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Quasisimple wave solutions of Euler’s system of equations for ideal gas are investigated under the assumption of spherical and
cylindrical symmetries. These solutions are proved to be stabilized into sound wave solutions and cavitation. It is proved that if
initial conditions from outside the invariant region approach to transitional solution, then reciprocal of the self-similar parameter
goes to infinity. However, when initial conditions stabilize into sound waves or cavitation, then reciprocal of self-similar parameter
approaches finite value. Further, it is proved that initial conditions can be parametrized so that some of the initial conditions
stabilize into sound wave solutions. The rest of the initial conditions are proved to be stabilized into cavitation. This extends the
work of G. I. Taylor to the case of cavitation. It is proved that quasisimple wave solutions exist for the balance laws comprised of
Euler’s system of equations in the case of cylindrically and spherically symmetric cases. The description applies to the motion of
cylindrical and spherical piston in real life. In particular, self-similar description of appearance of vacuum in the motion
of cylindrical and spherical piston is given.

1. Introduction

Euler’s system of equations for compressible fluids is a system
of quasilinear partial differential equations which has occupied
center stage in both the spheres of pure and applied mathe-
matics. Problem of solving Euler’s equations in several dimen-
sions is one of the most difficult problem in analysis of partial
differential equations owing to the enigmatic role played by
the convective term in the system. Central questions of exis-
tence and uniqueness of solutions for a general initial value
problem and mixed initial boundary value problem remain
largely open with limited success in some particular cases. So
far, the analysis of this system under variety of initial and
boundary conditions remained ad hoc and guided by physics
of the problem owing to the difficulties in identifying correct
function spaces for the existence of solutions. This difficulty
is essentially due to the fact that the form of the functions solu-
tions may take are largely unknown, and in several cases, in
fact, solutions even admit discontinuities. Appearance of dis-
continuities adds even more difficulties in the analysis and
makes the questions even more challenging.

Among many, one of the approaches that has gained
much attention in recent times is use of artificial neural net-
works [1–4]. Nonlinearities in the problem make solving
and analysis initial boundary value problems or boundary
value problems quite difficult. Hence, researchers in the field
try to analysis by means of finding numerical solution to the
problem. One of the method used by Shafiq et al. [3] to carry
out numerical process is the use of Galerkin weighted resid-
ual method. In this method, the unknown solution is antic-
ipated in terms linear combinations of certain appropriately
chosen trial functions. Upon substituting, these linear com-
binations into the problem to be solved leads to residuals.
Coefficients of anticipated solution then adjusted in such a
way that the residual will be minimum. Such a linear combi-
nation is achieved by means of artificial neural networks.
However, such linear combination is indeed a solution
requires validation and actually mathematical proof too. If
the problem is framed in the language of Sobolev spaces then
already available knowledge of wavelet bases of Sobolev
spaces makes writing explicit mathematical proof of ANN-
based argument easier. It should be born in mind that
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analyzing wavelet bases of Sobolev spaces is just one aspect
of entire argument and one can think of other spaces like
Orcliz spaces or weighted Sobolev spaces depending upon
the problem.

In the present article, we have tried to analyze self-
similar solutions of Euler’s system of equations with cylin-
drically symmetric and spherically symmetric geometries.
Assumption of self-similarity of the solution simplify the sit-
uation to certain extent and has become popular among
researchers in the subject. One of the most striking uses of
self-similar solutions in the case of system of hyperbolic con-
servation laws is the solution of Riemann problem by Lax
and its subsequent use in proving Glimm’s existence theo-
rem for the solution of system of hyperbolic conservation
laws in one space dimension. While this development was
taking place, simple wave solutions of the system of conser-
vation laws occupied important place in the analysis of these
equations especially in the case of Euler’s system of equa-
tions both in one space and several space dimensions. One
of the reason for the popularity of simple wave solutions is
that they model several physical phenomena taking place
in compressible fluids. One important step in this kind of
analysis is the observation (justified by symmetry consider-
ations) that self-similarity parameter can be taken as x/tβ
where βmay take values other than 1. Sachdev et al. [5] have
discussed multitude of possibilities self-similar solutions
offer for system of Euler equations with spherical and cylin-
drical symmetry. Under the assumption of self-symmetry,
the original system of partial differential equations become
the system of ordinary differential equations. Phase plane
analysis of system of ordinary differential equations obtained
for axially symmetric flows in two space dimensions for the
ideal gas is carried out by Zheng [6] and serves important
source of material in this field. Apart from their importance
in the mathematical analysis of flows, self-similar solutions
have also served to demonstrate physical phenomena gov-
erned by solutions of system of Euler’s equations especially
in the case of problems related to imploding and exploding
shock waves. Monograph written by Sachdev [7, 8] in this
regard is a good reference for the solutions of Euler’s system
of equations with spherical and cylindrical symmetry
depending on self-similar variable x/tβ. Euler’s system of
equations in two space dimensions is studied in great details
in recent times by Zheng [9, 10] and several authors [11, 12].
Desale and Potadar [13] have analyzed self-similar motion
of uniformly advancing piston. The same authors Desale
and Potadar [14] have carried out analysis of Euler’s system
of equations in two space dimensions in the case of nonideal
gases (real gases).

In the case of cylindrical symmetry and spherical sym-
metry, Euler’s system becomes a system of balance laws.
Self-similar solutions to a system of conservation laws are
known as simple waves, and self-similar solutions to balance
laws fall in the category of quasisimple waves. For introduc-
tory description of quasisimple waves, we refer to Courant
and Friedrichs [15]. Sound wave solutions correspond to
nonzero density whereas vacuum corresponds to zero den-
sity and hence zero sound speed. Thus, zero density and zero

sound speed contrast the case of infinite shock speed and
also known as degenerate sound speed. Under the assump-
tion of self-similarity, these balance laws become system of
ordinary differential equations which can be thought of as
a dynamical system or a vector field. In this paper, we have
found that complete solutions stabilizing into sound wave
solutions and complete solutions stabilizing into vacuum
(degenerate sound speed) are characterized by the equilib-
rium (stationary) points to which these respective complete
solutions go into when self-similar parameter is made tend
to infinity. Thus, nonzero sound speed corresponds to a sta-
tionary point of underlying dynamical system and zero
sound speed corresponds to other stationary point of the
same dynamical system. Other peculiarities of derived
dynamical system are discussed at length in the article. In
Section 1, we have given introduction and the Euler’s system
is reduced to the system of ordinary differential equations
under the assumption of self-similarity. Stationary points
are also determined in Section 1, and in Section 2, lineraiza-
tion at stationary points is carried out. In Section 3, phase
plane analysis is carried out; in the following sections, phase
plane analysis is interpreted to understand the mechanics of
quasisimple waves which are introduced subsequently.
Potential of velocity is discussed in Section 5, and in Section
6, parametrization of initial conditions is given; for different
ranges of initial conditions, solutions lead to different sta-
tionary points. In Section 7, formal existence of quasisimple
waves is proved. Chapter is concluded in Section 8.

2. Basic Equations

Euler’s system of equations in three space dimensions under
the assumption of cylindrical symmetry ðm = 1Þ and spheri-
cal symmetry ðm = 2Þ are given as follows. These equations
form a system of balance laws for which we seek self-
similar solutions.

∂
∂t

rmρð Þ + ∂
∂r

rmρuð Þ = 0,

∂
∂t

ρuð Þ + ∂
∂r

p + ρu2
� �

+m
ρu2

r
= 0,

∂
∂t

rmρ e + u2

2

� �� �
+ ∂
∂r

rmρu e + p
ρ
+ u2

2

� �� �
= 0:

ð1Þ

For ideal gas, we have the following standard formulae:

e = p
γ − 1ð Þρ , ρ =

γp
c2

: ð2Þ

We now introduce self-similar variable ξ = r/t in terms
of which the above equations become the following system
of ordinary differential equations.
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u − ξð Þuξ +
c2

γp
pξ = 0,

u − ξð Þpξ −
2p
c

u − ξð Þcξ + puξ = −
mup
ξ

,

u − ξð Þpξ + γpuξ = −
mγpu
ξ

:

ð3Þ

The same system is written in matrix form as below so
that upon applying Cramer’s rule, we get equations for uξ,
cξ, pξ.

u − ξ
c2

γp
0

p u − ξ −
2p
c

u − ξð Þ
γp u − ξ 0

0
BBBBB@

1
CCCCCA

uξ

pξ

cξ

0
BB@

1
CCA =

0

−
mup
ξ

−
mγpu
ξ

0
BBBB@

1
CCCCA:

ð4Þ

In this system of equations, we denote for brevity as
follows:

AU = b: ð5Þ

This is a system of linear equations. Determinant of the
underlying matrix A is nonzero for u ≠ ξ. We already have
seen that u = ξ is a solution only in the case m = 0, the degen-
erate case which is not of concern at this moment.

det Að Þ = −
2p
c

u − ξð Þ c2 − u − ξð Þ2
� �

: ð6Þ

Thus, u ≠ ξ means nontrivial unique solution exist which
we have written below:

uξ = −
muc2

ξ c2 − u − ξð Þ2
� � ,

cξ =
mc u − ξð Þu γ − 1ð Þ
2ξ c2 − u − ξð Þ2
� � ,

pξ = −
mγpu u − ξð Þ

ξ c2 − u − ξð Þ2
� � :

ð7Þ

We now introduce following variables on the lines of
Courant and Friedrichs [15], Sachadev [7], and Zheng [6].
The central point of our discussion is to extend discussion
carried out by Taylor [16] for sound waves to include the case
of cavitation.

s = 1
ξ
, I = us, K = cs, J = ps2,

s
dI
ds

= 1 − Ið Þ2 − K2 −mK2

1 − Ið Þ2 − K2 I,

s
dK
ds

= 2 1 − Ið Þ2 − K2� �
−m 1 − Ið ÞI γ − 1ð Þ

2 1 − Ið Þ2 − K2� � K ,

s
dJ
ds

= 2 1 − Ið Þ2 − K2� �
+mγ 1 − Ið ÞI

1 − Ið Þ2 − K2 J:

ð8Þ

Introduce new variable τ so that

ds
dτ

= s 1 − Ið Þ2 − K2� �
,

A = 2 1 − Ið Þ2 − K2� �
−m γ − 1ð Þ 1 − Ið ÞI,

B = 1 − Ið Þ2 − K2 −mK2,
C = 2 1 − Ið Þ2 − K2� �

+mγ 1 − Ið ÞI:

ð9Þ

Then, we have

dI
dτ

= BI,

dK
dτ

= AK ,

dJ
dτ

= CJ:

ð10Þ

Equilibrium points of this system are ð0, 0, 0Þ, ð0, 1, 0Þ,
ð1, 0, 0Þ, ð0,−1, 0Þ,Q andQ′ where Q, Q′ are defined as
follows:

Q = 2m
1 + γ −m +mγ

, γ − 1ð Þ ffiffiffiffiffiffiffiffiffiffiffi
1 +m

p

1 + γ −m +mγ
, 0

 !
,

Q′ = 2m
1 + γ −m +mγ

, − γ − 1ð Þ ffiffiffiffiffiffiffiffiffiffiffi
1 +m

p

1 + γ −m +mγ
, 0

 !
:

ð11Þ

System (10) of ordinary differential equations defines a
dynamical system symmetric with respect K axis. Equilib-
rium point ð1, 0, 0Þ is repeated twice. Note that for γ = 1,
equilibrium points Q and Q′ degenerate to ð1, 0, 0Þ. It is
well known in the literature that γ = 1 corresponds to iso-
thermal case, and it is no surprise that (24) too give rise
to self-similar solutions of system of Euler’s equations with
spherical and cylindrical symmetry obey condition of being
isothermal. Figure 1 illustrates the vector field determined
by (11) in the first quadrant of the I − K plane. The point
Q represents transitional solution. The region represents
invariant region for the vector field (10). The points ð0, 1Þ
and ð1, 0Þ and Q are equilibrium points which are sepa-
rated by separitrices. In the following sections, we have
carried out phase plane analysis of the vector field (10).
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3. Linearization of (11)

In this section, we have provided linearization of (10) at dif-
ferent critical points. The words critical points, equilibrium
points, and stationary points are synonymous to each other
and used interchangeably.

3.1. Linearization at the Equilibrium Point ð0, 1, 0Þ. (10) lin-
earizes to the following at ð0, 1, 0Þ:

dI
dτ

dK
dτ

dKJ
dτ

0
BBBBBBB@

1
CCCCCCCA

=
−m 0 0

−γ − 3 −4 0
0 0 0

0
BB@

1
CCA

I

K − 1
J

0
BB@

1
CCA + second‐order terms:

ð12Þ

Eigenvalues of linear part of the preceding system of
equations are −m, −4 and 0. For m = 1 and m = 2, we have
two-dimensional stable manifold corresponding to both
the negative eigenvalues and a slow manifold corresponding
to zero eigenvalue.

3.2. Linearization at the Equilibrium Point ð0, 0, 0Þ. (10)
linearizes to the following at ð0, 0, 0Þ:

dI
dτ

dK
dτ

dJ
dτ

0
BBBBBBB@

1
CCCCCCCA

=
1 0 0
0 2 0
0 0 2

0
BB@

1
CCA

I

K

J

0
BB@

1
CCA + second‐order terms:

ð13Þ

3.3. Linearization at the Equilibrium Point Q. (10) linearises
to the following at Q:

d I − að Þ
dτ

d K − bð Þ
dτ

dKJ
dτ

0
BBBBBBB@

1
CCCCCCCA

=
L M 0
N P 0
0 0 0

0
BB@

1
CCA

I − a

K − b

J

0
BB@

1
CCA + second‐order terms,

a = 2m
1 + γ −m +mγ

,

b = γ − 1ð Þ ffiffiffiffiffiffiffiffiffiffiffi
1 +m

p

1 + γ −m +mγ
,

L = −4 γ − 1ð Þm m + 1ð Þ
γ + 1ð Þ2m2 + γ2 + 2 γ2 − 1ð Þm − 2γ + 1

,

M =
−4m γ − 1ð Þ m +

ffiffiffiffiffiffiffiffiffiffiffi
m + 1

p� �
γ + 1ð Þ2m2 + γ2 + 2 γ2 − 1ð Þm − 2γ + 1

,

N = −
ffiffiffiffiffiffiffiffiffiffiffi
m + 1

p γ3 + γ2 + γ3 − γ2 − γ + 1
� �

m − 5γ + 3
γ + 1ð Þ2m2 + γ2 + 2 γ2 − 1ð Þm − 2γ + 1

,

P = −4 γ2 + γ − 1ð Þ2m − 2γ + 1
γ + 1ð Þ2m2 + γ2 + 2 γ2 − 1ð Þm − 2γ + 1

:

ð14Þ

3.4. Linearization at the Equilibrium Point ð1, 0, 0Þ. Lineari-
zation of (10) at ð1, 0, 0Þ has zero linear part. In this section,
we have presented basic calculations concerning lineariza-
tion of the vector field (10) around its critical points. In
the following section, we will carry out phase plane analysis
of vector field given by (10) with the help of the above
calculations.

4. Phase Plane Analysis of Equation (10)

Phase plane analysis of (10) poses no difficulty except that its
linearization at ð1, 0Þ has zero linear part. Simple analysis
shows that ð1, 0Þ is an attracting equilibrium point, and
there is a separatrix that connects ð1, 0Þ to equilibrium point
Q. There is also separatrix that connects Q to attracting equi-
librium point ð0, 1Þ. Equilibrium point ð0, 0Þ is a source as
all the eigenvalues of linearized part of (10) at ð0, 0Þ are all
positive. Since ð0, 0Þ is a repelling equilibrium point and
ð0, 1Þ is an attracting equilibrium point, we find that there
is a separatrix that connects ð0, 0Þ to ð0, 1Þ. Thus, we have
an invariant region Ω that is bounded by separetrices which
connect one equilibrium point to the other. However, there
is no separetrix that connects equilibrium point ð0, 0Þ to Q
and we see that there are loops at ð1, 0Þ and it will be argued
below that some of the integral curves emanating in the
neighborhood of ð1, 0Þ take s to become infinitely large to
reach ð1, 0Þ back again. The invariant region is given in
Figure 2.

5. Infiniteness of s to Reach Q

Here, we argue that s needs to become infinitely large along
an integral curve that emanates from any point in the I − K
phase plane. One of the reason for this is that certain of the
eigenvalues of linear part of the vector field (10) at Q are
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1.0
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0.8

0.8
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K–
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0.6
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0.0

0.0

K =1–I

Q

Figure 1: Vector field (10): lengths of arrows indicate the rate at
which flow is proceeding toward K = 1 − I.
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positive and Q is a repelling equilibrium point in those
directions. The same thing can be argued in the following
way as well. Relationship between s and τ is given by the fol-
lowing equation:

ds
dτ

= s 1 − Ið Þ2 − K2� �
, ð15Þ

which implies that

ln s
s0

=
ðτ
τ0

1 − Ið Þ2 − K2� �
dt: ð16Þ

We see that in the small neighborhood of Q, the expres-
sion ð1 − IÞ2 − K2 is nonzero that remains bounded below by
a positive constant, and hence, the integral (16) implies that
s⟶∞ as τ⟶∞. These results are summarized in the
form of the following theorem.

Theorem 1. It takes s⟶∞ in order to reach Q from the ini-
tial conditions fromwithin the invariant region as well from the
initial conditions which lie outside the invariant region.

Remark 2. There is unique point in the phase plane in the
region Ω for which integral curve emanating from it reaches
to Q, and it takes s to become infinitely large to reach there.
In the same way, there is a unique point in the complement
of the region Ω for which integral curve emanating from it
takes s to become infinitely large to reach Q.

6. Potential for the Velocity of a Sound Wave

Radially expanding surfaces produce outward going waves.
These waves are governed by wave equation with cylindrical
symmetry ðm = 1Þ and spherically symmetry ðm = 2Þ and
given by

∂2Φ
∂t2

= a2
∂2Φ
∂r2

+ m
r
∂Φ
∂r

 !
: ð17Þ

General expression for potential of outward going waves
is given as follows:

Φ = 1
rm/2 f r − atð Þ, ð18Þ

where a is the speed of sound and r is radial coordinate.
Huygens principle of wave propagation is different for waves
in even number of spatial dimensions and odd number of
spatial dimensions. Because of this principle, the above
expression is exact form = 2while it represents fairly accurate
form of the potential form = 1 for large values of radius (that
is for r⟶∞). Detailed justification of how progressive
wave solutions are to be interpreted for m = 1 is given by
Whitham [17]. It should be noted that for small values of r,
in the case of cylindrical symmetry, amplitude of outward
moving waves have nonzero azimuthal component whose
contribution diminishes when r becomes arbitrarily large.
Diminishing of this azimuthal component as r becomes
infinite makes use of progressive solutions even in the case
of m = 1 justified. We have the following equations:

u = −
m
2

� �
r −m/2ð Þ−1 f r − atð Þ − r−m/2 f ′ r − atð Þ,

p − p0 = −ρar−m/2 f ′ r − atð Þ:
ð19Þ

If R is the radial coordinate of the front, which, by expan-
sion, produces waves, R is function of t and then the condition
required to be satisfied at the front is

dR
dt

= −
m
2
� �

R− m+2ð Þ/2 f R − atð Þ − r−m/2 f ′ R − atð Þ: ð20Þ

Requirement of self-similarity amounts to dR/dt is constant.
Because of self-similarity, cylindrical wave fronts ðm = 1Þ and
spherical wave fronts ðm = 2Þ are expanding at uniform speed.
At t = 0, we can assume that R = 0 and the radius at time t can
be expressed in the form R = αat, where α is a nondimensional
constant, like, reciprocal of Mach number. Put w = R − at and
we use R = αat.

aα = −
m
2
� �

R −m/2ð Þ−1ð Þ f wð Þ − r−m/2 f ′ wð Þ, ð21Þ

which results into the following:

w
α − 1
� �m/2

f ′ wð Þ + m
2

w
α − 1
� � m+2ð Þ/2

f wð Þ + aα = 0: ð22Þ

Note that both u and p − p0 are constant when r/at is con-
stant at the surface of the expanding front u = r/t. Because of
this in our notation, I = 1 corresponds to boundary condition
at the piston. In the sound wave solution, α specifies the speed
of outward expansion of the front (cylindrical or spherical) as
a fraction of the speed of sound. In the complete solution, K
represents the ratio of local speed of sound to the speed of
sound. Correspondence between the complete solution and
the sound wave solution or cavitation is attained when the

1.0
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0.6

K–
ax

is

0.4

K = 1–I

Q
𝛺

0.2

0.0
0.0 0.2 0.4 0.6
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Figure 2: Integral curves of the vector field (10) in the invariant
region Ω:
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arbitrary constant α is defined by the relation K0 = α−1, where
K0 is the value of K at I = 1.

7. Parametrization of Initial Conditions

Correspondence between complete solution and the sound
wave solution is accomplished through α. This correspon-
dence is elaborately explained in Taylor [16] for nondegen-
erate sound speeds, i.e., K ≠ 0. We extend this work to
include the case of degenerate sound speed K = 0. Case of
degenerate sound speed is also known as cavitation as this
case corresponds ρ = 0. Phase plane analysis of 23 makes
us to state the following theorem.

Theorem 3. Initial conditions form outside of the invariant
region can be parametrized by α so that complete solutions
corresponding to some of the initial conditions stabilize into
sound waves corresponding to equilibrium point I = 0, K = 1
and others stabilize into cavitation which corresponds to the
equilibrium point I = 1, K = 0.

In this way, we establish that correspondence between
complete solution and sound wave solution obtained
through α also takes into account the case of degenerate
sound speed or cavitation with the difference that nondegen-
erate sound wave solutions are the one which stabilize to the
equilibrium point I = 0, K = 1 whereas degenerate sound
waves or cavitation is achieved by the solutions which stabi-
lize into equilibrium point I = 1, K = 0. Figure 3 shows inte-
gral curves of the vector field (10) for different values of α−1.
It is thus diagrammatically displayed the way in which α
parametrizes integral curves of (10) and hence the self-
similar solutions of Euler’s system of equations in cylindri-
cally symmetric and spherically symmetric geometries. We
can see homoclinic trajectories at equilibrium point ð1, 0Þ
in the I − K plane.

8. Existence of Quasisimple Waves

Under the assumption of cylindrical and spherical symme-
try, Euler’s system of equations ceases from being system
of conservation laws as nonzero source terms appear on
right hand side of the equations and it becomes system of
balance laws. Solutions in this case depending on self-
similar variable r/t are now known as quasisimple waves.
Simple waves are the solutions which depend on one param-
eter in state space (hodograph plane in two dimensions). In
general, solutions can be sought which depend on two
parameters, and in such a case, they are known as double
waves. In this fashion, in general, one may seek triple waves
and so on. In general, solutions of this sort admitted by sys-
tem of balance laws are known as quasisimple waves. A
beautiful introduction to quasisimple waves is given by
Courant and Friedrichs [15]; Sheshadri and Sachdev [8]
have also dealt with these kind of waves. In Section 3, we
have characterized initial states which correspond to sound
wave solution and we have characterized stated which even-
tually stabilize into cavitation. In this article, we have proved
that appropriate states stabilize either into sound wave or

cavitation In Section 4, we have proved that not only the
solution depends on parameter but also the parameter can
be taken as J , the variable which corresponds to the pressure.
This section establishes that the waves are quasisimple in the
sense meant by Courant and Friedrichs [15].

Theorem 4. Quasisimple wave solutions exist for the balance
laws comprised of Euler’s system of equations in the case of
cylindrically symmetric case and spherically symmetric case.

Proof. J has dimensions of density, and hence in the follow-
ing analysis, we normalize J by dividing it by ρ0 and again
denote it by J . Here, ρ0 is ambient density that is atmo-
spheric density before the flow has taken place. I and K sat-
isfy the following pair of ordinary differential equations:

dI
dη

= 1 − Ið Þ2 − K2 −mK2� �
I, ð23Þ

dK
dη

= 2 1 − Ið Þ2 − K2� �
−m 1 − Ið ÞI γ − 1ð Þ� �

K , ð24Þ

where η is defined by the following:

dη
dJ

= 2 1 − Ið Þ2 − K2� �
+mγ 1 − Ið ÞI

J
: ð25Þ

Here, (24) is an autonomous system of ordinary differen-
tial equations and we can always solve it to get I and K as
functions of η. On the other hand, (25) gives η as a function
of J . Thus, J is a function of η. In the sufficiently small neigh-
borhood of J , we see that right hand side of (25) is zero only
at J = 0 and at I = 0, K = 1 and I = 1, K = 0. For ε sufficiently
small, we see that right hand side of (25) remains nonzero in
the open interval ð0, εÞ, and by applying inverse function
theorem to ηðJÞ, we get that ηðJÞ is invertible and we get J
as a function of η. Thus, we have expressed I, K , and J as

𝛀
Q

Integral Curves in the complement of 𝛀
𝜎
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Figure 3: Integral curves of (10) in the complement of Ω
impinging into different equilibrium points
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functions of η. This can be also looked at in the following
alternative way. Also, (23) determines I and K as functions
of η.Thus, (25) determines η as a function of J . Through this
dependence of η on J , we have I and K as functions of J .
Thus, solutions are parametrized by J and this is what we
mean by quasisimple waves. Since J contains thermody-
namic information of flow, it is an important observation
that quasisimple waves in this case are parametrized by ther-
modynamic quantity.

Remark 5. As self-similar flow proceeds KE and PE are not
equal. As it takes finite time to stabilize the flow into sound
waves and since there is no dissipation, KE becomes equal to
PE after a finite time. We want to give n estimate on s in
terms of α.

9. Conclusion

Presence of vacuum in some of the solutions of piston prob-
lem is known to people for quite a some time now. Appear-
ance of vacuum in the solution of the piston problem, and in
general, in the solutions of Euler’s equations, is not yet
appraised with the kinetic theory of gases as it becomes dif-
ficult to address applicability of kinetic theory if density
becomes zero. This is in stark contrast with the shock wave
solution where density apparently becomes infinite. Vacuum
can never be accompanied by a shock just ahead or behind
it, and only smooth solutions (quasisimple wave solutions
for example) can accommodate region fully void of any mat-
ter. In this paper, we have tried to highlight dynamical dif-
ference between traditional sound wave solutions and
solutions which end up with vacuum or cavitation. Solutions
stabilizing into sound wave and solutions stabilizing into
cavitation correspond to different equilibrium points, and
these equilibrium points show quite a different behavior
from each other. This difference in behavior is justified by
the presence of another equilibrium point Q and because
its presence appearance of limit cycles is completely
excluded. Analysis of equilibrium points becomes interesting
because of the appearance of zero eigenvalue at one equilib-
rium point and zero linear part of the (10) at another equi-
librium point makes application of Conley index theory
impossible. However, authors believe that Conley index the-
ory can be modified to take into account nonhyperbolic
equilibrium points if the underlying system does not admit
limit cycles.
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