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In this paper, a fishery model for African catfish and Nile tilapia is formulated. This model is used to compare financial profit and
biomass outtakes in a two-species system versus single species systems. We consider a stage-structured fish population model
consisting of the aforementioned fish species together with two food resources. The model dynamics include cannibalism,
predator-prey, feeding, reproduction, maturation, development, mortality, and harvesting. We prove consistency of the model
in the sense that the solutions will stay bounded and nonnegative over time. Conditions for local stability of fish-free
equilibrium point are established. The simulation results reveal asymptotically stable solutions with coexistence of African
catfish, Nile tilapia, and two food resources. The major conclusion from our findings is that fisheries should culture both
species to maximize the biomass outtake and financial profit.

1. Introduction

Fish is a source of animal protein, providing many key nutri-
ents and calories that are needed for physical and mental
development [1, 2]. Fish contribute 17 percent of animal
protein and 7 percent of all proteins and are crucial for over
3 billion people in developing countries [3].

In East Africa, the major species of fish caught are Nile
perch (Lates niloticus), Nile tilapia (Oreochromis niloticus),
African catfish (Clarias gariepinus), and silver fish (Rastri-
neobola argentea) to mention but a few. The fishery industry
contributes to the gross domestic product (GDP) and has
continued to be an important source of foreign exchange
earnings through fish exports to the East African region
and international markets [4]. Due to the importance of fish
to so many people, the demand is very high and has resulted
in overfishing and hence a decrease in fish population stock
[5, 6]. Therefore, there is a need to develop sustainable fish-
eries management practices in East Africa.

Mathematical modeling plays a significant role in the
sustainable management of renewable resources. It describes

phenomena leading to better prediction, management, and
control techniques. Modeling and analysis of multiple species
ecological problemswere first done by Volterra [7]. Since then,
many unstructured ecological models have been formulated
and analyzed to study different phenomena [8–12]. Unstruc-
tured models, however, treat all individuals as identical and
account for reproduction and death as life history processes
that are important for population dynamics.

Over the last four decades, there has been a trend
towards increased realism of ecological theory. This trend
has been supported by introducing physiologically struc-
tured population models that distinguish individuals based
on physiological characteristics, e.g., size, age, weight, and
length. These models include feeding, development, repro-
duction, and mortality life history processes [13–19].

Stage-structured population models, which still carry a
lot of interesting information, are simpler versions of physi-
ologically structured population models and have increased
in popularity [9, 19–24]. Field and laboratory studies have
attributed several interesting features of population dynam-
ics of cannibalistic populations, specifically to the occurrence
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of cannibalism [13, 19, 25–30]. Nevertheless, we have not
encountered any mathematical models that consider several
species including cannibalism.

In this study, we formulate a stage-structured fishery
model that resembles the feeding habits of African catfish
and Nile tilapia to compare financial profit and biomass out-
takes in a two-species system versus single-species systems.
The paper is organized as follows: In Section 2, we present
the food and feeding habits of African catfish and Nile tila-
pia. In Section 3, we formulate a stage-structured fishery
model with harvesting. In Section 4, we prove the basic
properties of the model system (18). Section (5) gives the
mathematical analysis of the model. In Section 6, we present
the numerical simulations and results of the model equa-
tions. We end with a discussion of the results in Section 7.

2. Food and Feeding Habits of African Catfish
and Nile Tilapia

African catfish (Clarias gariepinus) is a group of domesti-
cated African catfishes of the family of Clariidae, air breath-
ing catfishes. It is widely distributed in African and middle
East fresh waters [31–33]. In Uganda, it is found in most
natural water bodies, including swamps, streams, rivers,
and lakes [34].

Nile tilapia (Oreochromis niloticus) is a species of tilapia,
a Cichlid fish native to Africa and Israel. As a food resource,
the Nile tilapia is the most important fish species in the trop-
ical and subtropical freshwater, often forming the basis of
commercially fisheries in many African countries [35]. In
Uganda, Nile tilapia is the second most important farmed
aquaculture after African catfish [36]. It is native of lakes
Albert, Edward, and George and introduced in the 1950s
into Lakes Kyoga and Victoria [37].

Food and feeding habits of fresh water fish species make
up the foundation for the development of a management
program of fish capture and culture. According to Otieno
et al. [38], fish feed mainly on food items that can fit their
mouth and what their stomach can digest. As fish grows,
the stomach becomes larger, and its digestive system
becomes more developed. African catfish is an opportunistic
omnivorous feeder ingesting a wide variety of food items
such as algae, macrophytes, zooplankton, insects, fish, detri-
tus, amphibians, and sand grains [39, 40].

Tesfahun [41] showed that African catfish preferred to
feed on animals while plant items were ingested during
pursuing other prey organisms. On top of some common
resources, such as zoo plankton, smaller specimens tend to
ingest more insects while larger specimens mainly prefer fish
prey.

Nile tilapia is omnivorous in its feeding habit with plant
origin foods as the most dominant food item [41].

3. Model Formulation

In this section, we will develop our model system (18). The
model we are considering is devoted to the interactions
and dynamics of African catfish, Nile tilapia, and two food
resources with harvesting. Two food resources are used to

capture the difference in feeding habits. African catfish are
classified into four stages: small juvenile X1, large juvenile
X2, small adult X3, and large adult X4. Nile tilapia are com-
posed of two stages: juvenile Y1 and adult Y2. The stages
divide up the the population in body mass intervals. The
two food resources are an animal-based food resource RA
(e.g., zooplankton) and a plant-based food resource RP
(e.g., phytoplankton). African catfish feed on both food
resources. In addition, small adult African catfish feed on
juvenile Nile tilapia and small juvenile African catfish; large
adult African catfish feed on adult Nile tilapia and large
juvenile African catfish. Nile tilapia only feed on the plant-
based food resources.

The variables used in the model are summarized in
Table 1.

Basing on the food and feeding pattern of African catfish
and Nile tilapia in Section 2, the assumed feeding habit pat-
tern is summarized in Table 2.

The biomass of small juvenile African catfish X1
increases due to somatic growth at a rate ω1, reproduction
at a rate ω4 from large adult African catfish, and reproduc-
tion at a rate qν3 from small adult African catfish, where q
is the reproduction fraction and ν3 is the maturation rate
from small adult African catfish to large adult African cat-
fish. Its biomass decreases due to maturation into the large
juvenile stage at a rate ν1, harvesting at a rate h1, cannibal-
ism at a rate c1, and death due to natural causes at a rate
μC. The reproduction fraction, q, is a parameter determining
the fraction of how much of the energy production should
be dedicated to reproduction and how much should be ded-
icated to maturation.

The biomass of large juvenile African catfish X2
increases due to the maturation of small juvenile African
catfish into the large juvenile stage at a rate ν1 and the
somatic growth at a rate ω2. Its biomass decreases due to
maturation of the large juvenile at a rate ν2, cannibalism at
a rate c2, harvesting at a rate h2, and death due to natural
causes at a rate μC .

The biomass of small adult African catfish biomass X3
increases due to maturation of large juvenile African catfish
into the small adult stage at a rate ν2 and somatic growth at a
rate ω3. Its biomass decreases due to maturation of small
adult African catfish at a rate ð1 − qÞν3 to large adult African
catfish, reproduction at a rate qν3, harvesting at a rate h3,
and natural death at a rate μC .

The biomass of large adult African catfish X4 increases
due to the maturation of small adult African catfish into
the large adult stage at a rate ð1 − qÞν3. Its biomass decreases
due to harvesting at a rate h4 and natural death at a rate
μC . Biomass increase due to somatic growth ω4 is lost in
reproduction.

The biomass of juvenile Nile tilapia Y1 increases due to
reproduction of adult Nile tilapia at a rate λ2 and somatic
growth at a rate λ1. Its biomass decreases due to maturation
into the adult stage at a rate γ, predation at a rate p1, harvest-
ing at a rate f1, and death due to natural causes at a rate μT .

The biomass of adult Nile tilapia Y2 increases due to
maturation into the adult stage at a rate γ, and it decreases
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due to predation at a rate p2 harvesting at a rate f2 and nat-
ural death at a rate μT. Biomass increase due to somatic
growth λ2 is lost in reproduction.

According to De Roos et al. [21], in the absence of
African catfish and Nile tilapia, the food resource RP is
assumed to have semichemostat growth rate GPðRPÞ,

GP RPð Þ = rP RPmax
− RP

� �
, ð1Þ

where rP is the intrinsic growth rate and RPmax
is the car-

rying capacity of food resource, RP.
While the food resource RA follows the logistic growth

rate GAðRAÞ,

GA RAð Þ = rARA 1 −
RA

RAmax

 !
, ð2Þ

where rA is the intrinsic growth rate and RAmax
is the carrying

capacity of food resource RA.
Due to external influx and spatial conditions such as

coverage, not all food resources are available to the fish pop-
ulation, see, e.g., [18] for more details and discussions. That
is, the fish cannot reach all food RA; thus, we introduce a

threshold constant, Λ; the available animalistic food is
defined by

R̂A = RA −Λð Þ+ ≔max 0, RA −Λð Þ: ð3Þ

This threshold forces the food resource RA away from
zero, thus eliminating the zero growth rate at the origin. A
zero growth rate at the origin creates instability in the solu-
tion, as well as the possibility of extinction of that food
resource. Since the plant food resource, RP , follows a semi-
chemostat growth, it has a nonhorizontal tangent line at
the origin; therefore, no analytical nor numerical instability
occurs, and hence, we are using a zero threshold constant
on the plant food resource. We note here that if we instead
had used logistic growth rate models without threshold for
the food resources, then cyclic solutions would most proba-
bly appear, for a deeper discussion of this and related
concepts, see, e.g., [42].

3.1. Biological Assumptions. In our model, we make the
following assumptions:

(i) African catfish are assumed to have birth size (in
fact, the birth size in our model corresponds to
the size at which the fish transform from larval
into fry, since this is the stage when the fish starts
utilizing the food resource) sb. The size of small
juveniles is in the interval sb ≤ s < s1, the size of
large juveniles is in the interval s1 ≤ s < s2, the size
of the small adults is in the interval s2 ≤ s < sm,
and the size of large adult African catfish is sm

(ii) Nile tilapia are assumed to have birth size kb. The
size of the juveniles is in the interval kb ≤ s < km,
and the size of adults is km

(iii) Large adult African catfish of size sm and adult Nile
tilapia of size km do not grow but invest all energy
in reproduction

(iv) Small adult African catfish uses the available
energy for growth, maturation, and reproduction

(v) Small juvenile African catfish, large juvenile
African catfish, and juvenile Nile tilapia use all
available energy for growth and maturation

(vi) The growth rate and reproduction rate depend on
food availability

(vii) Maturation rates depend on the net biomass pro-
duction rates

(viii) Consumption of food follows the Holling type II
functional response. The net biomass production
rates are assumed to equal the balance between
ingestion and mass-specific maintenance rates

(ix) At low food densities, the energy intake of juveniles
and adults is insufficient to cover their maintenance
requirements. As a result, they do not produce bio-
mass. They only produce biomass when their food

Table 1: Variables used in the stage-structured model for African
catfish, Nile tilapia, and the two food resources.

Variables Description

X1 Biomass of small juvenile African catfish at time t

X2 Biomass of large juvenile African catfish at time t

X3 Biomass of small adult African catfish at time t

X4 Biomass of large adult African catfish at time t

Y1 Biomass of juvenile Nile tilapia at time t

Y2 Biomass of adult Nile tilapia at time t

RA Biomass of zooplankton (animal items) at time t

RP Biomass of phytoplankton (plant items) at time t

Table 2: Food preferences of African catfish and Nile tilapia: the
elements in the first column eat the elements in the first row in a
preferred order, where it prefers the food with the lowest number.
If no number exists, then it does not eat the corresponding food.
The variable descriptions are given in Table 1.

Consumer
Prey

X1 X2 Y1 Y2 RA RP

X1 1 2

X2 1 2

X3 2 1 3 4

X4 2 1 3 4

Y1 1

Y2 1
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intake is sufficient to cover their maintenance
demands

(x) The net biomass production rates for juveniles and
adults are assumed to equal the balance between
ingestion and maintenance rates for African catfish
and Nile tilapia, respectively

3.2. Vital Rates. We adopt De Roos et al.’s [21] derivation of
net biomass production rates of individuals in different
stages and the maturation rate from one stage to another.

The net biomass production rates of juvenile and adult
African catfish are given by

ω1 = ω2 = σCIJ A + 1 − Að ÞPð Þ − T
� �+, ð4Þ

ω3 = σCIA F1 + 1 − F1ð Þ A + 1 − Að ÞPð Þð − Tf g+, ð5Þ

ω4 = σCIA F2 + 1 − F2ð Þ A + 1 − Að ÞPð Þð − Tf g+, ð6Þ
where

Fi =
Yi

HC + Yi
+ 1 −

Yi

HC + Yi

� �
Xi

HC + Xi
, i = 1, 2,

A =
R̂A

HC + R̂A

,

P =
RP

HC + RP
:

ð7Þ

Here, σC is the conversion efficiency of food ingested, I J
and IA are the maximum ingestion rates per unit biomass of
juvenile and adult African catfish, respectively. T is the mass
specific maintenance rate of African catfish, and HC is the
half saturation food level of African catfish.

The feeding rate Fi is defined in such a way that, for
large values of biomass, say Y1, we have F1 ≈ Y1/ðHC + Y1Þ
and for Y1 < <HC it follows that F1 ≈ X1/ðHC + X1Þ. Note
also that 0 ≤ F1 ≤ 1.

The net biomass production rates of juvenile and adult
Nile tilapia are given by

λ1 = σTψJ
RP

HT + RP
− E

� 	+
,

λ2 = σTψA
RP

HT + RP
− E

� 	+
:

ð8Þ

where σT is the conversion efficiency of food ingested by
Nile tilapia and ψJ and ψA are the maximum ingestion rates
per unit biomass of juvenile and adult Nile tilapia, respec-
tively. HT is the half saturation constant of Nile tilapia,
and E is the mass-specific maintenance rate of Nile tilapia.

Natural mortality rates of African catfish and Nile tilapia
are given by μC and μT , respectively.

Cannibalistic mortality rates (the cannibalistic and pre-
dation mortality rates are in fact proportional to the biomass
of the consumed population stage; in some literature, the

biomass of the consumed population is included in these
expressions) of small adult African catfish on small juvenile
African catfish, c1, and large adult African catfish on large
juvenile African catfish, c2, are given by

ci = IA
Xi+2

HC + Xi
, i = 1, 2: ð9Þ

Predation rates of small adult African catfish on juvenile
Nile tilapia, p1, and adult African catfish on adult Nile
tilapia, p2, are given by

pi = IA
Xi+2

HC + Yi
, i = 1, 2: ð10Þ

We use the maturation function

ν ω, μ, h, c, zð Þ = ω − μ + h + cð Þ
1 − zð Þ 1− μ+h+cð Þ/ωð Þð Þ , ð11Þ

to define the following maturation rates for African catfish

small juvenile⟶ large juvenile

ν1 = ν ω1, μC, h1, c1,
sb
s1

� �
,

large juvenile⟶ small adult

ν2 = ν ω2, μC, h2, c2,
s1
s2

� �
,

small adult⟶ large adult

ν3 = ν ω3, μC, h3, 0,
s2
sm

� �
,

ð12Þ

and for Nile tilapia

juvenile⟶ adult

γ = ν λ1, μT, f1, p1,
kb
km

� �
,

ð13Þ

3.3. The Schematic Diagram of the Model. Based on the
model description and assumptions made in Section 3, the
dynamics of the system is represented in Figure 1.

3.4. Model Equations. From the assumptions and interrela-
tion between the variables in Table 1 and the parameters in
Tables 3–5, as shown in Figure 1, the rates at which the bio-
mass of small juvenile African catfish, large juvenile African
catfish, small adult African catfish, large adult African catfish,
juvenile Nile tilapia, adult Nile tilapia, and food resources
changes are given by the following ordinary differential equa-
tions, using the expressions given in Equations (4)–(13)

dX1
dt

= ω4X4 + qν3X3 + ω1X1, ð14Þ

− ν1 + μC + h1 + c1ð ÞX1, ð15Þ
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dX2
dt

= ν1X1 + ω2X2 − ν2 + μC + h2 + c2ð ÞX2, ð16Þ

dX3
dt

= ν2X2 + ω3X3 − ν3 + μC + h3ð ÞX3, ð17Þ

dX4
dt

= 1 − qð Þν3X3 − μC + h4ð ÞX4, ð18Þ

dY1
dt

= λ2Y2 + λ1Y1 − γ + μT + f1 + p1ð ÞY1, ð19Þ

dY2
dt

= γY1 − μT + f2 + p2ð ÞY2, ð20Þ

dRA

dt
= rARA 1 −

RA

RAmax

 !
− FAR̂A, ð21Þ

dRP

dt
= rP RPmax

− RP

� �
− FPRP, ð22Þ

where

R̂A = RA −Λð Þ+, ð23Þ

FA =
I J

HC + R̂A

X1 +
I J

HC + R̂A

X2 + 1 − F1ð Þ IA
HC + R̂A

X3

+ 1 − F2ð Þ IA
HC + R̂A

X4,

ð24Þ

RA RP

X2 X3 X4

Y1 Y2

X1
ν1X1 ν2X2 (1 − q) ν3X3

𝛾Y1

𝜔4X4 + qν3X3

𝜔1X1

(𝜇C + h1 + c1) X1

𝜔2X2 𝜔3X3

(𝜇C + h2 + c2) X2

(𝜇C + h3) X3 (𝜇C + h4) X4

𝜆1Y1 + 𝜆2Y2

(𝜇T + f1 + p1) Y1

(𝜇T + f2 + p2) Y2

Figure 1: Schematic diagram of the dynamics of African catfish, Xi, Nile tilapia, Yi, and two food resources, RA and RP ; solid arrows indicate
growth, reproduction, mortality, and maturation from one stage to another whereas dashed connections show the flow of energy in the food-
web. The remaining parameters in the graph are defined through Equations (4)–(13) (Tables 1 and 3–5).

Table 3: Parameters for the food resources RA and RP .

Subject and symbol Definition Value Unit Source

rA Intrinsic growth rate 0.15 day-1 [57]

RAmax Carrying capacity 4 × 10−3 g/L [58]

Λ Food threshold constant 0:01 × RAmax g/L Assumed

rP Intrinsic growth rate 0.5 day-1 [56, 59]

RPmax Carrying capacity 1:6 × 10−2 g/L Estimated1

1Personal communication with biologists A. Larsson and J. Eriksson.
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FP = 1 −
R̂A

HC + R̂A

� �
I J

HC + RP
X1

+ 1 −
R̂A

HC + R̂A

� �
I J

HC + RP
X2

+ 1 − F1ð Þ 1 −
R̂A

HC + R̂A

� �
IA

HC + RP
X3

+ 1 − F2ð Þ 1 −
R̂A

HC + R̂A

� �
IA

HC + RP
X4

+
ψJ

HT + RP
Y1 +

ψA

HT + RP
Y2,

ð25Þ

subject to the initial conditions: X1ð0Þ ≥ 0,

X2 0ð Þ ≥ 0, X3 0ð Þ ≥ 0, X4 0ð Þ ≥ 0, ð26Þ

Y1ð0Þ ≥ 0, Y2ð0Þ ≥ 0, RAð0Þ ≥ 0 and RPð0Þ ≥ 0.

4. Basic Properties of the Model

We need to show that the model is well-posed in a biolog-
ically feasible domain. Since the variables X1ðtÞ, X2ðtÞ,

X3ðtÞ, X4ðtÞ, Y1ðtÞ, Y2ðtÞ, RAðtÞ, RPðtÞ represent living spe-
cies, nonnegativity ensures that they never become negative.
Boundedness explains that there is a natural restriction to the
growth of the population as a consequence of limited
resources.

4.1. Positivity. We state a theorem which proves that all
solutions of the model system (18) are nonnegative for
t ≥ 0. This proof could be made by considering cases, in
the spirit of [43], but since our model would require 15
such cases, we instead prove the nonnegativity using
decoupled ODEs.

Let

u tð Þ = u1 tð Þ,⋯, u8 tð Þð Þ,
≔ X1 tð Þ,⋯, X4 tð Þ, Y1 tð Þ, Y2 tð Þ, RA tð Þ, RP tð Þð Þ,

ð27Þ

we say uðtÞ ≥ 0 if all elements in uðtÞ are nonnegative.
To prove the above statement, we need some prelimi-

nary theory. Let ℝ+ = ½0,∞Þ.

Table 4: Parameters for Nile tilapia, denoted Y in our model.

Parameter Definition Value Unit Source

kb Size at birth 0.02 g [60]

km Maturation size of adults 176 g [61]

E Maintenance rate 2:75 × 10−6 day-1 [48, 50]

μT Natural mortality rate 2:75 × 10−4 day-1 [52]

HT Half saturation constant 1:26 × 10−2 g/L [53, 54]

ψJ Maximum ingestion rate for juveniles 2:75 × 10−2 day-1 [49, 51]

ψA Maximum ingestion rate for adults 2:33 × 10−2 day-1 [23]

σT Conversion efficiency rate for juveniles 0.5 — [50]

Table 5: Parameters for African catfish, denoted X in our model description. MA is an abbreviation of model assumption.

Parameter Definition Value Unit Source

sb Birth size 0.02 g [55]

s1 Maturation size to large juveniles 10 g MA

sm Maturation size to small adults 190 g [46, 62]

smax Maturation size to large adults 6000 g MA

q Reproduction fraction 0.5 — MA

μC Natural mortality rate 2:65 × 10−4 day-1 [52]

T Maintenance rate 2:65 × 10−6 day-1 [48, 50]

HC Half saturation constant 1:38 × 10−2 g/L [53, 54]

I J Maximum ingestion rate for juveniles 2:65 × 10−2 day-1 [49, 51]

IA Maximum ingestion rate for adults 2:25 × 10−2 day-1 [23]

σC Conversion efficiency rate 0.5 — [50]
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Proposition 1. Let f : ℝ ×ℝ+ ⟶ℝ+ and g : ℝ⟶ℝ be
integrable. All solutions v : ℝ+ ⟶ℝ to the ordinary differ-
ential equations

v′ tð Þ = f v, tð Þ − g tð Þv tð Þ, t > 0,

v 0ð Þ = v0,

(
ð28Þ

satisfies either case (1) vðtÞ > 0 for all t > 0 if v0 > 0 or case (2)
vðtÞ ≥ 0 for all t > 0 if v0 = 0.

Proof. Rewriting the equation we get after multiplication

with the integrating factor hðtÞ = e
Ð t

0
gðsÞds > 0

d
dt

h tð Þv tð Þð Þ = h tð Þf t, vð Þ ≥ 0, ð29Þ

integrating both sides gives

ðt
0

d
ds

h sð Þv sð Þds = h tð Þv tð Þ − h 0ð Þv 0ð Þ ≥ 0,ð ð30Þ

or equivalently

v tð Þ ≥ v 0ð Þe−
Ð t

0
g sð Þds

: ð31Þ

From this inequality, the two statements above follows
instantly.

Theorem 2. The solutions, u, to system (18) satisfy uðtÞ ≥ 0
for all t ≥ 0 if the initial data is nonnegative, i.e., uð0Þ ≥ 0.
If for some j ∈ f1,⋯, 6g, the initial data ujð0Þ > 0 then
ujðtÞ > 0 for all t > 0.

The ecological interpretation of this theorem is that, on
the one hand, if one species is present in the model at the
start of simulations, then its biomass is always positive. On
the other hand, if we have high harvest pressure or high can-
nibalism, the species biomass might decline exponentially
towards extinction.

Proof (of Theorem 2). That all solutions are nonnegative to
system (18) follows as a direct consequence of case (2) in
Proposition 1 since all coupled ODEs in system (18), studied
as single de-coupled ODEs can be written in the form given
in Proposition 1 including the fulfillment of the hypotheses.
In the same way, applying case (1) in Proposition 1 proves
the second part of the statement.

4.2. Boundedness

Theorem 3. All solutions uðtÞ of the model system (18) with
initial conditions uð0Þ ≥ 0 are uniformly bounded within
the region Ω = fuðtÞ ≥ 0g ⊂ℝ8

+.

Proof. Let NðtÞ be the total biomass of system (18) at time t
such that

N tð Þ = X1 tð Þ + X2 tð Þ + X3 tð Þ + X4 tð Þ + Y1 tð Þ
+ Y2 tð Þ + RA tð Þ + RP tð Þ: ð32Þ

Taking the derivatives of NðtÞ gives

N ′ tð Þ = X1′ tð Þ + X2′ tð Þ + X3′ tð Þ + X4′ tð Þ + Y1′ tð Þ
+ Y2′ tð Þ + RA′ tð Þ + RP′ tð Þ,

ð33Þ

which along the solution path of the model system (18)
yields

N ′ tð Þ = rARA 1 −
RA

RAmax

 !
− FAR̂A + rP RPmax

− RP

� �
− FPRP + ω1 − μC − h1 − c1ð ÞX1

+ ω2 − μC − h2 − c2ð ÞX2 + ω3 − μC − h3ð ÞX3

+ ω4 − μC − h4ð ÞX4 + λ1 − μT − f1 − p1ð ÞY1

+ λ2 − μT − f2 − p2ð ÞY2:

ð34Þ

Substituting Equations (24) and (25) into Equation (34),
we get (for convenience, we now use X5 = Y1 and X6 = Y2)

N ′ tð Þ = rARA 1 −
rA

RAmax

 !
+ rP RAmax

− RP

� �
− 〠

6

i=1
πiXi,

ð35Þ

where

π1 = 1 − σCð ÞI J A + 1 − Að ÞPð Þ + T + h1 + μC + c1,

π2 = 1 − σCð ÞI J A + 1 − Að ÞPð Þ + T + h2 + μC + c2,

π3 = 1 − σCð ÞIA F1 + 1 − F1ð Þ A + 1 − Að ÞPð Þð Þ + T + h3 + μC ,

π4 = 1 − σCð ÞIA F2 + 1 − F2ð Þ A + 1 − Að ÞPð Þð Þ + T + h4 + μC ,

π5 = 1 − σTð ÞψJP:

ð36Þ

For any β > 0, we add βNðtÞ to both sides of Equation
(35) to get

dN tð Þ
dt

+ βN tð Þ = RA rA 1 −
RA

RAmax

 !
+ β

 !
+ rPRPmax

− rP − βð ÞRP − 〠
6

i=1
πi − βð ÞXi:

ð37Þ

Since πiði = 1, 2, 3, 4, 5, 6Þ are nonnegative continuous
functions, each function bounded by a positive constant
and rP > 0, for example, πi ≥ T1 + μC + c1 > 0. Thus, we
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define β =min fπ1, π2, π3, π4, π5, π6, rPg. This now implies
that

dN tð Þ
dt

+ βN tð Þ ≤ rPRPmax
, ð38Þ

+RA rA 1 −
RA

RAmax

 !
+ β

 !
: ð39Þ

We study the right hand side

f RAð Þ = rPRPmax
+ RA rA 1 −

RA

RAmax

 !
+ β

 !
, ð40Þ

which is a second degree polynomial in RA, and hence,
attains its maximum value at

RA =
RAmax

rA + βð Þ
2rA

: ð41Þ

Substituting RA from Equation (41) into inequality (38)
yields

dN tð Þ
dt

+ βN tð Þ ≤ rPRPmax
+
RAmax

rA + βð Þ2
4rA

: ð42Þ

Using the product rule of derivatives on the left hand
side and integrating from 0 to t on both sides give the bound

N tð Þ ≤ Φ

β
1 − e−βt

 �

+N 0ð Þe−βt , ð43Þ

where Nð0Þ is the total biomass at time t = 0 and

Φ = rPRPmax
+
RAmax

rA + βð Þ2
4rA

> 0: ð44Þ

By Theorem 2, we get the bound

0 ≤N tð Þ ≤max N 0ð Þ, Φ
β

� 	
, ð45Þ

for all t ≥ 0.
Hence, the solutions of the model in ℝ8

+ are confined in
the region

Ω = X1, X2, X3, X4, Y1, Y2, RA, RPð Þ ∈ℝ8
+, ð46Þ

: 0 ≤NðtÞ ≤max fNð0Þ,Φ/βg. Therefore, we conclude
that the model is biologically and mathematically well-
posed in the region Ω.

5. Analysis of the Model

5.1. Existence of Equilibrium Points. The points at which the
derivatives of the system (18) are zero will be referred to as
equilibrium points or steady state solutions. The system

has six possible feasible equilibrium points. The vector below
indicates the values of ðX1, X2, X3, X4, Y1, Y2, RA, RPÞ.

E1 The fish-free with plant based food resource equilib-
rium point ð0, 0, 0, 0, 0, 0, 0, RPmax

Þ.
E2 The fish-free with two food resources equilibrium

point ð0, 0, 0, 0, 0, 0, RAmax
, RPmax

Þ.
E3 The African catfish free equilibrium point ð0, 0, 0, 0,

Ya°
1 , Ya°

2 , 0, Ra°
P Þ.

E4 The African catfish free equilibrium point ð0, 0, 0, 0,
Ya°a°
1 , Ya°a°

2 , Ra°a°
A , Ra°a°

P Þ.
E5 The Nile tilapia free equilibrium point ðX††

1 , X††
2 , X††

3 ,
X††
4 , 0, 0, R††

A , R††
P Þ.

E6 The coexistence equilibrium point ðX∗∗
1 , X∗∗

2 , X∗∗
3 ,

X∗∗
4 , Y∗∗

1 , Y∗∗
2 , R∗∗

A , R∗∗
P Þ.

5.2. Local Stability Analysis. In this subsection, we investi-
gate the local stability of each of the equilibrium solutions
of the model system (18) obtained by calculating the Jaco-
bian matrix J corresponding to each of the equilibrium
points.

Theorem 4. The equilibrium points with zero animalistic
food resource E1 and E3 are all unstable.

Proof. The Jacobian matrix evaluated at equilibrium point
E1ð0, 0, 0, 0, 0, 0, 0, RPmax

Þ is given by

J E1� �
=

b11 0 qν3 ω4 0 0 0 0

ν1 b22 0 0 0 0 0 0

0 ν2 b33 0 0 0 0 0

0 0 b43 b44 0 0 0 0

0 0 0 0 b55 λ2 0 0

0 0 0 0 γ b66 0 0

0 0 0 0 0 0 rA 0

0 0 0 0 0 0 0 −rP

2
666666666666666664

3
777777777777777775

,

ð47Þ

where
b11 = ω1 − ðν1 + μC + h1Þ, b22 = ω2 − ðν2 + μC + h2Þ, b33

= ω3 − ðν3 + μC + h3Þ, b43 = ð1 − qÞν3, b44 = −ðμC + h4Þ, b55
= λ1 − ðγ + μT + f1Þ, and b66 = −ðμT + f2Þ. We observe that
the seventh and eighth columns contain only diagonal terms
which form two eigenvalues rA and −rP out of eight eigen-
values. Since rA is positive, we thus have a nonstable equilib-
rium point.

Similarly, using the method above, the equilibrium point
E3 is unstable.

Theorem 5. The fish-free equilibrium point E2ð0, 0, 0, 0, 0, 0,
RAmax

, RPmax
Þ is locally asymptotically stable if RC < 1 and

RT < 1 and unstable otherwise.
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Proof. The local stability of the equilibrium point E2 is inves-
tigated using the eigenvalues or trace determinant criteria of
the Jacobian matrix. An equilibrium point is locally asymp-
totically stable if the Jacobian matrix evaluated at that point
has negative eigenvalues or has a negative trace and a posi-
tive determinant.

The Jacobian matrix evaluated at equilibrium point
E2ð0, 0, 0, 0, 0, 0, RAmax

, RPmax
Þ is given by

J E2� �
=

a11 0 a13 a14 0 0 0 0

a21 a22 0 0 0 0 0 0

0 a32 a33 0 0 0 0 0

0 0 a34 a44 0 0 0 0

0 0 0 0 a55 a56 0 0

0 0 0 0 a65 a66 0 0

0 0 0 0 0 0 a77 0

0 0 0 0 0 0 0 a88

2
666666666666666664

3
777777777777777775
ð48Þ

where
a11 = ω1 − ðν1 + μC + h1Þ, a13 = qν3, a14 = ω4, a21 = ν1,

a22 = ω2 − ðν2 + μC + h2Þ, a32 = ν2, a33 = ω3 − ðν3 + μC + h3Þ,
a43 = ð1 − qÞν3, a44 = −ðμC + h4Þ, a55 = λ1 − ðγ + μT + f1Þ,
a56 = λ2, J65 = γ, a66 = −ðμT + f2Þ, a77 = −rA, and a88 = −rP.

Observe that if the harvesting is high enough, then aii < 0
for i = 1, 2,⋯, 6. We need to show that all eigenvalues of
JðE2Þ are negative. As the seventh and eighth columns con-
tain only diagonal terms which form the two eigenvalues −
rA and −rP , the other six eigenvalues can be obtained from
the submatrix J1ðE2Þ formed by excluding the seventh and
eighth rows and columns of JðE2Þ. Hence, we have

J1 E2� �
=

a11 0 a13 a14 0 0

a21 a22 0 0 0 0

0 a32 a33 0 0 0

0 0 a43 a44 0 0

0 0 0 0 a55 a54

0 0 0 0 a65 a66

2
666666666664

3
777777777775
: ð49Þ

The eigenvalues of the matrix J1ðE2Þ are the roots of the
characteristic equation det ðJ1ðE2Þ − λIÞ = 0. That is

det

a11 − λ 0 a13 a14 0 0

a21 a22 − λ 0 0 0 0

0 a32 a33 − λ 0 0 0

0 0 a43 a44 − λ 0 0

0 0 0 0 a55 − λ a56

0 0 0 0 a65 a66 − λ

2
666666666664

3
777777777775
ð50Þ

=0, which is equal to solving (since this is a block diago-
nal matrix) det A det B = 0 where

A =

a11 − λ 0 a13 a14

a21 a22 − λ 0 0

0 a32 a33 − λ 0

0 0 a43 a44 − λ

2
6666664

3
7777775
,

B =
a55 − λ a56

a65 a66 − λ

" #
:

ð51Þ

From

det
a55 − λ a56

a65 a66 − λ

" #
= 0: ð52Þ

We get a second degree characteristic equation given by

a55 − λð Þ a66 − λð Þ − a56a65 = 0, ð53Þ

that is

λ2 − a55 + a66ð Þλ + a55a66 − a56a65 = 0: ð54Þ

Using the Routh-Hurwitz criterion, the solutions have
negative real parts if

− a55 + a66ð Þ > 0,

a55a66 − a56a65 > 0,
ð55Þ

Now

− a55 + a66ð Þ > 0, ð56Þ

is equivalent to

γ + 2μT + f1 − λ1 + f2 > 0: ð57Þ

That is, this inequality is satisfied if

f1 + f2 > λ1 − γ − 2μT ,

a55a66 − a56a65 > 0,
ð58Þ

is equivalent to

γ + μT + f1 − λ1ð Þ μT + f2ð Þ − λ2γ > 0: ð59Þ

That is, if f1 > λ1 − γ − μT , we get

1 −
λ2γ

γ + μT + f1 − λ1ð Þ μT + f2ð Þ
� �

> 0: ð60Þ
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This inequality is satisfied if and only if

RT =def :
λ2γ

γ + μT + f1 − λ1ð Þ μT + f2ð Þ < 1: ð61Þ

Here, RT is the recovery potential of Nile tilapia based on
growth in biomass.

Considering

det

a11 − λ 0 a13 a14

a21 a22 − λ 0 0

0 a32 a33 − λ 0

0 0 a43 a44 − λ

2
666664

3
777775 = 0: ð62Þ

We get a fourth degree characteristic equation given by

A0λ
4 + A1λ

3 + A2λ
2 + A3λ + A4 = 0, ð63Þ

where

A0 = 1,

A1 = − a11 + a22 + a33 + a44ð Þ,
A2 = a33a22 + a33a11 + a44a33 + a44a22 + a44a11 + a22a11ð Þ,
A3 = − a13a21a32 + a44a33a22 + a44a33a11ð

+ a33a22a11 + a44a22a11Þ,
A4 = −a14a21a32a43 + a44a13a21a32 + a44a33a22a11:

ð64Þ

Using Routh-Hurwitz criteria [44, 45], the roots of the
characteristic Equation (63) are negative or have negative
real parts if

A1 > 0,

A1A2 − A0A3 > 0,

A1A2 − A0A3ð ÞA3 − A2
1A4 > 0,

A4 > 0:

ð65Þ

Criteria 1. That is, A1 > 0 is true, provided a11 + a22 +
a33 + a44 < 0, which is true if the harvesting rates are high
enough.

Criteria 2. We have to show that A1A2 − A0A3 > 0; that
is, we need to check if the left hand side is greater than zero;
the left hand side is

A1A2 − A0A3 = − a11 + a22 + a33 + a44ð Þ, ð66Þ

a11a22 + a11a33 + a11a44 + a22a33 + a22a44 + a33a44ð Þ
− 1 −a11a22a33 − a21a13a32 − a11a22a44ð
− a11a33a44 − a22a33a44Þ

= a211a22 − a211a33 − a211a44 − a11a
2
22 − 4a11a22a33

− 2a11a22a44 − a11a
2
33 − 2a11a33a44 − a11a

2
44

− a222a33 − a222a44 − a22a
2
33 − 2a22a33a44 − a22a

2
44

− a233a44 − a33a
2
44 + a21a13a32:

ð67Þ
All terms in the right hand side of Equation (67) are

greater than zero (since aii < 0, i = 1, 2, 3, 4) with the possible
exception of +a21a13a32. From the definitions, +a21a13a32 is
equivalent to qν1ν2ν3 which is also greater than zero, hence
showing that A1A2 − A0A3 > 0.

Criteria 3. The analytical proof of

A1A2 − A0A3ð ÞA3 − A2
1A4 > 0, ð68Þ

is very hard. Instead, we observe the graphs in Figure 2
where they show that this criterion is satisfied, since at the
harvesting rate zero, the graph of ðA1A2 − A0A3ÞA3 − A2

1A4
against harvesting rate starts at a positive value and is
increasing. Figure 2(a) shows the values of this expression
for a larger set of harvesting rates. Figure 2(b) shows that
this expression is positive even for small values of the
harvesting rate.

Finally, Criteria 4: A4 > 0 is the same as

−a14a21a32a43 + a44a13a21a32 + a44a33a22a11 > 0: ð69Þ

This is equivalent to

RC =def :MN < 1, ð70Þ

where

M = q μC + h4ð Þ + 1 − qð Þω4
μC + h4

, ð71Þ

N =
ν1ν2ν3

ν1 + μC + h1 − ω1ð Þ ν2 + μC + h2 − ω2ð Þ ν3 + μC + h3 − ω3ð Þ :

ð72Þ
The function RC can be viewed as the recovery potential

of African catfish based on growth in biomass. The recovery
potential represents the net generational biomass production
(per unit body mass) in a virgin environment [24]. Thus, by
the Routh-Hurwitz criterion, the fish-free equilibrium is
asymptotically locally stable iff RC < 1 and RT < 1, defined
by Equations (61) and (71) which completes the proof.

The Jacobian matrices evaluated at the equilibrium
points E4, E5, and E6 lead to characteristic polynomials of
degree eight whose eigenvalues are too complex to be
obtained analytically. Therefore, we revert to numerical
simulations, see Section 6.
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6. Numerical Simulations

In this section, we carry out numerical simulations using
MATLAB to investigate coexistence and stability of African
catfish, Nile tilapia, and the two types of food resources at
steady state. We further investigate proportional harvesting
in a system that has both African catfish and Nile tilapia,
only African catfish, and only Nile tilapia, respectively, in
terms of biomass yield and financial profits at steady state.

6.1. Model Parameterization. The parameter values are
obtained from the literature review when possible. The
maturation size of African catfish is 28-30 cm in total body
length [46], and the maturation size of Nile tilapia is
20.8 cm [47].

We used the standard quarter-power scaling law [48–50]
to estimate: the maximum ingestion rate with proportional-
ity constant for the maximum ingestion rate 0.01 [49, 51],
maintenance rate with proportionality constant 0.01 [48,
50], and mortality rate with proportionality constant 0.001
[52]. Following Lessmark [53] and Byström and García-
Berthou [54], we used uniform half saturation constants
for Nile tilapia and African catfish, evaluated by the mean
weight of, respectively, species.

In the model, the birth size of African catfish is 0.02
grams [55]. The maturation size of large juveniles and large
adults is assumed to be 30 cm and 100 cm, respectively. Since
our model is based on weight, we use the following relation
between length, L (cm), and weight, W (grams)

W = c1L
c2 , ð73Þ

where c1 = 0:002 and c2 = 3:232 for the African catfish [10]
and c1 = 0:019 and c2 = 3:01 for the Nile tilapia [56]. Conver-
sion efficiency rate is assumed to be independent of food
type and fish species and is set to 0.5 [49, 50]. The maximum
ingestion rates of adult individuals are assumed to be 0.85

times the ingestion rates of juveniles for both species [23].
Finally, we assume an equal natural mortality rate at all
stages.

The parameter values used in the model are summarized
in Tables 3–5.

6.2. Numerical Stability Analysis of E4, E5, and E6 . The
remaining equilibrium points to investigate the stability are
E4, E5, and E6.

The stability of equilibrium point E4ð0, 0, 0, 0, Ya°a°
1 ,

Ya°a°
2 , Ra°a°

A , Ra°a°
P Þ occurs when 0:51 ≤ hi ≤ 0:77, i = 1, 2, 3, 4.

We tested the stability by running the model with different
harvesting rates h = ð0:77,0:77,0:77,0:77, f1, f2Þ, using one
hundred different initial values of the form ðX1, X2, X3, X4,
Y1, Y2, RA, RPÞ, taken randomly from the parameter space.
In all these simulations, we ended up with the equilibrium
solution E4; we therefore conclude that E4 is a stable equilib-
rium point provided that the harvesting rate of the catfish
population is high enough and f1 and f2 are smaller than
0.005.

In an analogous manner, we established the stability
of E5 when both f1 and f2 exceed 0.01 and hi ≤ 0:005
for i = 1, 2, 3, 4.

Finally, when all harvesting rates are low, the simulations
always converge to the equilibrium point E6.

6.3. Simulation Results. Our simulations are stable in the
sense that when positive initial values are used, the solutions
approach the positive steady state (all simulations shown in
other figures in this paper have reached steady state) as
indicated by Figure 3 which shows the dynamics of the solu-
tions to system (18). This signifies coexistence and stability
of African catfish, Nile tilapia, and the two different food
resources at steady state.

Recently, Lundström et al. [23] adopted the model
introduced by De Roos et al. [21], in which Lundström
et al. compared the properties between a stage-structured
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Figure 2: Graphical representation of Routh-Hurwitz Criteria 3, where the y–axis represents the expression ðA1A2 − A0A3ÞA3 − A2
1A4 and

the x–axis represents the harvesting rate. Other parameter values used can be found in Tables 3–5.
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logarithmic scale) for each fish compartment together with the food resources. The initial values are chosen positive; all harvest rates are set
to 0.005 per day; other parameter values can be found in Tables 3–5.
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Figure 4: Simulation results, using system (18), including both African catfish and Nile tilapia. The figures show the dependence of impact
on size structure (red curve), impact on biomass (blue curve), total biomass (green curve), and yield (black curve) with respect to equal

harvesting rates, i.e., h
!
= ðh, h, h, h, h, hÞ. The initial values are chosen positive, and other parameter values can be found in Tables 3–5.
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fish population model with an age-structured population
model. They investigated how harvesting strategies that
qualify for pretty good yield can account for conservation
and concluded that equal harvesting rate of juveniles and
adults is always a good strategy. We present some of these
properties, using equal harvesting in all stages in our model:
Figure 4 for African catfish and Nile tilapia and Figure 5 Nile
tilapia only.

One result by Lundström et al. [23] is that when study-
ing the impact of harvesting on population size structure,
they found a positive change in the fraction of juveniles
compared to adults in the population. In contrast to this,
we find that the impact of population size structure may
have a negative dependence on the harvest rate, see
Figure 4. This negative impact occurs because African catfish
is cannibalistic and predates on Nile tilapia, in that adults
feed on juveniles, and this reduces the fraction of juveniles
in the system. When we simulate the single fish species Nile
tilapia (see Figure 5), our model shows similar results as in
[23]; in particular, the impact on size structure is positively
dependent on the harvesting rate, which signifies that
increasing the uniform harvesting rate there is an increase
in the fraction of juveniles.

In fisheries, one can use different mesh sizes in the nets;
we therefore have modeled system (18) under a specific type
of harvesting rate. In Figures 6 and 7, we consider
unbalanced harvesting rates on juveniles and adults for both
African catfish and Nile tilapia, i.e., harvesting pressure

h
!
= ðð1 − pÞh, ð1 − pÞh, ph, ph, ð1 − pÞh, phÞ, where the pro-

portion 0 ≤ p ≤ 1. The figures display the biomass yield
(Figure 6) and financial profit (Figure 7) with respect to
different harvesting rates, h, and proportions, p. The max-
imum sustainable biomass yield and maximum sustainable
financial profits are attained when p is large; that is, we
mainly harvest adults.

In fisheries, one can harvest the fish stock by catch and
release, for example, with a bottle trap or a fyke net; we
therefore model system (18) with variable harvesting rates
on all fish compartments. Table 6 shows the results after
using pattern search to find optimal harvest rates that max-
imize biomass yield and financial profit for both species in
the system, only Nile tilapia in the system, and only African
catfish in the system. Our finding is that harvesting in a sys-
tem that has both Nile tilapia and African catfish gives the
highest biomass yield and financial profit (the optimal values
for biomass yield and financial profit in Table 6 are found at
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Figure 5: Simulation results, using system (18), including only the Nile tilapia. The figures show the dependence of impact on size structure
(red curve), impact on biomass (blue curve), total biomass (green curve), and yield (black curve) with respect to equal harvesting rates, i.e.,

h
!
= ðh, hÞ. The initial values are chosen positive, and other parameter values can be found in Tables 3–5.
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different harvesting rates), compared to harvesting in a
system having Nile tilapia only or African catfish only.

7. Discussion

The major aim of this study was to compare financial
profit and biomass outtakes in a two-species system ver-
sus single-species systems. To facilitate this comparison,
a nonlinear deterministic stage-structured fishery model
for the dynamics of African catfish, Nile tilapia, and
two food resources has been developed. African catfish

is classified into four stages to capture the cannibalistic
behavior, while Nile tilapia is categorized into two stages;
in addition, the fish feed on two separate food resources
in a preferred order. We established the region where
the model system (18) is biologically feasible and mathe-
matically well posed. The analytical results revealed that
the fish-free two food resource equilibrium point is
asymptotically stable if the recovery potentials RC < 1
and RT < 1. Numerical simulations indicated one positive
equilibrium solution for each set of parameters regardless
of positive initial values.
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Figure 6: Simulation results, using system (18), including both African catfish and Nile tilapia with proportional harvesting rates, i.e.,

h
!
p = ðð1 − pÞh, ð1 − pÞh, ph, ph, ð1 − pÞh, phÞ where 0 ≤ p ≤ 1. The initial values are chosen positive, and other parameter values can be

found in Tables 3–5.
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We established the two-species system to be better in
both financial profit and biomass outtakes, compared to a
single-species fish stock. Considering equal harvesting rates
on both African catfish and Nile tilapia, results show that
the impact of harvesting on population size structure is neg-
ative. The negative impact signifies a decrease in the fraction
of juveniles in the system. This is because African Catfish is
cannibalistic and predates on Nile tilapia.

Applying optimal harvest rates for harvesting both Nile
tilapia and African catfish, African catfish only, and Nile tila-
pia only to maximize biomass yield and financial profits, our
findings to some extent agree with [63, 64], in that, small
fisheries using ponds or small lakes should implement both
African catfish and Nile tilapia to harvest more biomass
yield and gain more financial profits.

We emphasize that our findings are based on the model
system (18); to prove these results, one should compare two
species versus one species in fisheries, alternatively corrobo-
rating our findings, using different models. This study can
be extended by analyzing a fishery model where there are
more than two fish species and more food resources to make
the model more realistic. Another direction for future
research would be to investigate under what conditions the
hydra effect occurs in cannibalistic predator prey models,
cf. [65, 66].

Data Availability

The parameter input values used in the simulations were
obtained from literature. They are summarized in Tables 3–5.
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