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In this study, new master theorems and general formulas of integrals are presented and implemented to solve some complicated
applications in different fields of science. The proposed theorems are considered to be generators of new problems, including
difficult integrals with their exact solutions. The results of these problems can be obtained directly without the need for
difficult calculations. New criteria for treating improper integrals are presented and illustrated in four interesting examples and
some tables to simplify the procedure of using the proposed theorems. The outcomes of this study are compared with those
presented by Gradshteyn and Ryzhik in the classical table of integrations. The results in this study are simple and applicable
in solving integrals, and some of the well-known theorems in calculating improper integrals are considered simple cases of
our research.

1. Introduction

During recent decades, many studies on the theory of
improper integrals have been conducted in different fields
of science, such as physics and engineering [1–8]. Hence,
these integrals were very attractive for mathematicians to
discover new theorems and techniques for solving them.
Many applications need improper integrals to handle, either
in the calculations or in expressing the models, especially in
engineering, applied mathematical physics, electronics engi-
neering, etc. [9–15]. Some of these integrations can be solved
simply, but others need difficult and long computations. A
large number of these integrals cannot be solved manually,
but they need computer software to be solved. Additionally,
numerical methods can be used to solve some improper
integrals that cannot be solved by previous methods [16–22].

The process of evaluating improper integrals is not
usually based on certain rules or techniques that can be
applied directly. Many methods and techniques were estab-
lished and introduced by mathematicians and physicists to
present a closed form for indefinite integrals, the technique
of double integrals, series methods, residue theorem, calcu-

lus under the integral sign, and other methods that are used
to solve improper complex integrals exactly or approxi-
mately, see [23–28].

The residue theorem was first established by Cauchy in
1826, which is considered a powerful theorem in complex
analysis. However, the applications that can be calculated
using the residue theorem to compute integrals on real num-
bers need many precise constraints that should be satisfied
to solve the integrals, including finding appropriate closed
contours and determining the poles. Another challenge in
the process of applying the residue theorem is the difficulty
and efforts in finding solutions for some integrations.

In his published memoirs, Cauchy reached powerful
formulas in mathematics using the residue theorem [4].
Researchers consider these formulas essential in treating
and solving improper integrals. However, these results are
considered simple cases compared to the results that we
present in this article. In addition, we mention that the pro-
posed theorems and results in this research are not based on
the residue theorem.

One significant accomplishment in the sphere of definite
and indefinite integrals is the master theorem of Ramanujan,
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which presents new expressions concerning the Milline
transform of any continuous function in terms of the
analytic Taylor’s series [29–34]. It was implemented by
Ramanujan and other researchers as a powerful tool in
calculating definite and indefinite integrals and in comput-
ing infinite series. The obtained results are applicable and
effective as Ramanujan’s master theorem in handling and
generating new formulas of integrals with direct solutions.

In this study, we introduce new theorems to simplify the
procedure of computing improper integrals by presenting
new theorems with proofs. Each theorem can generate many
improper integral formulas that cannot be solved by usual
techniques or need much effort and time to be solved. The
theorems introduce the solutions directly in a simple finite
sum that depends on the obtained integral. The motivation
of this work is to generate as many improper integrals and
their values as possible to be used in different applications
and problems. The obtained results can be implemented to
construct new tables of integrations so that researchers can
use them in calculations and to check the accuracy of their
answers during the discovery of new methods.

The main purpose of this work is to introduce simple
new techniques to help researchers, mathematicians, engi-
neers, physicists, etc., to solve some difficult improper inte-
grals that cannot be treated or solved easily, which requires
several theorems and much effort to solve by presenting
new approaches. This goal is achieved by introducing some
master theorems that can be implemented to solve difficult
applications. The outcomes can be generalized and intro-
duced in tables to be used and obtain the results of some
improper integrals directly.

Within these results, we introduce a closed expression of
integrals that can be established by defining a suitable func-
tion on which the target application depends. We consider
these theorems as a solid tool for unravelling new families
of improper integrals and creating many complicated and
interesting integrals that can be solved directly based on
our new results.

We organize this article as follows. In Section 2, we
introduce some illustrative preliminaries and facts concern-
ing analytic and special functions. Master theorems and
results are presented in Section 3. Mathematical remarks
and several applications are presented in Section 4. Finally,
the conclusion of our research is presented in Section 5.

2. Preliminaries

In this section, some basic definitions and theorems related
to our work are presented and illustrated for later use.

2.1. Basic Definitions and Theorems

Definition 1 see [8]. Suppose that a function f is analytic in a
domain Ω ⊆ℂ, where ℂ is the complex plane. Consider a
disc D ⊆Ω centered at z0; then, the function f can be
expressed in the following series expansion:

f zð Þ = 〠
∞

n=0
an z − z0ð Þn: ð1Þ

Definition 2 see [9]. Assume that f is an analytic function;
then, the Taylor series expansion at any point x0 of f in its
domain is given by

T xð Þ = 〠
∞

n=0

f nð Þ x0ð Þ
n!

x − x0ð Þn, ð2Þ

that converges to f in a neighborhood of x0 point wisely.

Definition 3 see [10]. The Cauchy principal value of an
infinite integral of a function f is defined by

PV
ð∞
0
f xð Þdx ≡ lim

R⟶∞

ðR
0
f xð Þdx: ð3Þ

2.2. Basic Formulas of Series and Improper Integrations. In
this section, we introduce some series and improper inte-
grals that are needed in our work.

Lemma 1. Let n ∈ℕ, then

1

12 − x2
À Á

32 − x2
À Á

⋯ 2n + 1ð Þ2 − x2
À Á

= −1ð Þn+1
4n 2n + 1ð Þ!〠

n

k=0
−1ð Þk

2n + 1

k

 !
2n + 1 − 2k

x2 − 2n + 1 − 2kð Þ2
:

ð4Þ

Proof. To prove equation (4), we define an integral whose
solution can be expressed by two different forms: the left side
of equation (4) and the right side of the equation.

Let

I =
ð∞
0
e−xt sinh tð Þ2n+1dt, ð5Þ

where p > 0, x > 2n + 1, n ∈ℕ:
Taking the indefinite integral:

J = x2
ð
e−xt sinh tð Þ2n+1dt: ð6Þ

Applying integration by parts on equation (6) twice, we
obtain a reduction formula as follows:

J = −e−xt sinh tð Þ2n+1 − 2n + 1ð Þe−xt sinh2nt cosh t

+ 2n + 1ð Þ
ð
e−xt 2n sinh tð Þ2n−1 + sinh tð Þ2n+1À ÁÂ

+ sinh tð Þ2n+1Ãdt:
ð7Þ

Taking the limits in equation (7) from 0 to∞, we obtain

ð∞
0
e−xt sinh tð Þ2n+1dt = − 2n + 1ð Þ 2nð Þ

2n + 1ð Þ2 − x2

ð∞
0
e−xt sinh tð Þ2n−1dt:

ð8Þ

2 Journal of Applied Mathematics



Applying equation (8) ðn − 1Þ times to the integralÐ∞
0 e−xtðsinh tÞ2n−1dt, we obtain:

ð∞
0
e−xt sinh tð Þ2n+1dt

= −1ð Þa 2n + 1ð Þ 2nð Þ 2n − 1ð Þ 2n − 2ð Þ⋯ : 3ð Þ 2ð Þ
2n + 1ð Þ2 − x2

À Á
2n − 1ð Þ2 − x2

À Á
⋯ 32 − x2
À Á

Á
ð∞
0
e−xt sinh tdt:

ð9Þ

The integral
Ð∞
0 e−xt sinh tdt can be calculated easily

using integration by parts twicely to obtain:

ð∞
0
e−xt sinh tdt = −1

1 − x2
: ð10Þ

Substituting the fact in equation (10) into equation (9),
we obtain:

ð∞
0
e−xt sinh tð Þ2n+1dt

= −1ð Þn+1 2n + 1ð Þ!
2n + 1ð Þ2 − x2

À Á
2n − 1ð Þ2 − x2

À Á
⋯ 3 − x2ð Þ 1 − x2ð Þ :

ð11Þ

Now, we express the solution of equation (5) in
another form.

Using the power trigonometric formula deduced using
De Moivre’s formula, Euler’s formula and the binomial
theorem, see [11].

sinh tð Þð Þ2n+1 = 1
4n 〠

n

k=0
−1ð Þk

2n + 1
k

 !
sinh 2n + 1 − 2kð Þt½ �:

ð12Þ

Substituting equation (12) into equation (5), we obtain:

ð∞
0
e−xt sinh tð Þ2n+1dt =

ð∞
0
e−xt

1
4n 〠

n

k=0
−1ð Þk

2n + 1

k

 !

Á sinh 2n + 1 − 2kð Þt½ �dt:
ð13Þ

Therefore, by changing the order of the integral and the
sum in equation (13), we obtain:

ð∞
0
e−xt sinh tð Þ2n+1dt = 1

4n 〠
n

k=0
−1ð Þk

2n + 1

k

 !

Á
ð∞
0
e−xt sinh 2n + 1 − 2kð Þt½ �dt:

ð14Þ

To evaluate the integral
Ð∞
0 e−xt sinh ½ð2n + 1 − 2kÞt�dt,

we apply integration by parts twicely to obtain:

ð∞
0
e−xt sinh 2n + 1 − 2kð Þt½ �dt = 2n + 1 − 2kð Þ

x2 − 2n + 1 − 2kð Þ2
: ð15Þ

Substituting the result in equation (15) into equation
(14), we obtain:

ð∞
0
e−xt sinh tð Þ2n+1dt = 1

4n 〠
n

k=0
−1ð Þk

2n + 1

k

 !

Á 2n + 1 − 2k
x2 − 2n + 1 − 2kð Þ2 :

ð16Þ

Equating equation (16) with equation (11), this com-
pletes the proof of equation (4).

Lemma 2. Let n ∈ℕ, then

1

x 22 − x2
À Á

42 − x2
À Á

⋯ 4n2 − x2ð Þ

= 1

22n 2nð Þ!
1
x

2n

n

 ! 

+ 2〠
n−1

k=0
−1ð Þk+n+1

2n

k

 !
x

2n − 2kð Þ2 − x2

 !!
ð17Þ

Proof. The proof is done by repeating the same process in
proving lemma (1) but using the integral

Ð∞
0 e−xtðsinh tÞ2ndt,

where x > 0, x > 2n, n ∈ℕ:

Lemma 3. Let n = 0, 1,⋯, and m = 1, 2,⋯, then we have

1
12 − x2
À Á

32 − x2
À Á

⋯ 2n + 1ð Þ2 − x2
À ÁÂ Ã

x 22 − x2
À Á

42 − x2
À Á

⋯ 4m2 − x2ð ÞÂ Ã

= −1ð Þn+1
x 22m+2n m!ð Þ2 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !
2n + 1 − 2s

x2 − 2n + 1 − 2sð Þ2

+ −1ð Þn
22m+2n−1 m!ð Þ2 2n + 1ð Þ! 〠

m−1

k=0
〠
n

s=0
−1ð Þk+m+s+1

2m

k

 ! 2n + 1

s

 !
x 2n + 1 − 2sð Þ

x2 − 2m − 2kð Þ2À Á
x2 − 2n + 1 − 2sð Þ2À ÁÀ Á

ð18Þ
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Proof. This is a direct result obtained by multiplying equa-
tion (4) by equation (17).

Lemma 4. The following formulas of improper integrals are
created using Lemma (1–3):

PV
ð∞
0

cos θxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

k=0
−1ð Þk

2n + 1

k

 !
sin θ 2k − 1 − 2nð Þð Þ,

ð19Þ

for θ ≥ 0, n = 0, 1,⋯:

Proof. The formula is obtained by multiplying both sides of
equation (4) by cos ðθxÞ, then taking the Cauchy principal
value of integral for both sides from 0 to ∞, and using the
well-known fact:

PV
Ð∞
0 ðcos ðθxÞ/a2 − x2Þdx = ðπ/2aÞ sin ða θÞ.

where a, θ > 0,

PV
ð∞
0

x sin θxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

k=0
−1ð Þk

2n + 1

k

 !

Á 2k − 1 − 2nð Þ cos θ 2k − 1 − 2nð Þð Þ,

ð20Þ

for θ > 0, n = 0, 1,⋯:

Proof. The formula is obtained by differentiating both sides
of equation (19) with respect to θ.

PV
ð∞
0

sin θxð Þ
x 4 − x2ð Þ 16 − x2ð Þ⋯ 4n2 − x2ð Þ dx

= π

22n+1 2nð Þ!
2n

n

 !
+ 2〠

n−1

k=0
−1ð Þk+n

2n

k

 !
cos θ 2n − 2kð Þð Þ

 !
,

ð21Þ

for θ > 0, n = 1, 2,⋯:

Proof. The formula is obtained by multiplying both sides of
equation (17) by sin ðθxÞ, then taking the Cauchy principal
value of integral from 0 to∞, and using the well-known fact:

PV
Ð∞
0 ðsin ðθxÞ/xða2 − x2ÞÞdx = ðπ/2a2Þð1 − cos ða θÞÞ,

where θ, a > 0

PV
ð∞
0

cos θxð Þ
4 − x2ð Þ 16 − x2ð Þ⋯ 4n2 − x2ð Þ dx

= π

22n 2nð Þ!〠
n−1

k=0
−1ð Þk+n+1

2n

k

 !
2n − 2kð Þ sin θ 2k − 2nð Þð Þ,

ð22Þ

for θ ≥ 0, n = 1, 2,⋯:

Proof. The formula is obtained by differentiating both sides
of equation (21) with respect to θ.

Lemma 5. Let θ > 0 and n = 0, 1,⋯, m = 1, 2,⋯. Then, we
have the following improper integrals:

PV
ð∞
0

sin θxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À ÁÀ Á
x 4 − x2ð Þ 16 − x2ð Þ⋯ 4m2 − x2ð Þð Þ dx

= −1ð Þnπ
22m+2n+1 m!ð Þ2 2n + 1ð Þ!

〠
n

s=0
−1ð Þs

2n + 1

s

 !
1 − cos θ 2n + 1 − 2sð Þð Þð Þ

2n + 1 − 2sð Þ

+ −1ð Þnπ
22m+2n m!ð Þ2 2n + 1ð Þ! 〠

m−1

k=0
〠
n

s=0
−1ð Þk+m+s+1

2m

k

 ! 2n + 1

s

 !

Á 2n + 1 − 2sð Þ cos θ 2m − 2kð Þð Þ − cos θ 2n + 1 − 2sð Þð Þð Þ
2m − 2kð Þ2 − 2n + 1 − 2sð Þ2

:

ð23Þ
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Proof. The formula is obtained by multiplying both sides of
equation (18) by sin ðθxÞ, then taking the Cauchy principal
value of integral, and using the well-known facts:

PV
ð∞
0

sin θxð Þ
x a2 − x2ð Þ dx =

π

2a2 1 − cos aθð Þð Þ,

PV
ð∞
0

x sin θxð Þ
a2 − x2

dx = −
π

2 cos a θð Þ, ð24Þ

where θ, a > 0:

Proof. The formula is obtained by differentiating both sides
of equation (23) with respect to θ:

3. New General Theorems

In this section, we present new master theorems to help
mathematicians, engineers, and physicists solve complicated
improper integrals. To obtain our goal, we present some
facts about analytic functions [8, 10, 13–15].

Assuming that f is an analytic function in a disc D cen-
tered at α, then using Taylor’s expansion, where α, β, and θ
are real constants, we have

f zð Þ = 〠
∞

k=0

f kð Þ αð Þ
k!

z − αð Þk: ð26Þ

Substituting z = α + βeiθx into f ðzÞ, where β is not
completely arbitrary, since it must be smaller than the radius
of D, we obtain

f α + βeiθx
� �

= 〠
∞

k=0

f kð Þ αð Þ
k!

βkeiθkx: ð27Þ

Using the formulas

eiθx + e−iθx = 2 cos θxð Þ, eiθx − e−iθx = 2i sin θxð Þ, ð28Þ
one can obtain

1
2 f α + βeiθx

� �
+ f α + βe−iθx
� �� �

= 1
2〠

∞

k=0

f kð Þ αð Þ
k!

βk eiθkx + e−iθkx
� �

= 〠
∞

k=0

f kð Þ αð Þ
k!

βk cos kθxð Þ

= f αð Þ + f ′ αð Þβ cos θxð Þ + f ′′ αð Þ
2! β2 cos 2θxð Þ+⋯:

ð29Þ

Similarly,

1
2i f α + βeiθx

� �
− f α + βe−iθx
� �� �

= 1
2〠

∞

k=0

f kð Þ αð Þ
k!

βk eiθkx − e−iθkx
� �

= f ′ αð Þβ sin θxð Þ + f ′′ αð Þ
2! β2 sin 2θxð Þ+⋯

= 〠
∞

k=1

f kð Þ αð Þ
k!

βk sin kθxð Þ:

ð30Þ

The parameters in equations (29) and (30) can be
modified in the following lemma.

Lemma 6. Assume that gðα + zÞ is an analytic function that
has the following series expansion:

g α + zð Þ = 〠
∞

k=0
Mke

−kz , ð31Þ

whether z be real or imaginary, and ∑∞
k=0Mk is absolutely

convergent. Then,

1
2

g α − iθxð Þ + g α + iθxð Þð Þ = 1
2
〠
∞

k=0
Mk eikθx + e−ikθx
� �

= 〠
∞

k=0
Mk cos k θxð Þ,

ð32Þ

ð∞
0

cos θxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À ÁÀ Á
x 4 − x2ð Þ 16 − x2ð Þ⋯ 4m2 − x2ð Þð Þ dx

= −1ð Þnπ
22m+2n+1 m!ð Þ2 2n + 1ð Þ!

〠
n

s=0
−1ð Þs

2n + 1

s

 !
sin θ 2n + 1 − 2sð Þð Þ + −1ð Þnπ

22m+2n m!ð Þ2 2n + 1ð Þ!
〠
m−1

k=0
〠
n

s=0
−1ð Þk+m+s+1

Á
2m

k

 ! 2n + 1

s

 !
2n + 1 − 2sð Þ 2n + 1 − 2sð Þ sin θ 2n + 1 − 2sð Þð Þ − 2m − 2kð Þ sin θ 2m − 2kð Þð Þ

2m − 2kð Þ2 − 2n + 1 − 2sð Þ2 :

ð25Þ
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and,

1
2i

g α − iθxð Þ − g α + iθxð Þð Þ = 1
2i
〠
∞

k=1
Mk eikθx − e−ikθx
� �

= 〠
∞

k=1
Mk sin k θxð Þ,

ð33Þ

where >0, α ∈ℝ, and x is any real number.

The next part of this section includes the new master
theorems that we establish. Moreover, we mention here that
Cauchy’s results in [3] are identical to our results with spe-
cial choices of the parameters, as will be discussed later.

Theorem 1. Let f be an analytic function in a disc D centered
at α, where α ∈ℝ. Then, we have the following improper inte-
gral formula:

PV
ð∞
0

f α + βeiθx
À Á

+ f α + βe−iθx
À Á

1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À Á dx

= −1ð Þn+1π
i 22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á f α + βeiθ 2s−1−2nð Þ
� �

− f α + βe−iθ 2s−1−2nð Þ
� �� �

,

ð34Þ

where θ ≥ 0, n = 0, 1, 2,⋯.

Proof. of let

I = PV
ð∞
0

f α + βeiθx
À Á

+ f α + βe−iθx
À Á

1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À Á dx: ð35Þ

Now, since f is an analytic function around α and
substituting the fact in equation (29) into equation (35),
we obtain:

I = PV
ð∞
0

2∑∞
k=0 f kð Þ αð Þβk/k!
� �

cos θkxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx: ð36Þ

Using Fubini’s theorem, the integral yields a finite
answer when the integral is replaced by its absolute value,
i.e., converges in the Riemann sense. Thus, we can inter-
change the order of the integration and the summation to
obtain:

I = 2〠
∞

k=0

f kð Þ αð Þβk

k!
PV
ð∞
0

cos θkxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx:
ð37Þ

Substituting the fact in equation (19) into equation (37),
we obtain:

I = 2〠
∞

k=0

f kð Þ αð Þβk

k!
−1ð Þn+1π

22n+1 2n + 1ð Þ!〠
n

s=0
−1ð Þs

Á
2n + 1

s

 !
sin θk 2s − 1 − 2nð Þð Þ:

ð38Þ

Rewriting sin ðθkð2s − 1 − 2nÞÞ in the exponential form,
equation (38) becomes

I = 〠
∞

k=0

f kð Þ αð Þβk

k!
−1ð Þn+1π

22n 2n + 1ð Þ!
1
2i〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á eiθk 2s−1−2nð Þ − e−iθk 2s−1−2nð Þ
� �

:

ð39Þ

The fact in equation (27) implies that equation (39)
becomes

I = −1ð Þn+1π
i22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á f α + βeiθ 2s−1−2nð Þ
� �

− f α + βe−iθ 2s−1−2nð Þ
� �� �

:

ð40Þ

Hence, this completes the proof.

Theorem 2. Let f be an analytic function in a disc D centered
at α, where α ∈ℝ. Then, we have the following improper inte-
gral formula:

PV
ð∞
0

x f α + βeiθx
À Á

− f α + βe−iθx
À ÁÀ Á

i 1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À Á dx

= −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á 2s − 1 − 2nð Þ ψ sð Þ + ϕ sð Þ − ηð Þ,

ð41Þ

where θ > 0, n = 0, 1, 2,⋯, ψðsÞ = f ðα + βeiθð2s−1−2nÞÞ, ϕðsÞ =
f ðα + βe−iθð2s−1−2nÞÞ, and η = 2f ðαÞ.

Proof. Let

I = PV
ð∞
0

x f α + βeiθx
À Á

− f α + βe−iθx
À ÁÀ Á

i 1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À Á dx: ð42Þ

Now, since f is an analytic function around α and thus
substituting the fact in equation (30) into equation (7), we
obtain

I = 2〠
∞

k=1

f kð Þ αð Þβk

k!
PV
ð∞
0

x sin θkxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx:
ð43Þ
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Substituting the fact in equation (20) into equation (43),
we obtain

I = 〠
∞

k=1

f kð Þ αð Þβk

k!
−1ð Þn+1π

22n 2n + 1ð Þ!〠
n

s=0
−1ð Þk

2n + 1

k

 !

Á 2k − 1 − 2nð Þ cos θ 2k − 1 − 2nð Þð Þ:
ð44Þ

Rewriting cos ðθð2k − 1 − 2nÞÞ in an exponential form,
equation (44) becomes

I = 〠
∞

k=1

f kð Þ αð Þβk

k!
−1ð Þn+1π

22n 2n + 1ð Þ!
1
2〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á 2s − 1 − 2nð Þ eiθk 2s−1−2nð Þ + e−iθk 2s−1−2nð Þ
� �

:

ð45Þ

The fact in equation (27) implies that equation (45)
becomes

I = −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á 2s − 1 − 2nð Þ ψ sð Þ + ϕ sð Þ − ηð Þ,
ð46Þ

where ψðsÞ = f ðα + βeiθð2s−1−2nÞÞ, ϕðsÞ = f ðα + βe−iθð2s−1−2nÞÞ,
and η = 2f ðαÞ.

Hence, this completes the proof.

Theorem 3. Let f be an analytic function in a disc D centered
at α, where α ∈ℝ. Then, we have the following improper inte-
gral formula:

PV
ð∞
0

f α + βeiθx
À Á

− f α + βe−iθx
À Á

ix 4 − x2ð Þ 16 − x2ð Þ⋯ 4n2 − x2ð Þ dx

= π

22n 2nð Þ!
2n

n

 !
φ − ηð Þ + 〠

n−1

s=0
−1ð Þs+n

2n

s

 !
ψ sð Þ + ϕ sð Þ − 2ηð Þ

 !
,

ð47Þ

where θ ≥ 0, n = 1, 2,⋯, ψðsÞ = f ðα + βeiθð2n−2sÞÞ, ϕðsÞ = f ðα +
βe−iθð2n−2sÞÞ, η = f ðαÞ, and φ = f ðα + βÞ.

Proof. The proof of Theorem 3 can be obtained by similar
arguments to Theorem 2 and using the fact (21) in
Lemma 4.

Theorem 4. Let f be an analytic function in a disc D centered
at α, where α ∈ℝ. Then, we have the following improper inte-
gral formula:

PV
ð∞
0

f α + βeiθx
À Á

+ f α + βe−iθx
À Á

4 − x2ð Þ 16 − x2ð Þ⋯ 4n2 − x2ð Þ dx

= π

22n i 2nð Þ!〠
n−1

s=0
−1ð Þs+n+1

Á
2n

s

 !
2n − 2sð Þ f α + βeiθ 2n−2sð Þ

� �
− f α + βe−iθ 2n−2sð Þ
� �� �

,

ð48Þ

where θ ≥ 0 n = 1, 2,⋯:

Proof. The proof of Theorem 4 can be obtained by similar
arguments to Theorem 2 and using the fact (22) in
Lemma 4.

Theorem 5. Let f be an analytic function in a disc D centered
at α, where α ∈ℝ. Then, we have the following improper inte-
gral formula:

PV
ð∞
0

f α + βeiθx
À Á

− f α + βe−iθx
À Á

i 1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À ÁÀ Á

x 4 − x2ð Þ 16 − x2ð Þ⋯ 4m2 − x2ð Þð Þ dx

= −1ð Þnπ
22m+2n m!ð Þ2 2n + 1ð Þ!

〠
n

s=0
−1ð Þs

2n + 1

s

 !
φ − 1/2 ψ sð Þ + ϕ sð Þð Þð Þ

2n + 1 − 2sð Þ

+ −1ð Þnπ
22m+2n−1 m!ð Þ2 2n + 1ð Þ! 〠

m−1

k=0
〠
n

s=0
−1ð Þk+m+s+1

2m

k

 ! 2n + 1

s

 !
2n + 1 − 2sð Þ 1/2 γ kð Þ + λ kð Þð Þ − 1/2 ψ sð Þ + ϕ sð Þð Þð Þ

2m − 2kð Þ2 − 2n + 1 − 2sð Þ2À Á ,

ð49Þ
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where θ > 0, n = 0, 1, 2,⋯,m = 1, 2,⋯, ψðsÞ = f ðα +
βeiθð2n+1−2sÞÞ, ϕðsÞ = f ðα + βe−iθð2n+1−2sÞÞ, γðkÞ = f ðα +
βeiθð2m−2kÞÞ, λðkÞ = f ðα + βe−iθð2m−2kÞÞ, and φ = f ðα + βÞ.

Proof. Let

Now, since f is an analytic function around α and
substituting the fact in equation (30) into equation (50),
we obtain

Substituting the fact in equation (23) into equation (51),
we obtain

I = 2〠
∞

j=1

f jð Þ αð Þβj

j!
A + Bð Þ, ð53Þ

where

A = −1ð Þnπ
22m+2n+1 m!ð Þ2 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á 1 − cos θj 2n + 1 − 2sð Þð Þ
2n + 1 − 2s ,

B = −1ð Þnπ
22m+2n m!ð Þ2 2n + 1ð Þ! 〠

m−1

k=0
〠
n

s=0
−1ð Þk+m+s+1

Á
2m

k

 ! 2n + 1

s

 !
2n + 1 − 2sð Þ

Á cos θj 2m − 2kð Þð Þ − cos θj 2n + 1 − 2sð Þð Þ
2m − 2kð Þ2 − 2n + 1 − 2sð Þ2 :

ð54Þ

Rewriting cos ðθjð2n + 1 − 2sÞÞ, and cos ðθjð2m − 2kÞÞ in
the exponential forms and using equation (5), equation (53)
becomes

I = PV
ð∞
0

f α + βeiθx
À Á

− f α + βe−iθx
À Á

i 1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À ÁÀ Á

x 4 − x2ð Þ 16 − x2ð Þ⋯ 4m2 − x2ð Þð Þ dx: ð50Þ

I = 2〠
∞

j=1

f jð Þ αð Þβj

j!
ð51Þ

PV
ð∞
0

sin θjxð Þ
i 1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À ÁÀ Á
x 4 − x2ð Þ 16 − x2ð Þ⋯ 4m2 − x2ð Þð Þ dx: ð52Þ

PV
ð∞
0

f α + βeiθx
À Á

− f α + βe−iθx
À Á

i 1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À ÁÀ Á

x 4 − x2ð Þ 16 − x2ð Þ⋯ 4m2 − x2ð Þð Þ dx

= −1ð Þnπ
22m+2n m!ð Þ2 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !
φ − 1/2 ψ sð Þ + ϕ sð Þð Þð Þ

2n + 1 − 2sð Þ

+ −1ð Þnπ
22m+2n−1 m!ð Þ2 2n + 1ð Þ!

〠
m−1

k=0
〠
n

s=0
−1ð Þk+m+s+1

2m

k

 ! 2n + 1

s

 !
2n + 1 − 2sð Þ 1/2 γ kð Þ + λ kð Þð Þ − 1/2 ψ sð Þ + ϕ sð Þð Þð Þ

2m − 2kð Þ2 − 2n + 1 − 2sð Þ2À Á ,

ð55Þ
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where ψðsÞ = f ðα + βeiθð2n+1−2sÞÞ, ϕðsÞ = f ðα + βe−iθð2n+1−2sÞÞ,
γðkÞ = f ðα + βeiθð2m−2kÞÞ, λðkÞ = f ðα + βe−iθð2m−2kÞÞ, and φ =
f ðα + βÞ.

Hence, this completes the proof of Theorem 5.

Theorem 6. Let f be an analytic function in a disc D centered
at α, where α ∈ℝ. Then, we have the following improper inte-
gral formula:

where ≥0, n = 0, 1, 2,⋯, m = 1, 2,⋯, ψðsÞ = f ðα +
βeiθð2n+1−2sÞÞ, ϕðsÞ = f ðα + βe−iθð2n+1−2sÞÞ, γðkÞ = f ðα +
βeiθð2m−2kÞÞ, and λðkÞ = f ðα + βe−iθð2m−2kÞÞ:

Proof. The proof of Theorem 6 can be obtained by similar
arguments to Theorem 5 and using the fact (25) in
Lemma 5.

The following table illustrates some corollaries of the
previous theorems with special cases under the assumption
in Lemma 6. We introduce the principal value of some
improper integrals, which are special cases of the proposed
theorems.

4. Numerical Applications

In this section, we present the results, applications, and
observations of the proposed theorems. We also show that
the simple cases of the master theorems are identical to the
results obtained by Cauchy in his memoirs using Residue
Theorem 4. Also, some examples on difficult integrals that
cannot be treated directly by usual methods. In this section,
we show the applicability of our results in handling such
problems.

4.1. Some Remarks on the Theorems

Remark 1. Letting α = 0 and n = 1 in Theorem 3, we obtain

PV
ð∞
0

f βeiθx
� �

− f βe−iθx
À Á

i x 4 − x2ð Þ dx

= π

4 f βð Þ − 1
2 f βe2iθ

� �
+ f βe−2iθ
� �� �� �

,
ð57Þ

where θ > 0.

Letting x/2 = y,

1
4 PV

ð∞
0

f βe2iθy
� �

− f βe−2iθy
À Á

i y 1 − y2ð Þ dy

= π

4 f βð Þ − 1
2 f βe2iθ

� �
+ f βe−2iθ
� �� �� �

:

ð58Þ

Letting 2θ = φ,

PV
ð∞
0

f βeiφy
� �

− f βe−iφy
À Á

i y 1 − y2ð Þ dy

= π f βð Þ − 1
2 f βeiφ

� �
+ f βe−iφ
À Á� �� �

:

ð59Þ

This result does not appear in [4–6, 11].
The following table presents comparisons to Cauchy’s

results, which illustrate the relation between our theo-
rems and the results obtained by Cauchy; that is, some
of Cauchy’s results become simple cases of our general
theorems.

4.2. Generating Improper Integrals. In this section, we show
the mechanism of generating an infinite number of inte-
grals by choosing the function f ðzÞ and finding the real
or imaginary part. It is worth noting that some of these
integrals with special cases appear in [31–34] when solving
some applications related to finding Green’s function, one-
dimensional vibrating string problems, wave motion in
elastic solids, and using Fourier cosine and Fourier Sine
transforms.

PV
ð∞
0

f α + βeiθx
À Á

+ f α + βe−iθx
À Á

1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À ÁÀ Á

4 − x2ð Þ 16 − x2ð Þ⋯ 4m2 − x2ð Þð Þ dx

= −1ð Þnπ
22m+2n m!ð Þ2 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !
1
2i ψ sð Þ − ϕ sð Þð Þ + −1ð Þnπ

22m+2n−1 m!ð Þ2 2n + 1ð Þ! 〠
m−1

k=0
〠
n

s=0
−1ð Þk+m+s+1

2m

k

 ! 2n + 1

s

 !

Á 2n + 1 − 2sð Þ 2n + 1 − 2sð Þ/2i ψ sð Þ − ϕ sð Þð Þ − 2m − 2kð Þ/2i γ kð Þ − λ kð Þð Þ
2m − 2kð Þ2 − 2n + 1 − 2sð Þ2À Á ,

ð56Þ
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To illustrate the idea, we show some general examples
that are applied on Theorems 1, 2, and 3, as follows:

(1) Setting f ðzÞ = zm,m ∈ℝ+:

(i) Using Theorem 1 and setting α = 0, β = 1 we
have:

f eiθx
� �

+ f e−iθx
� �

= eiθmx + e−iθmx = 2 cos θmxð Þ:
ð60Þ

Thus,

ð∞
0

2 cos θxð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n 2n + 1ð Þ!〠

n

k=0
−1ð Þk

2n + 1

k

 !

Á sin mθ 2k − 1 − 2nð Þð Þ,
ð61Þ

for θ ≥ 0, n = 0, 1,⋯:

Setting m = 1, the obtained integral is a Fourier
cosine transform [31, 32] of the function f ðtÞ =
1/ðð1 − t2Þð9 − t2Þ⋯ ðð2n + 1Þ2 − t2ÞÞ

(ii) Using Theorem 3 and setting α = 0, β = 1 we
have:

1
i

f eiθx
� �

− f e−iθx
� �� �

= 1
i

eiθmx + e−iθmx
� �

= 2 sin θmxð Þ:
ð62Þ

Thus,

PV
ð∞
0

2 sin θmxð Þ
x 4 − x2ð Þ 16 − x2ð Þ⋯ 4n2 − x2ð Þ dx

= π

22n 2nð Þ!
2n

n

 !
+ 2〠

n−1

k=0
−1ð Þk+n

 

Á
2n

k

 !
cos θm 2n − 2kð Þð Þ

!
,

ð63Þ

for θ > 0, n = 1, 2,⋯:

Setting m = 1, the obtained integral is a Fourier
sine transform [31, 32] of the function f ðtÞ =
1/ðtð4 − t2Þð16 − t2Þ⋯ ð4n2 − t2ÞÞ.

Setting f ðzÞ = ez

(i) Using Theorem 1, we have:

f α + βeiθx
� �

+ f α + βe−iθx
� �

= eα+βe
iθx + eα+βe

−iθx = 2eα+β cos θxð Þ cos β sin θxð Þð Þ

PV
ð∞
0

2eα+β cos θxð Þ cos βsin θxð Þð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á eα

i
eβe

iθ 2s−1−2nð Þ
− eβe

−iθ 2s−1−2nð Þ� �� �

= −1ð Þn+1π
22n 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á eα sin β sin θ 2s − 1 − 2nð Þð Þð Þðð
Á sinh β cos θ 2s − 1 − 2nð Þð Þð Þð
+ cosh β cos θ 2s − 1 − 2nð Þð Þð ÞÞÞÞ ,

ð64Þ

where θ ≥ 0 and n = 0, 1, 2,⋯
(ii) Using Theorem 3, we have:

1
i

f α + βeiθx
� �

− f α + βe−iθx
� �� �

= 1
i

eα+βe
iθx
− eα+βe

−iθx
� �

= 2eα+β cos θxð Þ sin β sin θxð Þð Þ

ð65Þ

Thus,

PV
ð∞
0

x 2eα+β cos θxð Þ sin βsin θxð Þð ÞÀ Á
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á 2s − 1 − 2nð Þ eα+βe
iθ 2s−1−2nð Þ + eα+βe

−iθ 2s−1−2nð Þ − 2eα
� �

,

ð66Þ

where θ > 0,n = 0, 1, 2,⋯.

Setting f ðzÞ = sin hz

(iii) Using Theorem 1, we have:

f α + βeiθx
� �

+ f α + βe−iθx
� �

= sinh α + βeiθx
� �

+ sinh α + βe−iθx
� �

= 2 cos β sin θxð Þð Þ sinh α + β cos θxð Þð Þ:
ð67Þ

10 Journal of Applied Mathematics



Thus,

PV
ð∞
0

2 cos β sin θxð Þð Þ sinh α + β cos θxð Þð Þ
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !
1
2i

Á sinh α + βeiθ 2s−1−2nð Þ
� ��

− sinh α + βe−iθ 2s−1−2nð Þ
� ��

:

ð68Þ

(iv) Using Theorem 2, we have:

1
i

f α + βeiθx
� �

− f α + βe−iθx
� �� �

= 1
i

sinh α + βeiθx
� �

− sinh α + βe−iθx
� �� �

= 2 sin β sin θxð Þð Þ cosh α + β cos θxð Þð Þ:
ð69Þ

Thus,

PV
ð∞
0

2 sin β sin θxð Þð Þ cosh α + β cos θxð Þð Þ
x 4 − x2ð Þ 16 − x2ð Þ⋯ 4n2 − x2ð Þ dx

= π

22n 2nð Þ!
2n

n

 !
sinh α + βð Þ − sinh αð Þð Þ

 !

+ π

22n 2nð Þ!〠
n−1

s=0
−1ð Þs+n

2n

s

 !

Á sinh α + βeiθ 2n−2sð Þ
� ��

+ sinh α + βe−iθ 2n−2sð Þ
� �

− 2 sinh αð Þ
�

ð70Þ

where θ > 0, n = 1, 2,⋯.

Setting f ðzÞ = cos ðezÞ

(i) Using Theorem 1, we have:

f α + βeiθx
� �

+ f α + βe−iθx
� �

= cos eα+βe
iθx

� �
+ cos eα+βe

−iθx
� �

= 2 cos eα+β cos θxð Þ cos βsin θxð Þð Þ
� �

Á cosh sin βsin θxð Þð Þeα+β cos θxð Þ
� �

ð71Þ

Thus,

Setting f ðzÞ = ln ð1 + zÞ

(i) Using Theorem 1, we have:

f 1 + α + βeiθx
� �

+ f 1 + α + βe−iθx
� �

= ln 1 + α + βeiθx
� �

+ ln 1 + α + βe−iθx
� �

= ln α + 1ð Þ2 + β2 + 2 α + 1ð Þβ cos θxð ÞÀ Á
:

ð73Þ

Thus,

PV
ð∞
0

ln α + 1ð Þ2 + β2 + 2 α + 1ð Þβ cos θxð ÞÀ Á
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á 12i ln 1 + α + βeiθ 2s−1−2nð Þ
� �

− ln 1 + α + βe−iθ 2s−1−2nð Þ
� �� �

ð74Þ

PV
ð∞
0

2 cos eα+β cos θxð Þ cos βsin θxð Þð ÞÀ Á
cosh sin βsin θxð Þð Þeα+β cos θxð ÞÀ Á

1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À Á dx

= −1ð Þn+1π
22n 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !
1
2i cos eα+βe

iθ 2s−1−2nð Þ� �
− cos eα+βe

−iθ 2s−1−2nð Þ� �� �
:

ð72Þ
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(ii) Setting α = 0, β = 1, we have:

f eiθx
� �

+ f e−iθx
� �

= ln 1 + eiθx
� �

+ ln 1 + e−iθx
� �

= 2 ln 2 cos θx
2

� �����
����:

ð75Þ

Thus,

PV
ð∞
0

2 ln 2 cos θx/2ð Þj j
1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2

À Á dx

= −1ð Þn+1π
22n 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !

Á 12i ln 1 + eiθ 2s−1−2nð Þ
� �

− ln 1 + e−iθ 2s−1−2nð Þ
� �� �

ð76Þ

4.3. Solving Improper Integrals. In this section, some applica-
tions on complicated problems are introduced and solved
directly using a particular case of our new theorems. We
note that the Mathematica and Maple software cannot solve
such examples.

Example 1. Evaluate the following integral:

PV
ð∞
0

xee
cos θxð Þ cos sin θxð Þð Þ sin sin sin θxð Þð Þecos θxð ÞÀ Á

1 − x2
dx,

ð77Þ

Solution Using Theorem 2, and let f ðzÞ = ee
z
, we have

1
i

f α + βei θx
� �

− f α + βe−i θx
� �� �

= 2eeα+β cos θxð Þ cos β sin θxð Þð Þ sin sin β sin θxð Þð Þeα+β cos θxð Þ
� �

:

ð78Þ

Thus,

PV
ð∞
0

xee
α+β cos θxð Þ cos β sin θxð Þð Þ sin sin β sin θxð Þð Þeα+β cos θxð ÞÀ Á

1 − x2ð Þ 9 − x2ð Þ⋯ 2n + 1ð Þ2 − x2
À Á dx

= −1ð Þn+1π
22n+1 2n + 1ð Þ!〠

n

s=0
−1ð Þs

2n + 1

s

 !
2s − 1 − 2nð Þ

Á ee
α+βeiθ 2s−1−2nð Þ

+ ee
α+βe−iθ 2s−1−2nð Þ

− 2eeα
� �

:

ð79Þ

Setting n = 0, α = 0, β = 1,, we obtain

PV
ð∞
0

xee
cos θxð Þ cos sin θxð Þð Þ sin sin sin θxð Þð Þecos θxð ÞÀ Á

1 − x2
dx

= π

2 ee
eiθ + ee

e−iθ

− 2e
� �

:

ð80Þ

which is simplified to πðeecos ðθÞ cos ðsin ðθÞÞ cos ðsin ðsin ðθÞÞ
ecos ðθÞÞ − eÞ

Example 2. Evaluate the following integral:

PV
ð∞
0

eb tan−1 θxð Þ + e−b tan−1 θxð Þ
� �

cos b/2ð Þ ln 1 + θ2x2
À ÁÀ Á

12 − x2
À Á

32 − x2
À Á dx,

ð81Þ

where θ > 0, b ∈ℝ.
Solution: using result 1 in Table 1 and setting α = 0,

n = 1 and gðzÞ = cos ðb ln ð1 + zÞÞ. We have

g −iθxð Þ + g iθxð Þ = cos b ln 1 − iθxð Þð Þ + cos b ln 1 + iθxð Þð Þ
= cos b

2 ln 1 + θ2x2
À Á

+ ib tan−1 θxð Þ
� �

+ cos b
2 ln 1 + θ2x2

À Á
− ib tan−1 θxð Þ

� �

= 2 cosh b tan−1 θxð ÞÀ Á
cos b

2 ln 1 + θ2x2
À Á� �

:

ð82Þ

Therefore, we obtain

PV
ð∞
0

2 cosh b tan−1 θxð ÞÀ Á
cos b/2ð Þ ln 1 + θ2x2

À ÁÀ Á
1 − x2ð Þ 9 − x2ð Þ dx

= π

i 48 g 3iθð Þ − g −3iθð Þ − 3 g iθð Þ − g −iθð Þð Þð Þ

= π

24 3 sin 1
2 b ln θ2x2 + 1

À Á� �
sinh b tan−1 θxð ÞÀ Á�

− sin 1
2 b ln 9θ2x2 + 1

À Á� �
sinh b tan−1 3θxð ÞÀ Á�

:

ð83Þ

Setting b = 1, θ = 1, we obtain

PV
ð∞
0

2 cosh tan−1 xð ÞÀ Á
cos ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + x2

p� �� �
1 − x2ð Þ 9 − x2ð Þ dx

= π

24 3 sin ln
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 1

p� �� �
sinh tan−1 xð ÞÀ Á�

− sin ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2 + 1

p� �� �
sinh tan−1 3xð ÞÀ Á�

:
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π

96 i 2 tan−1e2iθ
� �2

− tan−1e−2iθ
� �2�

− tan−1e2iθ
� �2

− tan−1e−2iθ
� �2� �� ð84Þ

Example 3. Evaluate the following integral:

PV
ð∞
0

ln2 tan θx/2ð Þ − π/4ð Þð Þj j
22 − x2
À Á

42 − x2
À Á dx, ð85Þ

where θ > 0.

Solution: using Theorem 4 and setting α = 0, β = 1, n
= 2 or using Remark 6 Table 2 and setting = 0, β = 1,
we set

f zð Þ = tan−1z
À Á2 = −1/4ð Þln2 1 − izð Þ/ 1 + izð Þð Þ: ð86Þ

Therefore, we have f ðeiθxÞ = −1/4 ln2ðð1 − ieiθxÞ/ð1 +
ieiθxÞÞ, and f ðeiθxÞ + f ðe−iθxÞ = 2 Re f ðeiθxÞ

Thus, we obtain

5. Conclusion

In this study, we present new general theorems to simplify
the calculation of improper integrals with principal values.
These outcomes can establish many formulas of improper
integrals and solve them directly without requiring compli-
cated computations or computer softwares. We introduce
some remarks to explain and analyze our results.

(i) The introduced theorems are considered powerful
tools in generating and solving improper integrals
and checking the accuracy of the results obtained
by using other technical methods or approximating
in solving similar examples

(ii) These results can be presented in tables of integrals
with various values of functions and new results

(iii) The integrals obtained in this study cannot be
solved manually (simply) or by computer software
such as Mathematica and Maple. In future work,
we will generalize the proposed results and theo-
rems and implement them to make new tables of
integrals and introduce more applications. Addi-
tionally, these results can be used to solve integral
and differential equations

Data Availability

No data were used to support this study.

PV
ð∞
0

f eiθx
À Á

+ f e−iθx
À Á

22 − x2
À Á

42 − x2
À Á dx

= −1
4 PV

ð∞
0

ln2 1 − ieiθx
À Á

/ 1 + ieiθx
À ÁÀ Á

+ ln2 1 − ie−iθx
À Á

/ 1 + ie−iθx
À ÁÀ Á

22 − x2
À Á

42 − x2
À Á dx

= −1
4 PV

ð∞
0

2 Re ln2 1 + sin θxð Þ − i cos θxð Þð Þ/ 1 − sin θxð Þ + i cos θxð Þð Þð ÞÀ Á
22 − x2
À Á

42 − x2
À Á dx

= −1
2 PV

ð∞
0

Re ln 1 + sin θxð Þ − i cos θxð Þð Þ − ln 1 − sin θxð Þ + i cos θxð Þð Þð Þ2
22 − x2
À Á

42 − x2
À Á dx

= −1
2 PV

ð∞
0

Re ±i π/2ð Þ − ln tan θx/2ð Þ − π/4ð Þð Þj jð Þ2
22 − x2
À Á

42 − x2
À Á dx

= −1
2 PV

ð∞
0

Re − π2/4
À Á

+ ln2 tan θx/2ð Þ − π/4ð Þð Þj j ± iπ ln tan θx/2ð Þ − π/4ð Þð Þj jÀ Á
22 − x2
À Á

42 − x2
À Á dx

= −1
2 PV

ð∞
0

− π2/4
À Á

+ ln2 tan θx/2ð Þ − π/4ð Þð Þj j
22 − x2
À Á

42 − x2
À Á dx

= −π
48 i 2 tan−1e2iθ

� �2
− tan−1e−2iθ
� �2

− tan−1e2iθ
� �2

− tan−1e−2iθ
� �2� �� �

:

∴PV
ð∞
0

ln2 tan θx/2ð Þ − π/4ð Þð Þj j
22 − x2
À Á

42 − x2
À Á dx

= −
π

48 i 2 tan−1e2iθ
� �2

− tan−1e−2iθ
� �2

− tan−1e2iθ
� �2

− tan−1e−2iθ
� �2� �� �

:

ð87Þ
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