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The paper studies the dynamics of a full delay-logistic population model incorporated with a proportionate harvesting function.
The study discusses the stability of the model in comparison with the well-known Hutchinson logistic growth equation with
harvesting function using the rate of harvesting as a bifurcation parameter to determine sustainable harvesting rate even at a
bigger time delay of 7=3.00. In all cases, the Hutchinson equation with harvesting was forced to converge to equilibrium
using an additional and a different time delay parameter, a deficiency previous researchers have failed to address when the
Hutchinson model is used for this purpose. The population fluctuations are catered for with this model making the
estimated maximum sustainable growth and harvest reflect realities as this model drastically reduces time-delay associated
oscillations compared to the well-known Hutchinson delayed logistic models. The numerical simulations were be done using
the MatLab Software.

1. Introduction For example, Hutchinson in [2] used equation (2) to
address the aforementioned issue incorporating time delay

Logistic growth model has been considered in different con- i Jogistic population model (1). In the preceding model,

texts among researchers [1-4]. The simplest form of a logis-
tic model to study population dynamics is given by

x(t) =rx(t) (1 - &:‘)) ,forx(t,) = x,. (1)

The x(t) is considered as the size of the population at
time ¢, where the r parameter represents the intrinsic growth
rate, and the positive constant ¢ is the systems’ carrying
capacity ie., the maximum population the system can sus-
tain [5]. Recent population studies have witnessed a surged
interest in dynamics of population retarded models involv-
ing delay logistic equations. Many attempts have also been
made to find reasonable mathematical equations with time
lags to describe complex physical systems [6-9].

the per capita rate of change of the system depends on the
state of the system in the past.

x(t-1)

x(t) = rx(t) <1 - ),fort> 0, )

x(t) = ¢(t), fort € -1, 0], (3)

where 7,7, ¢ are positive numbers, with x(t) = ¢(¢), where
¢(t) € ([-7,0], R) as the initial history function. Another
time delay parameter was introduced in equation (2) to
obtain the following logistic growth equation with the same
initial condition as stated in equation (2),

x(t— T))) (4)

9

i(t) = rx(t—‘r)(l -
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where r the growth rate, ¢ the population or environmental
capacity, and 7 time delay are all positive constants. This
model was studied in [3, 10, 11]. Usually, in most popula-
tions, outside influences affect the proportion of lives within
the system. Such influences may be caused by factors includ-
ing harvesting, drugs for treatment, and poaching just to
mention a few. Assuming population modeled by equation
(1) is affected at a rate proportional to its size; then, we get
a different model defined by

x(t) =rx(t) (1 - ict)) — hx(t), (5)

where h >0 is the effect of the influence on population at
time ¢. This gives the fraction of the population that is har-
vested [12]. Similarly, Berezansky et al. in [13] incorporated
h in equation (2) and obtained the following equation

x(t-1)
c

x(t) =rx(t) (1 - ) —hx(t-7),te[0,7].  (6)

In this model, the rate of outside influence is propor-
tional to the population size at time ¢ — 7. This model sup-
ports the arguments that any interacting species in the
system are dependent on amassed resources and hunting
or harvesting effects in the past.

Similarly, Piotrowska and Bodnar in [3] and Cooke et al.
[14] used the model below by introducing time delay in rx
(t) to postulate that the intrinsic growth rate depends on
past time (¢t — 1), where 7, the developmental time of the
population, is in the system with model given by

x(t-1)

x(t) =rx(t—‘r)(1 - ) —h(t)x(t),te[0,7], (7)

where h is constant function at a step time ¢. The difference
between equations (6) and (7) is that the rate of proportion-
ality of outsides interference on the population is not depen-
dent on the time in the past (f — 7).

From the two equations, we can infer that no author
has yet considered time delay in all parts of the model
as given by

x(t-1)

X(t)zrx(t—r)(l— ) —hx((t-1)),te[0,7], (8)

where the population growth rate, the per capita rate of
change, and the effect of the outside influence are all
determined on time in the past.

In this study, we will consider equation (8) with time
delays in all parts. We will also explore the possible effects
of changing the model parameters as means to compare
equations (8) and (6) and then discuss the defects in the
Hutchinson equation (incorporated with outside interfer-
ence) which previous authors have so far failed to address
when the model is used with harvesting function. Bere-
zansky et al. in [13] studied the existence, positivity, and
the sufficient conditions for the extinction of the solution
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of the equation (6), but this study will beyond this by esti-
mating the sustainable growth and harvest rate. This is the
first of its kind that a research study has touched on the defi-
ciencies of the well-known Hutchinson equation, especially
when using it as a harvesting incorporated function. The
objective of the study is to help the research community with
the selection of the right model for the right purpose. We
will identify the dynamical properties of equation (8) so that
managers can adopt it as an interventional plan to manage
the population. Thus, we will use harvest rate / as the bifur-
cation parameter for the system. Since h is regarded as the
rate of outside interference; then, ecological managers can
use it in making decisions on harvesting efforts. The afore-
mentioned bifurcation strategy is adopted from the argu-
ment by Geritz and Kisdi [15] that parameters from
population models are helpful in determining the state of
the models.

The paper is structured as follows: Section 2 discusses
the existence, stability, and bifurcation of equation (8). The
section would also consider conditions for positivity of the
solution in equation (8). In Section 3, detailed numerical
solutions and stability analyses would be done comparing
the models (8) and (6) by applying the same parameter
values. The numerical simulations will be done using the
MatLab Software. Sections 4 outlines the findings and con-
clusion derived from the analyses of the models.

2. Materials and Methods

2.1. Existence, Stability, and Bifurcation of Equation (8). As
we normalize the system, then, we can observe that if & <,
the two possible equilibrium of equation (8) will be x(t) =
0 and x(t) =1 — h/r. The second part x(t) =1 — h/r is stable
and so for any initial condition x, > 0, all solutions of equa-
tion (8) will converge towards it as t — co. We let ¢,
denote the positive equilibrium of the equation (8) to
emphasize the fact that /4 is the bifurcation parameter of
the system as stated in the objective of this study. On the
other hand, if h>r, then, all solutions will be attracted to
the former equilibrium point x =0 as the only solution of
equation (8). This means the population should be driven
towards extinction.

We now transform equation (8) into the following form
by the change of variables using X (t) = r/r — hx(t)

X(t-1)

X(t) = —(r-h)X(t - 1) [—1+ ],fort>0. (9)

From equation (9), the linearized form is expressed as
follows;

X(t)=—(r-h)X(t-1). (10)

Denoting x(t) =xe" as solution to equation (10) can
result in the following transcendental equation whose zero
solutions are negative real parts and is supposed to occur
at x(t) =c(r—h)/r (i.e., the only positive equilibrium sup-
posed to be ¢, =1 — h/r);
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y+pe T =0, (11)

where p=(r—h). Setting y=p+id, for peR, 8§ €[0,00),
then, we have the following pairwise equation.

{ p=—pe ¥ cos O,

(12)
8 = pe " sin 7.

From equation (11), we obtain a negative real eigenvalue
y=-p <0 if we let 7=0. However, if 7 increases such that
the real part y =y >0, then, for some 7, there results in
the real part y(7,) = p(7,) = 0. This provides a pair of imag-
inary roots +id,, 8, = 8(7,) (i.e., from equation (11)), which
confirms the assertion in [2]. We can infer that cos §,7=0
and consequently obtain 8,7) = 7/2 + 2km, k=0,1,2, -+

Since §,=p=(r—h), then by extension, we can con-
clude that the only positive equilibrium applicable to equa-
tion (9) is ¢, =1 — h/r, and it is stable if (r — h)7r <7/2, and
unstable when (r — k)7 > 71/2. This implies that for r7 > 7z/2
with which nonharvested model (4) is unstable, then
becomes stable if the rate of harvesting reaches the critical
value h* =r - /27,

2.1.1. Stability Switches and Hopf Bifurcation of (8). Also
assuming p >0 (i.e., (r —h) > 0); then, stability switches are
determined from the complex eigenvalues y=i§ where
(6>0 is a solution of equation (11)). Since sin dt is
supposed to be positive (refer to equation (12)); then, with
p =4, we have the stability switches given by

3(p) = g +2kn (k=0,1,2,). (13)

Considering y as function of the bifurcation parameter
p> we can find the direction of the stability switches by
differentiating equation (11) with respect p as expressed
implicitly by

p+e —pre 'y =0. (14)
This implies that

ey s 15)
Ve @) =1 (pryyrp d(pr)+p

Therefore

i5(p —i8(pr))

. i5(p —i8(p1))
(p+i6(p7))(p—id(pT))

T 0

where the real part (8)*(tp)/(87p)* + p* > 0 shows that the
eigenvalue has changed from being negative to a positive
real number [2].

At the emergence of Hopf bifurcation, we let 4 =0, so
that y = id, then, from equation (11), we obtain

i8 = —pe T = —p(cos (87) — i sin (37)). (17)

Equating the real and imaginary parts of this equation
results in the following

0=p cos (01), (18)

0 = p sin (O7). (19)

By squaring both sides of the two adding them together,
we have

d=7p. (20)

The set of solutions of 7 associated with these equations
is given by

(71/2)#, foré >0,
T,= (21)
(371/2)#, f0r6<0,

where n=0.1.2, ---. If we let §, = p, then, y,(7) =, (1) +i
0, (7) is the root of the equation (11) satisfying u, =0 and
(Sn(Tn) = 80'

We now have the following results.

Lemma 1. s, (7,) > 0.

Proof. In differentiating both sides of equation (11) with
respect to 7, we have

d)/ _ —yT —yT _ YT d)/
oy = ypeT—petT = —pe = Y) (22

d
Given that y = —pe™”,
a2
o (23)
dr  l+yt
dy _ 8?) _ 8 - i(SST’ (24)
dr|_.  1+i6t  1+id7
Therefore, this implies that
. 52
T,)= > 0. 25
A (25)

This results confirms that, in letting y=pu+id, if u
varies from the left to right, then, for p <0, the system
is in a stable state, >0 a bifurcation state, and y=0 a
limiting case [2, 16].

2.1.2. Existence and Uniqueness Solution of (8). From equa-
tion (9), we let a = (r — h), c=1; then, we obtain the follow-
ing initial value problem



X(t)=-aX(t-1)[-1 +X(t - 7)],fort>0,  (26)

X(t)=¢(t),fort € [-7,0], (27)

where g, T are positive numbers, with X (t) = ¢(t), as the ini-
tial history function. We consider the interval [0, 7] to gener-
ate a nonnegative solution to equation (26) from its
equivalent expression given by

X(t)=¢(0)+ (—a)JOX(s -7)[-1+X(s - 7)]ds. (28)

Since ¢(0)> and a>0, the solution exists and it is
unique and nonnegative in the neighbourhood considered.
Again in the interval t € [(n—1)7, n1], if we let X, : [(n—1
)T, nt] — R* be the solution of equation (26); then, for ¢
€ [nt, (n+1)7], it implies that

X(t)=X,(n7) + (—a)Jt X, (s—1)[-1+X(s—7))ds. (29)

nt

Thus, it is observed that for every nonnegative initial
function ¢(t) >0, the solution of equation (26) is defined
for t>01nt € [n7, (n+ 1)7].

2.1.3. Existence and Positivity Solution of (8). Following the
Theorem 1.2 in [10], the solution of (26) can have negative
values for a positive initial condition. Therefore, due to bio-
logical constraints, we study the conditions which will guar-
antee nonnegative solutions of equation (26) for every
positive initial function ¢(¢). If we let ¢ = fr and then drop
the bar, then after transformation of the equation (26), we
obtain the following initial value problem

X(t) = —arX(t - 1)[-1 + X(t - 1)], for t > 0, (30)

X(t)=¢(t), fort € [-1,0]. (31)

As a consequence of the Theorem 1.2 in [9] as stated ear-
lier, we adopt the following.
Let

0<o(t)<1,fort€[-1,0], (32)

due to biological reasons and

! forte[-1,0

) or -5 >
p(t) =1 2 ol (33)

1;

fort=0,

then on the interval [n — 1, n], we let x,, be the solution of
equation (30). We can observe that
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Xl(t)=1+J —ds=1+—, (35)

(=a7)X,(s)[-1+ X, (s)]ds
Ot_l (36)
:1+%+J (—ar)(l+%n)(%-s>ds.

0

Therefore, we obtain

X(2)=X,(2)=1+ % _ (a;)2 ) <T8)3

=P, (at). (37)
If the condition (32) is satisfied then following inequality
also holds:

VE>0,X(H) <1+ %. (38)

If X(t) > 1, then, there exists ¢, < ¢ such that X (¢,) = 1, and
-1

(=aT)X(s)[-1 + X(s)]ds, (39)

to-1

X(0)=X(10)+ |
so that we can have

X(t)<1+ J
to—
or else we have

X(t)21+J (—m’)<1+ %T) (%)ds "
ty-1 41

Then, as a consequence of Theorem 2.1 in [10], if at < r,,
it implies the polynomial P, (at) > 0 and P, (at) <0 for ar >
r,, where r; and r, are the greatest roots of P; and P,, respec-
tively. That is r, = 3.0578 and r, = 1.6786.

3. Results and Discussion

3.1. Numerical Solution: Stability Analysis of Model (2) and
(4). We now do numerical simulations with the models (2)
and (4) (from which we derived the equations (6) and (8),
respectively) to examine their dynamics regarding the effect
of the delay parameters incorporated in them. Berezansky
et al. in [13] studied the existence, positivity, and the suffi-
cient conditions for the extinction of the solution of the
equation (6), but this study will beyond this by estimating
the sustainable growth and harvest rate. We will compare
the two equations so that we will be able to recommend
the one to select when using the model as a harvest incorpo-
rated model.
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Stability analysis of model (2)

1.8
1.6
1.4 4
=
2124
g
K]
El 1+
2
S
(=W
0.8 4
0.6
0~4 T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500
Time (t)
— Lt=8%r=0.15<m/2
— 2:7=10%r=0.15<m/2
FIGURE 1: Stability analysis of the model (2).
Stability analysis of model (4)
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FIGURE 2: Stability analysis of the model (4).

For 7r=1.56 > 71/2, derived from 7=11.00,7=0.15, as
shown Figure 1, the system exhibited periodic solution at
x* = c=1. The results of the simulations from the two plots
for the given parameter values complement Theorem 2.1
in [2].

3.1.1. Numerical Solution: Stability Analysis of Model (4).
Since equation (4) is further fused with another delay
parameter, we want to study if it adheres to the conditions
in Theorem 2.1 in [2], as done with equation (2).

In Figure 2, we used the same values for Figure 1, as dis-
played in the legends. This time, the space occupied by the
various oscillations is reduced as shown by the population

axis. This confirms that when the time delay is applied in
all parts of the model, the oscillations associated with delays
are rather minimized.

3.2, Numerical Solution: Harvesting Parameter for
Bifurcation. We study the stability dynamics of equations
(8) and (6) using the same parameters together with the
bifurcation parameter h. In this section, we will use the
MatLab software for all our numerical simulations. To nor-
malize the system, we let x, = 0.5, and ¢ =1, then, with r=
0.1, from equation (5), we have

x(t) =x(t)(0.1(1 = x(t = 1))) — hx(t - 7). (42)
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Stability analysis of model (6) vrs model (8)
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F1GURE 3: Stability analysis of equations (6) and (8) with r=0.1, 7=3.00, and h=0.1.

Stability analysis of model (6) vrs model (8)
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FIGURE 4: Stability analysis of equations (6) and (8) with r=0.1, T=3.00, and h=0.1.

At equilibrium, x(t) = x(¢# — 7) = x,, and there exists two
equilibrium solutions:

x,=0,andx, =1 - 10h. (43)

Using x, =1 — 10h, we can determine the positive equi-
librium of the system since x, is the fish population, and it
should not be negative. Assuming the harvest rate h>0.1
and x, =1 — 10k is negative; then, the harvest will drive the
fish population to extinction. On the other hand, if h=0.1
(same as the growth rate r); then, the results will affirm the
other equilibrium solution x, = 0, and all the fish population
will disappear. The equilibrium solutions are also applicable
to equation (8) as shown in equation (9) using the parame-

ters (r—h)7 and 7/2 and also as we let x,=¢, =1—-10h.
The figures below illustrate this assertion.

In Figure 3, for r = h = 0.1, the result of equation (8) con-
forms to that of the x, =0, and therefore, all the total fish
population will disappear with time but not same with equa-
tion (6). Equation (6) moves away from the zero equilibrium
and can only be forced to it when we increase the time delay
associated with rate of harvest or introduce a different time
delay on the harvest rate.

In Figure 4, a new time delay was introduced on the har-
vesting effort so that equation (6) has two different discrete
time delays and now we have both equation (6) and equation
(8) converging towards the zero equilibrium point x, =0,
which denotes that the total fish population with time will
disappear.
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Stability analysis of model (6) vrs model (8)
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FIGURE 5: Stability analysis of equations (6) and (8) with »=0.1, 7=3.00, and / = 0.025.
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FIGURE 6: Stability analysis of equations (6) and (8) with r=0.1, 7=3.00, and h = 0.025.

Similarly, if the harvest rate is set at h=0.025, then, x,
=¢,=1-10(0.025) =0.75, which is stable. It is also
observed that with 0 </ < 0.1, the equilibrium fish popula-
tion will always be positive and can be predicted and they
will not die. The simulation of the harvest rate in the
above-given interval is demonstrated in Figures 5 and 6.

From Figure 5 above, it is observed that for a propor-
tional decrease in fish population through harvesting by h
=0.025, there is a substantial growth of 0.75 as shown in
the the plot. However, the model (6) moves away higher
above the point, and it has to be redirected.

In Figure 6, it can be concluded that as the harvesting
rate decreases, positive equilibrium is established, and there
is an upsurge in the average and variations in population
size. This time, both models converged to the equilibrium
point x, = 0.75 because equation (6) was forced to do so.

3.3. Optimal Sustainable Harvesting Value. Now, given the
fish population size x,=c¢,, the total harvest can be
defined by

he, = h(1 - 10h). (44)

We will determine the maximum sustainable harvest at

equilibrium at the level that optimizes h(1 — 10h). Let W

(h) denote the total function of harvest rate h, then, from
equation (44), we have

W (h) = h(1 - 10h). (45)

We compute the local maximum of the equation (45)

as follows; W(h) =1 - 20h, then, we have h=0.05 as the

critical point. We also take the second derivative to find
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Stability analysis of model (6) vrs model (8)
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FIGURE 7: Stability analysis of equation (8) with r=0.1, 7=3.00, and h = 0.05.
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the type of point. W (k) =-20< 0, which denotes the local
maximum point. This implies that at h=0.05, as a fraction
of the fish population offers the maximum sustainable harvest
value. Therefore, with fish growth rate r=0.1 and optimal
harvest rate h=0.05 we obtain ¢, =(1-10(0.05))=0.5,
which is exactly half of the maximum carrying fish population
capacity. This is proven in Figure 7 that follows.

In Figure 7, it is indicated that if we set the harvest rate at
h=0.05, and the initial condition at x;, = 0.5, then, the sys-
tem will provide its maximum sustainable growth and har-
vest. This happens at exactly half of the maximum carrying
fish population capacity. The two models settled at the same
maximum level because equation (6) has been forced to do
so through the other different time delay incorporated in
the model.

In Figure 8, it is also observed that if the harvest rate is
set at 1 =0.05, with the initial condition at x, = 1.0, then,
the system will converge to exactly half the maximum carry-
ing fish population capacity which denotes the level within
which we can harvest. The two models have settled at the
same level because equation (6) has been adjusted with
another time delay parameter.

4. Conclusion

The paper studies the dynamics of a full delay logistic popu-
lation model with sustainable harvesting that is proportional
to the fish population. In this study, we used the harvest rate
as a bifurcation parameter to determine the maximum
permissible harvest per fishing period. We compared the
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stability dynamics of our model with the well-known Hutch-
inson equation with the harvesting function. The model (4)
(without harvesting) is found to be less oscillatory compared
to the Hutchinson equation (2) as shown in Figure 2. In all
cases, the Hutchinson equation with harvesting was found
to be deficient as it had to be adjusted (incorporate a differ-
ent delay parameter on the harvesting rate) before it could
converge to an equilibrium point set to the system. Since
the logistic growth model without time delay cannot account
for fluctuations in future populations, it is believed that the
estimated maximum sustainable harvest value obtained with
equation (8) reflects the realities of fish population dynam-
ics. The paper recommends that further studies are done
considering the full delayed logistic population model, espe-
cially when using it as a harvesting incorporated function.
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