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The outbreak of the Coronavirus (COVID-19) pandemic around the world has caused many health and socioeconomic problems,
and the identification of variants like Delta and Omicron with similar and often even more transmissible modes of transmission
has motivated us to do this study. In this article, we have proposed and analyzed a mathematical model in order to study the effect
of health precautions and treatment for a disease transmitted by contact in a constant population. We determined the four
equilibria of the system of ordinary differential equations representing the model and characterized their existence using exact
methods of algebraic geometry and computer algebra. The model is studied using the stability theory for systems of differential
equations and the basic reproduction number R0. The stability of the equilibria is analyzed using the Lienard-Chipart criterion
and Lyapunov functions. The asymptotic or global stability of endemic equilibria is established, and the disease-free
equilibrium is globally asymptotically stable if R0 < 1. Model simulation is done with Python software to study the effects of
health precautions and treatment, and the results are analyzed. It is observed that if the rate of treatment and compliance with
health precautions are high, the number of infections decreases in the classes of infectious and is canceled out over time. It is
concluded that the high treatment rate accompanied by a suitable rate of compliance with health precautions allows for the
control the disease.

1. Introduction

The initial strain of SARS-CoV-2 that appeared at the end of
2019 and which spread around the world in 2020 has already
led to the appearance of other variants. To the Delta variant
was added a new Omicron variant in november 2021 which
has become pratically dominant. The emergence of other
variants is not excluded. It therefore becomes important to
understand the dynamics of the evolution of such a type of
disease with the emergence of variants from an initial strain
that regularly mutates. Some models have been proposed to
simulate the spread of COVID-19 with this type of variants.
Li and Guo, in [1], develop a mathematical model to simu-
late the possible impact of three control measures (vaccina-
tion, isolation, and nucleic acid testing) to control the
spread of the disease with the Delta variant. The technique
used is the weighted nonlinear least square estimation
method. Gilberto and Abraham propose in [2] a mathemat-

ical model based on ordinary differential equations to inves-
tigate potential consequences of the appearance of a new
more transmissible SARS-CoV-2 in a given region. In [3],
the authors develop a mathematical model to examine the
impact of nonpharmaceutical interventions, including the
COVID test, genome sequencing test capacity, contact trac-
ing, and quarantine strength, on the induced epidemic wave.
A novel compartmental model which captures new strate-
gies that promote self-testing and adjust the eligibility for
PCR tests, social behaviours, booster vaccine campaigns,
and features of the newest variant Omicron is presented in
[4]. However, to our knowledge, none of the above models
incorporates the effects of potential SARS-CoV-2 variants
together with the treatment and health precautions in the
spread of COVID-19.

In this paper, we present a compartmental model of a dis-
ease transmission with one virus and its variant with treatment
and health precautions. The purpose of the current study is to
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assess the combined use of observation, treatment, and health
precaution strategies to an infectious epidemiological disease
with one variant. The model presented has 4 equilibria. Note
that the basic reproduction number denoted R0 can be calcu-
lated using the Van den Drissche and Watmough method [5,
6]. The disease-free equilibrium is stable if R0 < 1 and unstable
if R0 > 1. If there are only two equilibria, the second is
endemic. When there are more than two equilibria, the basic
reproduction number does not allow to control exactly the sta-
bility of endemic equilibria.

When the number of strains or variants increases, the
number of equilibria can very drastically increase. In this
case, the use of algebraic geometry and computer algebra
approaches is of a valuable contribution for the characteriza-
tion and study of the equilibrium stability.

We start with the presentation of the model in Section 2.
In the Section 3, we determine and characterize the equilib-
ria of the model algebraically using the Gröebner base. In
Section 4, we study the stability of equilibria of the model
by the methods of algebraic geometry, and in particular for
disease-free equilibrium, we calculate the basic reproduction
number for a verification of algebraic characterizations. The
global stability of disease-free equilibrium is studied in Sec-
tion 5. Section 6 is devoted to numerical simulation.

2. Model Presentation

We present a model to study the spread of an infectious dis-
ease in a constant population required to respect sanitation
precautions with a portion under treatment. The population
is divided into five classes. The susceptible are in class S, and
the infected are in class I1 for the strain and in class I2 for
the variant. The individuals under treatment are in class T ,
and those under observation are in class O. The state vari-
able of each class also represents the proportion of its indi-
viduals. The transfer of individuals between the different
classes of the model is carried out as follows: the size of all
classes decreases due to the mortality rate. The classes of
infected I1 and I2 receive the individuals of class S infected
by the forces of infection ð1 − eÞβ1I1 and ð1 − eÞβ2I2, respec-
tively. Individuals of I2 are also derived from the mutation of
those of I1 due to the ν1 rate. Individuals from I1, I2, and O
progress to T due to the treatment rate γ. Class S receives
elements of the total population due to the birth rate

and of the classes O and T due to the rates ð1 − γÞ and
r, respectively. Individuals in S progress to T by the iden-
tification force ð1 − eÞβT and to I1 and I2 by the infection
forces ð1 − eÞβ1I1 and ð1 − eÞβ2I2, respectively. Class O
receives from class S the elements which have been in
contact with the individuals of T by the identification
force ð1 − eÞβT . Individuals from O progress to S and T
due to the rates 1 − γ and γ, respectively. Using parameters
and their description in Table 1 and the model presentation
and formulation given in Section 2, the model transfer dia-
gram is given by Figure 1.

From the transfer diagram of the model in Figure 1, the
dynamical system of the model is as follows:

_S = μ + rT + 1 − γð ÞO − 1 − eð Þ βT + β2I2 + β1I1ð Þ + μð ÞS,
_I2 = ν1I1 + 1 − eð Þβ2I2S − γ + μð ÞI2,
_I1 = 1 − eð Þβ1I1S − ν1 + γ + μð ÞI1,
_T = γ I2 + I1 +Oð Þ − r + μð ÞT ,
_O = 1 − eð ÞβTS − 1 + μð ÞO,

8>>>>>>>><
>>>>>>>>:

ð1Þ

where
We easily verify that for 0 = _S + _I1 + _I2 + _T + _O = μð1 −

S − I1 − I2 − T −OÞ, we have S + I1 + I2 + T +O = 1 for any
solution of system (1).

3. Model Equilibria

System (1) can be written as _x = f ðx, uÞ, where u = ðγ, e, β,
β1, β2, ν1, μ, rÞ is the list of parameters and x = ðS, I2, I1, T ,
OÞ is the list of state variables. An important feature of this
model is common to a large class of epidemiological models,
see [7, 8], and is that the components of the vector field f are
polynomials as a function of u and x. Thus, we can use the
powerful tools of computer algebra such as the Gröebner
base, see [9–11], to determine the equilibria of the model,
which are the solutions of the algebraic equations system f
ðu, xÞ = 0:

Table 1: Parameters and their biological meaning.

Parameters Biological meaning

β Contact rate

β1 Transmission rate for the initial strain

β2 Transmission rate for the variant β2 < β1ð Þ
ν1 Mutation rate for the variant

μ Death rate

r Cure rate

γ Treatment rate

e Health precaution rate

S I1 T

I2

O

(1−e) 𝛽1I1S 𝛾I1

𝜈1I1

rT

(1−𝛾) O

𝜇S

𝜇

𝛾O

𝛾I2(1−e) 𝛽2I2S

K

𝜇O

𝜇T

𝜇I2

𝜇I1

K = (1−e) 𝛽TS

Figure 1: Model transfer diagram.
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μ + rT + 1 − γð ÞO − 1 − eð Þ βT + β2I2 + β1I1ð Þ + μð ÞS = 0,
ν1I1 + 1 − eð Þβ2I2S − γ + μð ÞI2 = 0,
1 − eð Þβ1I1S − ν1 + γ + μð ÞI1 = 0,
γ I2 + I1 +Oð Þ − r + μð ÞT = 0,
1 − eð ÞβTS − 1 + μð ÞO = 0:

8>>>>>>>><
>>>>>>>>:

ð2Þ

The calculation of the Groebner base [9] of the system
f1, f2, f3, f4, f5 according to the lexicographical order S ≺ I2
≺ I1 ≺ T ≺O allows us to have a system (3) with a triangular
form of five equations according to the given order of vari-
ables. The first element of the Groebner base calculated is a
polynomial of degree 4 in S with roots s0 = 1, s1 = ðγ + μÞ/
β2ð1 − eÞ, s2 = ðγ + μ + ν1Þ/β1ð1 − eÞ and s3 = ðμ + rÞðμ + 1Þ/
βð1 − eÞ.

Replacing S by s0 in system (3) and solving for the other
variables, we obtain a single equilibrium, noted as E0, whose
components are

1, 0, 0, 0, 0ð Þ: ð3Þ

This is the disease-free equilibrium of the model, and it
exists for all values of parameters.

By replacing S by s1 in system (3) and solving for the
other variables, we obtain a single equilibrium, noted as E1,
whose components are

s1 =
γ + μ

1 − eð Þβ2
,

i21 = −
V2V3

β2
2 1 + μð Þ 1 − eð Þ γ + μ + rð Þ

,

i11 = 0,

t1 =
γV2

β2 1 − eð Þ γ + μ + rð Þ ,

o1 =
γβ γ + μð ÞV2

β2
2 1 + μð Þ 1 − eð Þ γ + μ + rð Þ

,

ð4Þ

where V2 = ð1 − eÞβ2 − ðγ + μÞ and V3 = γβðγ + μÞ − β2ðμ
+ rÞðμ + 1Þ.

This equilibrium which corresponds to the nonexistence
of infectious cases linked to the strain is endemic and exists
if and only if V2 ≥ 0 and V3 ≤ 0.

By replacing S by s2 in system (3) and solving for the
other variables, we obtain a single equilibrium, noted as E2,
whose components are

s2 =
γ + μ + ν1
β1 1 − eð Þ ,

i22 =
−V1V4

β1 β1 − β2ð Þ 1 + μð Þ 1 − eð Þ γ + μ + rð Þ ν1 + γ + μð Þ ,

i12 =
−V1V4V6

β2
1 β1 − β2ð Þ 1 + μð Þ 1 − eð Þ γ + μ + rð Þ ν1 + γ + μð Þ ,

t2 =
γV1

β1 1 − eð Þ γ + μ + rð Þ ,

o2 =
γβ ν1 + γ + μð ÞV1

β2
1 1 + μð Þ 1 − eð Þ γ + μ + rð Þ , ð5Þ

where V1 = ð1 − eÞβ1 − ðν1 + γ + μÞ, V4 = βγðν1 + γ + μÞ −
β1ðμ + rÞðμ + 1Þ, and V6 = ðβ1 − β2Þðγ + μÞ − ν1β2.

This equilibrium is endemic and exists if and only if
V1 ≥ 0, V4 ≤ 0, and V6 ≥ 0.

By replacing S by s3 in system (3) and solving for the
other variables, we obtain a single equilibrium, noted as E3,
whose components are

s3 =
μ + rð Þ μ + 1ð Þ
1 − eð Þγβ ,

i23 = 0,
i13 = 0,

t3 =
−V5

β 1 − eð Þ γ + μ + rð Þ ,

o3 =
− r + μð ÞV5

γβ 1 − eð Þ γ + μ + rð Þ ,

ð6Þ

where V5 = γβð1 − eÞ − ðμ + rÞðμ + 1Þ.
This equilibrium corresponds to the nonexistence of

infectious cases in circulation and exists if and only if V5
≤ 0.

4. Equilibrium Stability

In this section, we studied the local stability of the model
equilibria. We used a Lyapunov function or the classical lin-
earization method and the Lienard-Chipart criterion (see
[12]). In other words, we calculated the characteristic poly-
nomial of the Jacobian of the system in each equilibrium
and analyzed its roots. In addition, for the disease-free equi-
librium, we calculated the basic reproduction number of the
model. We will write the characteristic polynomial without
the factors that are not involved in the stability analysis.
We started with the disease-free equilibrium.

4.1. Stability of the Disease-Free Equilibrium E0. For disease-
free equilibrium E0, the characteristic polynomial of the
Jacobian matrix,

∂x f u, E0ð Þ =

−μ e − 1ð Þβ2 e − 1ð Þβ1 r + e − 1ð Þβ 1 − γ

0 V2 ν1 0 0
0 0 V1 0 0
0 γ γ −r − μ γ

0 0 0 1 − eð Þβ −1 − μ

2
666666664

3
777777775
,

ð7Þ
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is factorized [13]:

χ0 = Z + μð Þ Z − V1ð Þ Z − V2ð Þ Z2 + 2μ + r + 1ð ÞZ − V5
� �

:

ð8Þ

Using the Lienard-Chipart criterion for Z2 + ð2μ + r + 1
ÞZ − V5, we can deduce that the equilibrium E0 is hyperbolic
and locally asymptotically stable if and only if V1 < 0, V2 < 0,
and V5 < 0.

4.1.1. Computation of the Basic Reproduction Number. From
the variations of the infectious compartments,

_I2 = ν1I1 + 1 − eð Þβ2I2S − γ + μð ÞI2,
_I1 = 1 − eð Þβ1I1S − ν1 + γ + μð ÞI1,

ð9Þ

and by posing w = ðI2, I1Þ and FðwÞ = ð1 − eÞβ2I2Sð1 − eÞβ1I1S

� �
which is the column matrix of the rates of occurrence of

new infections by infectious compartment and W ðwÞ =
ðγ + μÞI2 − ν1I1ðγ + μ + ν1ÞI1

� �
which is the column matrix of differ-

ences between the rate of individuals leaving per infectious
compartment and the rate of those arriving in the same
compartment, we determine the matrices

F = ∂wF wð Þ =
1 − eð Þβ2s0 0

0 1 − eð Þβ1s0

" #
,

W = ∂wW wð Þ =
γ + μ −ν1
0 γ + μ + ν1

" #
:

ð10Þ

Then, we calculated the matrix F ·W−1 whose spectral
radius is the basic reproduction number.

W−1 =

1
γ + μ

ν1
γ + μð Þ γ + μ + ν1ð Þ

0 1
γ + μ + ν1

2
6664

3
7775,

F ·W−1 =

1 − eð Þβ2s0
γ + μ

1 − eð Þβ2s0ν1
γ + μð Þ γ + μ + ν1ð Þ

0 1 − eð Þβ1s0
γ + μ + ν1

2
6664

3
7775:

ð11Þ

The basic reproduction number R0 of the model is the
spectral radius of the matrix F ·W−1; therefore R0 = max fð
1 − eÞβ2/ðγ + μÞ, ð1 − eÞβ1/ðγ + μ + ν1Þg. Thus, E0 is locally
asymptotically stable if and only if R0 < 1 [5], which exactly
reflects conditions V1 < 0 and V2 < 0.

4.2. Stability of the Endemic Equilibrium E1. For endemic
equilibrium E1, the specialized characteristic polynomial of

the Jacobian matrix was not fully factorized, but by
substituting ðS, I1,OÞ by ðs1, i11, o1Þ, we obtain

∂x f u, E1ð Þ

=

m11 −γ − μ m13
−β γ + μð Þ + rβ2

β2
1 − γ

1 − eð Þβ2i21 0 ν1 0 0

0 0 V6
β2

0 0

0 γ γ −μ − r γ

1 − eð Þβt1 0 0 β γ + μð Þ
β2

−1 − μ

2
66666666666666664

3
77777777777777775

,

ð12Þ

with m11 = −ððt1β + i21β2Þð1 − eÞ + μÞ and m13 = −β1ðγ + μÞ
/β2, and the characteristic polynomial is factorized [13] as

χ1 = Z + μð Þ β2Z −V6ð ÞQ1, ð13Þ

where Q1 = a3Z
3 + a2Z

2 + a1Z + a0 is a polynomial of degree
3. To study the stability of E1, we applied the Lienard-
Chipart criterion [12] to the polynomial Q1. We obtained
the following coefficients:

a3 = β2

a2 = β2 t1β + i21β2ð Þ 1 − eð Þ + 2μ + r + 1ð Þ,
a1 = −V3 + β2 1 − eð Þ t1βγ + t1βμ + t1βrð

+ i21γβ2 + 2i21μβ2 + i21rβ2 + i21β2Þ,
a0 = 1 − eð Þβ2

2 1 + μð Þ γ + μ + rð Þi21,

ð14Þ

which are all strictly positive if i21 is strictly positive and
V2 > 0. The only subresultant we have to calculate is sr =
a0ða2a1 − a0a3Þ. After the calculation, we have

a2a1 − a0a3 = q2i
2
21 + q1i21 + q0, ð15Þ

Table 2: Parameter values used in numerical simulations.

Parameters Biological meaning Value

β Contact rate 0.00006

β1 Transmission rate for the initial strain 0.00005

β2 Transmission rate for the variant 0.00003

ν1 Mutation rate for the variant 0.001

μ Death rate 0.0003

r Cure rate 0.7
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with

q2 = β4
2 e − 1ð Þ2 γ + 2μ + r + 1ð Þ,

q1 = β2
2 1 − eð Þ t1ββ2 1 − eð Þ 2γ + 3μ + 2r + 1ð Þ −V3½
+ β2 γμ + γr + 3μ2 + 3μr + r2 + 3μ + r + 1

� ��,
q0 = β2 t1β 1 − eð Þ + 2μ + r + 1ð Þ

� t1ββ2 1 − eð Þ r + μ + γð Þ −V3ð Þ,
ð16Þ

which is obviously and strictly positive if V3 < 0 and V2 > 0.
So a3, a2,a1,a0, and sr are all strictly positive. E1 is therefore
hyperbolic and locally asymptotically stable if and only if
V3 < 0, V2 > 0 and V6 < 0.

4.3. Stability of the Endemic Equilibrium E2

4.3.1. Invariant Domain. Given a differentiable vector field
f : ℝn ⟶ℝn, we recall that ℝn

+ is positively invariant under
f if and only if for all i ∈ ½1, n� and x ∈ℝn

+ such that xi = 0, we
have f iðxÞ ≥ 0 (see [14]). The application of this property
makes it easy to verify that ℝn

+ is positively invariant under
the vector field associated with system (1). Let us recall that
a domain D is positively invariant for _x = f ðxðtÞ, uÞ, if the
trajectory of any solution of _x = f ðxðtÞ, uÞ that starts in D
remains in D for any positive value of t.

4.3.2. Global Stability of E2. For the equilibrium E2, we can
use a Lyapunov function to study this stability. Note that _S
+ _I2 + _I1 + _T + _O = μð1 − ðS + I2 + I1 + T +OÞÞ = 0, so the
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Figure 2: Disease spread at γ = 0:01 and e = 0:1:
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Figure 3: Disease spread at γ = 0:1 and e = 0:1.
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domain Ω = fðS, I2, I1, T ,OÞ ∈ℝ5
+ : S + I2 + I1 + T +O = 1g

is positively invariant under _x = f ðxðtÞ, uÞ.
Let L = ðI1 − i12Þ2,

dL
dt

= 2 I1 − i12ð Þ_I1 = 2I1 I1 − i12ð Þ 1 − eð Þβ1S − ν1 + μ + γð Þð Þ
≤ 2I1 I1 − i12ð ÞV1 ≤ 0:

ð17Þ

Indeed, V1 > 0 and ð1 − eÞβ1S − ðν1 + μ + γÞ ≥ 0 if S ≥ s2,
so I1 increases to i12; then, I1 − i12 ≤ 0.

Therefore, E2 is hyperbolic and globally asymptotically
stable in Ω if and only if V1 ≥ 0, V4 ≤ 0, andV6 ≥ 0.

4.4. Stability of the Equilibrium E3. For endemic equilibrium
E3, the specialized characteristic polynomial of the Jacobian
matrix was not fully factorized, but by substituting ðS, I2, I1Þ
by ðs3, i23, i13Þ, we obtain

∂x f u, E3ð Þ =

e − 1ð Þβt3 − μ a12 a13 a14 1 − γ

0 −
V3
γβ

ν1 0 0

0 0 −
V4
γβ

0 0

0 γ γ −r − μ γ

1 − eð Þβt3 0 0 r + μð Þ 1 + uð Þ
γ

−1 − μ

2
66666666666664

3
77777777777775
,

ð18Þ
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Figure 4: Disease spread at γ = 0:4 and e = 0:1.

S
I2

T

I1

O

1.0

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10
Time (days)

Figure 5: Disease spread at γ = 0:7 and e = 0:1.
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with a12 = −ðβ2ðr + μÞð1 + uÞ/γβÞ, a13 = −ðβ1ðr + μÞð1 + uÞ/
γβÞ, and a14 = −ððγr − ðr + μÞð1 + uÞÞ/γÞ, and the character-
istic polynomial is factorized [13] as

χ3 = Z + μð Þ βγZ +V3ð Þ βγZ + V4ð ÞQ3, ð19Þ

where Q3 = Z2 + ðð1 − eÞβt3 + 2μ + r + 1ÞZ + ð1 − eÞβt3ðγ +
μ + rÞ. To study the stability of E3, we applied the Lienard-
Chipart criterion [12] to the polynomial Q3.

Therefore, E3 is hyperbolic and locally asymptotically
stable if and only if V3 > 0, V4 > 0, and V5 ≤ 0.

We have thus the following result.

Theorem 1. The model represented by system (1) has four
equilibria:

(1) A disease-free equilibrium E0 which exists for all
values of the parameters. It is hyperbolic and locally
asymptotically stable if and only if V1 < 0, V2 < 0,
and V5 < 0

(2) An equilibrium E1 which exists if and only if V2 ≥ 0
and V3 ≤ 0 and is hyperbolic and locally asymptoti-
cally stable if and only if V3 < 0, V2 > 0, and V6 < 0

(3) An equilibrium E2 which exists and is hyperbolic and
globally asymptotically stable in Ω if and only if V1
≥ 0, V4 ≤ 0, and V6 ≥ 0
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Figure 6: Disease spread at γ = 0:1 and e = 0:01.
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Figure 7: Disease spread at γ = 0:1 and e = 0:1.
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(4) An equilibrium E3 which exists if V5 ≤ 0 and is hyper-
bolic and locally asymptotically stable if and only if
V3 > 0, V4 > 0, and V5 ≤ 0

5. Global Stability of Disease-Free Equilibrium

Theorem 2. If R0 < 1, then the disease-free equilibrium E0
= ð1, 0, 0, 0, 0Þ is globally asymptotically stable.

Consider the function

L : R5
+ ⟶ R+

x↦ I1
: ð20Þ

Its derivative with respect to the time following the solutions
of system (E) is

dL x tð Þð Þ
dt

= 1 − eð Þβ1S − ν1 + γ + μð Þð ÞI1
≤ 1 − eð Þβ1 − ν1 + γ + μð Þð ÞI1 =V1I1:

ð21Þ

This shows that it is a Lyapunov function if V1 < 0. Thus,
E0 is globally asymptotically stable in Ω if R0 < 1.

6. Numerical Simulation

Numerical simulations are done using the Python computer
software program. Parameter values are given in Table 2.
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Figure 8: Disease spread at γ = 0:1 and e = 0:4.

1.0

0.8

0.6

0.4

0.2

0.0

0 10 20 30 40 50
Time (days)

S
I2

T

I1

O

Figure 9: Disease spread at γ = 0:1 and e = 0:7.
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6.1. Effect of Varying Treatment Rates on Different
Epidemiological Classes. In this part, the health precaution
rate e is fixed to 0:1. The effect of treatment on the dynamics
of the model is studied for the following values of treatment
rates γ = 0:01, 0:1, 0:4, and 0:7. It is observed that there is a
drastic decrease of infectious classes when the treatment rate
increases as shown in Figures 2, 3, 4, and 5.

6.2. Effect of Varying Health Precaution Rates on Different
Epidemiological Classes. In this part, the treatment rate γ is
fixed to 0:1. The effect of the health precaution rate on the
dynamics of the model is studied for the following values
of health precaution rates e = 0:01, 0:1, 0:4, and 0:7. It is
observed that there is a no significant decrease of infectious
classes when the health precaution rate increases in
Figures 6, 7, 8, and 9. As the simulation shows, increasing
the rate of health precautions stops disease transmission
over time but does not eliminate it. The epidemic disappears
after 50 days for all the given values of e, for γ = 0:1 even if
the variation is less noticeable with the rate increase in the
of health precautions.

7. Conclusion

For the model presented, all equilibria and their stability are
exactly characterized by the use of algebraic geometry and
computer algebra methods. The disease-free equilibrium is
globally asymptotically stable; i.e., a disease-free environ-
ment can be achieved if treatment and health precautions
are respected. Numerical simulations of the model show that
the singular use of a health precaution/treatment strategy
may lead to the effective disease control (or elimination) if
its effectiveness level is at least moderately high enough.
Compliance with health precaution for instance can signifi-
cantly reduce the cost of treatment. The epidemic tends to
disappear quickly when the treatment rate increases. We
note for example that for the given values of the parameters,
the disease spread decreases from 400 days to 10 days when
γ goes from 0:01 to 0:7. As the simulation shows, increasing
the rate of health precautions stops disease transmission
over time but does not eliminate it. But the combined effects
of treatment measures and health precautions have a consid-
erable effect on the spread of the disease. The disease tends
to disappear with the increase in these rates. The model pre-
sented is such that the initial strain has only one variant. The
use of algebraic geometry and computer algebra approaches
is of a valuable contribution for the characterization of equi-
libria and their stability. Another perspective of this work is
to extend this model to the case of disease with several
variants.
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