.

Maximum dynamic contraflow problems for a single
commodity with unequal transit times on antiparallel arcs
are solved by Nath et al. [20]. Based on this, we introduce
the contraflow approach on the dynamic multicommodity
flow problem with asymmetric transit times on antiparallel
arcs and present Problem 2.

Problem 2. Consider a network N = ðV , A, K , u, τ, di, S+, S−
, TÞ with asymmetric transit times on arcs. The maximum
DMCCF problem sends the maximum flow in the unique
pair of source and sink nodes ðsi, tiÞ for each commodity i
= 1, 2,⋯, k and for a given time by saving the unused arc
capacity.

To find the solution of the maximum dynamic multi-
commodity contraflow problem with asymmetric transit
times on arcs (Problem 2), we design Algorithm 1.

Theorem 3. Algorithm 1 solves the maximum DMCCF prob-
lem with asymmetric transit times on arcs in pseudo-
polynomial time.

Proof. The proof of feasibility is obvious as it transforms the
given dynamic network flow problem into the static network
flow problem on the time-expanded auxiliary network. A
feasible solution of maximum dynamic multicommodity
flow on N a

T is also feasible to the maximum DMCCF solu-
tion on network N . As described above, the dynamic multi-
commodity flow problem on network N reduces to a static
multicommodity flow problem on N a

T . By reducing the mul-
ticommodity to a single-commmodity and decomposing the
flow into ðsi − tiÞ paths, dynamic multicommodity flow solu-
tion can be obtained optimally on the auxiliary network N a

T .
An optimal solution on N a

T is equivalent to a feasible solu-
tion on N . The unused capacities of the arcs are saved by
partial lane reversals in Step 5.

In the time-expanded graph, there are T copies of the
given network. Since the time-expanded graph has ðT + 1Þ
n nodes and OðTðm + 2ÞÞ = OðTmÞ edges, therefore apply-
ing the algorithm on the time-expanded graph has a time

s'2s'1 t'1
t'2

t1 t2

s⁎ t⁎

s2s1 v x y w
𝜃 = 0

𝜃 = 2

𝜃 = 4

𝜃 = 6

𝜃 = 8

Figure 6: Δ-condensed time-expanded network of Figure 2(b) after
scaling capacity and transit time.

Table 2: Maximum dynamic multicommodity flow before and
after lane reversals.

Δ-condensed time-expanded graph

Path Time
Flow

before LR
Total
flow

Flow
after LR

Total
flow

s1 − v − x −w − t1 8 2 2 4 4

s1 − v − y −w − t1 8 2 2 2 2

s2 − v − y −w − t2 8 4 4 4 8

Total 8 14

LR = lane reversals.
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complexity of OðT2mnÞ. As running time depends polyno-
mially on OðT2mnÞ; hence, it is pseudo-polynomial.

Example 2.We compute maximum dynamic multicommod-
ity flow on the auxiliary network obtained by adding two-
way capacities of Figure 2(a) within time horizon T = 8.
The repetition of path flows of each commodity is shown
in a time-expanded network. We get static flow f on the
time-expanded network which corresponds to multicom-
modity flow over time Φ on the auxiliary network. Since
only essential arc capacities are reverted, certain capacities
are preserved (cf. Figure 3).

The maximum dynamic multicommodity contraflow
computation is shown in Figure 4.

The comparison of maximum dynamic multicommodity
flow before and after lane reversals is shown in Table 1 and
Figure 5.

The percentage increment after lane reversals is 77.77.

3.2. Approximate Solution of Maximum DMCCF. A well-
known technique to solve dynamic flow problems is a
time-expanded network, but it has the drawback of a large
blowup of its size. By reducing the size of the time-
expanded network, an efficient algorithm is presented. This
reduction technique is known as condensation in the setting
of a time-expanded network, and the network is known as
the Δ-condensed time-expanded network. If we take Δ = 1,
then the Δ-condensed time-expanded network reduces to
the classical time-expanded network. To solve Problem 2
in fully polynomial time, we present Algorithm 2.

Theorem 4. Algorithm 2 provides an approximate solution to
the maximum DMCCF problem with asymmetric transit
times on arcs.

Proof. The proof of feasibility is similar to Theorem 3.
Next, we prove the optimality. Feasibility implies that an

approximate optimal solution of maximum DMCCF on net-
work N is also a feasible approximate solution to the maxi-
mum dynamic multicommodity flow on N Δa

T . The dynamic
multicommodity flow problem on network N reduces to a

static multicommodity flow problem on N Δa
T . By reducing

the multicommodity to a single-commmodity and decom-
posing it into the ðsi − tiÞ path, an approximate dynamic
multicommodity flow solution can be obtained optimally
on the auxiliary network N Δa

T . An approximate optimal
solution on N Δa

T is a feasible solution on N . The unused
capacities of the arcs by partial contraflow are saved in Step
5. Thus, an approximate maximum DMCCF solution on
each arc of the given network N can be computed optimally.

Corollary 5. An FPTAS to the maximum DMCCF problem
can be computed in fully polynomial time complexity.

Proof. The complexity of Algorithm 2 is dominated by Steps
2 and 3. The Δ-condensed auxiliary network contains ðn2/
ε2Þ nodes and ðmn/ε2Þ arcs. Since Steps 2 and 3 are solved
in polynomial time and the remaining steps can be solved
in linear time, it is polynomial in input size as well as 1/ε.
Thus, the solution can be computed in fully polynomial
time.

Example 3. By scaling the capacities and transit times on arcs
given in Figure 2(b), Δ-condensed networks are formed. The
approximate solution of Problem 2 can be calculated by
using the Δ-condensed time-expanded network as shown
in Figure 6 by taking Δ = 2.

The comparison of MDMCF before and after lane rever-
sals is shown in Table 2.

The percentage increment in flow value after lane rever-
sal is 75.

4. Conclusions

The maximum multicommodity flow over time problem is
the transshipment of several kinds of commodities (goods)
in underlying network topology, respecting capacity con-
straints on the arcs with the objective of maximizing the
sum of flow of all commodities in the specified period. It is
computationally hard. A time expansion is a technique to
solve dynamic flow problems, but it has pseudo-polynomial

Input: Given dynamic multicommodity flow network N = ðV , A, K , u, τ, di, S+, S−, TÞ
1. The auxiliary network N a is transformed to Δ-condensed auxiliary network N Δa

T = ðVΔ
T , AΔa

T , K , ua′ , τa′ , di, S+′ , S−′ , TÞ with
u′a = Δðue + uer Þ
τ′a =

dτe/ΔeΔ if arc er reversed in the direction of e
dτer /ΔeΔ if arc e reversed in the direction of er:

(

2. Compute the MSMCF f on the auxiliary network N Δa
T .

3. Decompose f along the si − ti, ∀i ∈ K paths and cycles, remove cycle flows and update f .

4. Reverse erðθÞ ∈ AΔ
T up to the capacity f e′ðθÞ − u′e iff f e′ðθÞ > u′e, ue replaced by 0 whenever eðθÞ ∉ AΔ

T where f ′e =∑k
i=1 f ′

i
e and

u′e =∑k
i=1u′

i
e.

5. For each eðθÞ ∈ AΔ
T , if e

rðθÞ is reversed, scðerðθÞÞ = ua − f eðθÞ and scðeðθÞÞ = 0. If neither e nor er is reversed, scðeðθÞÞ = ue − f e
ðθÞ > 0, where scðeðθÞÞ is the saved capacity of e.

Output: The maximum DMCCF

Algorithm 2: An FPTAS algorithm for maximum DMCCF with asymmetric transit times on arcs.
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time complexity. By reducing the size of the network, by a
factor of Δ, a Δ-condensed time-expanded network is intro-
duced without changing flow values too much; an efficient
approximation scheme is developed.

By flipping the orientation of lanes and taking the transit
time of the nonflipped arc, the capacity of the lanes will be
increased that amplifies the flow value and reduces the time
horizon that reflects the situation of contraflow of uneven
road topology in the real sense. The maximum dynamic
multicommodity partial contraflow problem with symmetric
transit times on arcs was solved in pseudo-polynomial time.
An FPTAS was also developed.

In this paper, we introduced a dynamic multicommodity
partial contraflow problem with asymmetric transit times on
arcs. To solve it, we presented two algorithms. The first algo-
rithm solved the problem in pseudo-polynomial time, and
the second one provided an approximate solution in fully
polynomial time complexity. Theorem 3 proved the feasibility
and optimality of Algorithm 1. It has also calculated the time
complexity of the algorithm. So, the correctness of Algorithm 1
is proven. By taking an instance, we have shown that the flow
value is increased by 77.7% after contraflow (cf. Table 1 and
Figure 5). Algorithm 2 provides an approximate solution of
the same problem by taking larger time steps instead of single
time steps, and its correctness is proven in Theorem 4. It has
been shown that the flow value is increased by 75% after con-
traflow (cf. Table 2). Although the flow increment in the sec-
ond case is less than the first one, the second one is better
because it solves the problem in polynomial time. The major
objective of this work is to provide theoretical results that are
most applicable to reducing traffic congestion. Implementa-
tion of these results will be an agenda of future work. By ana-
lyzing impressive results from this study, it would be
interesting to extend it further to the earliest arrival multicom-
modity flow problems.
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