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Numerical computation of maximum likelihood estimates (MLE) is one of the most common problems encountered in applied
statistics. Even if there exist many algorithms considered as performing, they can suffer in some cases for one or many of the
following criteria: global convergence (capacity of an algorithm to converge to the true unknown solution from all starting
guesses), numerical stability (ascent property), implementation feasibility (for example, algorithms requiring matrix inversion
cannot be implemented when the involved matrices are not invertible), low computation time, low computational complexity,
and capacity to handle high dimensional problems. The reality is that, in practice, no algorithm is perfect, and for each
problem, it is necessary to find the most performing of all existing algorithms or even develop new ones. In this paper, we
consider the computing of the maximum likelihood estimate of the vector parameter of a statistical model of crash frequencies.
We split the parameter vector, and we develop a new estimation algorithm using the profile likelihood principle. We provide
an automatic starting guess for which convergence and numerical stability are guaranteed. We study the performance of our
new algorithm on simulated data by comparing it to some of the most famous and modern optimization algorithms. The
results suggest that our proposed algorithm outperforms these algorithms.

1. Introduction

Let ℓðθÞ be a log-likelihood function where θ ∈ℝd is a
parameter vector whose structure will be specified later. In
computing the maximum likelihood estimate (MLE) which
is the point bθ at which ℓðθÞ attains its maximum, the very
first algorithm one can try is the Newton-Raphson (NR)
algorithm which is no longer to be presented. The success
of this algorithm comes from an enviable and unequalled
property: that of quadratic convergence when the starting
guess is well chosen (i.e., close to the unknown solution).
However, it also has drawbacks: it is not globally convergent
(i.e., its success depends on the starting guess); it can be
costly or impossible to implement in high-dimensional
problems because of its need of inverting the Hessian matrix
at each iteration. Many other algorithms can be used when-
ever NR cannot. We refer the reader to [1–4] for a compre-
hensive review of these algorithms. Of all these algorithms,

we can mention quasi-Newton (which use approximations
of the inverse of the Hessian matrix rather than inverting
it), Fisher scoring (a purely statistical method which con-
sists in replacing the Hessian matrix with its mathematical
expectation in order to ensure the ascent property and
therefore numerical stability), block optimization, and
derivative-free optimization algorithms. We can also
mention minorization-maximization (MM) algorithms [5,
6] which have made an extraordinary breakthrough in
computational statistics and are increasingly used. The MM
philosophy for maximizing a function ℓðθÞ is to define, in
the first M step, a minorizing function for the objective func-
tion, and to maximize, in the second M step, the minorizing
function with respect to the parameter vector θ.

Even if all these algorithms are considered as perform-
ing, they can suffer in some cases for one or many of the
following criteria: global convergence (capacity of an
algorithm to converge to the true unknown solution from
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all starting guesses), numerical stability (ascent property),
implementation feasibility (for example, algorithms requir-
ing matrix inversion cannot be implemented when the
involved matrices are not invertible), low computation time,
low computational complexity, and capacity to handle high
dimensional problems. The reality is that, in practice, no
algorithm is perfect, and for each problem, it is necessary
to find the most performing of all existing algorithms or
even develop new ones.

In this paper, we consider the computing of the maxi-
mum likelihood estimate (MLE) of the vector parameter of
a statistical model of crash frequencies proposed by [7].

The vector parameter has the form θ = ðα, βTÞT where α >
0 is the parameter of interest and β is a vector of secondary
parameters. Although secondary, the subvector β can con-
tain an important number of components (up to several
hundreds) depending on the structure of the data. Thus,
the classical algorithms mentioned above may need a great
number of iterations (and thus have a slow convergence)
or simply fail to converge. For the model considered in this
paper, Newton-Raphson and Minorization-Maximization
(MM) algorithms have been implemented by [7, 8], but the
numerical study of these algorithms has been limited to
simple cases. The NR algorithm is known to be fast in simple
cases and inefficient (or even impossible to implement) for
high-dimensional problems. Moreover, its convergence
depends on the starting guess (initial solution θð0Þ from
which the algorithm starts). The MM algorithm, on the
other hand, often requires a large number of iterations
before converging to the solution.

The main contribution of this paper is to build an
estimation algorithm which converges faster than the other
algorithms and whose convergence is guaranteed and is
not affected by the dimension (the number of components
of θ). For this purpose, we exploit the splitting of the param-
eter vector into two blocks, and we apply the profile likeli-
hood principle (see for example [9], p. 231) to reduce the
search of θ to only the search of the parameter of interest
α. Then, we develop a new estimation algorithm for which
we provide an automatic starting guess from which conver-
gence and numerical stability (ascent property) are guaran-
teed. This automatization of the starting guess reveals to be
a true advantage for our algorithm over the others because
it allows to circumvent the difficulty of finding an adequate
starting guess. We show using simulated data that our algo-
rithm outperforms Minorization-Maximization (MM) and
Newton-Raphson algorithms which are two of the most
famous and modern optimization algorithms.

The remainder of this paper is organized as follows. In
Section 2, we describe the data and the estimation problem.
The statistical model and the constrained maximum likeli-
hood estimation of the parameters are also presented. In
Section 3, we present the profile likelihood principle and
then use it to design our new profile-likelihood-based algo-
rithm (PLBA) for computing the MLE of θ. We also provide
an automatic starting guess, and we prove that it guarantees
convergence of the proposed algorithm. In Section 4, we
prove that the proposed algorithm satisfies the ascent prop-
erty. In Section 5, we report the results of the comparison of

the PLBA with MM and NR algorithms. The paper finishes
with some discussions and concluding remarks in Section 6.

2. Data, Statistical Model, and Problem Setup

The framework of this paper is the statistical analysis of
crash data before and after the implementation of a road
safety measure at s (s > 0) experimental sites (called treated
sites) where crashes are classified by severity in r (r > 0)
levels. This analysis is aimed at estimating the mean effect
α > 0 of the safety measure simultaneously on all the s sites.
This mean effect must be understood in the multiplicative
sense and therefore must be compared to 1. A value α < 1
indicates a positive effect of the measure (an average reduc-
tion of 100 × ð1 − αÞ% in the number of crashes) while a
value α > 1 indicates a negative effect of the measure (an
average increase of 100 × ðα − 1Þ% in the number of crashes)
and α = 1 indicates that the measure had no significant
influence on the number of crashes.

Let

x =

x111 x121 ⋯ x1r1 x211 x221 ⋯ x2r1

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮

x11k x12k ⋯ x1rk x21k x22k ⋯ x2rk

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮

x11s x12s ⋯ x1rs x21s x22s ⋯ x2rs

2666666664

3777777775
ð1Þ

be a matrix of order s × ð2rÞ where x1jk (respectively x2jk)
is the number of accidents of severity level j (j = 1,⋯, r)
which occurred at site k in the period before (respectively,
after) the implementation of the measure. Also let

z =

z11 z21 ⋯ zr1

⋮ ⋮ ⋯ ⋮

z1k z2k ⋯ zrk

⋮ ⋮ ⋯ ⋮

z1s z2s ⋯ zrs

2666666664

3777777775
ð2Þ

be a matrix of order s × r where zjk (j = 1,⋯, r, k = 1,⋯, s)
is the ratio of the number of accidents of severity j in the
“after” period to the number of accidents of the same
severity in the “before” period on a control site (a site
where the measure has not been implemented) paired with
treated site k.

Let Sr−1 = fðp1,⋯, prÞ ∈ ½0, 1�r ,∑r
j=1pj = 1g and nk =

∑2
i=1∑

r
j=1xijk be the total number of accidents observed on

the treated site k. N’Guessan et al. [7] proposed the following
multinomial-based probability distribution of parameter
vector θ for x:
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P x θjð Þ =
Ys
k=1

nk!Q2
i=1
Qr

j=1xijk!

Y2
i=1

Yr
j=1

πijk θ zjð ÞÀ Áxijk !
, ð3Þ

where θ = ðα, βTÞT is the parameter vector, α > 0 is the mean

effect, β = ðβT
1 ,⋯, βT

s Þ
T ∈ ðSr−1Þs is a vector of sr secondary

parameters such that for all k = 1,⋯, s, βk = ðβ1k,⋯, βrkÞT
∈ Sr−1, and

πijk θ zjð Þ =

βjk

1 + α zk, βkh i , if i = 1, j = 1,⋯, r,

αzjkβjk

1 + α zk, βkh i , if i = 2, j = 1,⋯, r,

8>>><>>>: ð4Þ

where hzk, βki =∑r
j′=1zj′kβj′k.

The parameter of the model is the vector θ = ðα, βTÞT ∈
ℝ∗

+ × ðSr−1Þs, and the log-likelihood (log PðxjθÞ) of observed
data x is given to one additive constant by

ℓ θð Þ = 〠
s

k=1
〠
r

j=1
x•jk log βjk + x2jk log α − x•jk log 1 + α zk, βkh ið Þ
n o

,

ð5Þ

where x•jk = x1jk + x2jk (see [7] for more details).
In this paper, we are interested in computing the maxi-

mum likelihood estimate (MLE) bθ of the unknown vector
parameter θ defined by

bθ = argmaxθ∈ℝ∗
+× Sr−1ð Þsℓ θð Þ: ð6Þ

In the case s = 1, [10] built an algorithm to solve
Equation (6). In the next section, we present a profile-
likelihood-based algorithm (PLBA) for computing the
MLE in the general case s ≥ 1. Our proposed PLBA is
automated since we provide an automatic starting guess
which guarantees convergence.

3. The Automated Profile-Likelihood-Based
Algorithm (PLBA) for Computing the MLE

3.1. A Brief Reminder on Profile Likelihood. Let us rewrite the

log-likelihood as ℓðθÞ = ℓðα, βÞ. If, for a given α, the MLE bβ
of β may be written as a function bβðαÞ of α, that is,

bβ = bβ αð Þ = argmaxβ∈ Sr−1ð Þsℓ α, βð Þ, ð7Þ

then the profile likelihood function (see for example [9],
p. 231) is

ℓp αð Þ = ℓ α, bβ αð Þ
� �

, ð8Þ

expressed as a function of α only. The maximization
of ℓpðαÞ is equivalent to that of ℓðα, βÞ [11].

3.2. Computation of bβ in Closed Form

Lemma 1. Given α > 0, let bβ = ðbβT

1 ,⋯, bβT

s Þ
T
be the solution

to Equation (7), where for all k = 1,⋯, s, bβk = ðbβ1k,⋯, bβrkÞ
T

. The components of bβ are given by

bβ jk =
x•jk/ 1 + αzjk

À Á
∑r

m=1x•mk/ 1 + αzmkð Þ ,  j = 1,⋯, r ; k = 1,⋯, s: ð9Þ

Proof. Given α > 0, [7] proved that for all k = 1,⋯, s, the
components of bβk satisfy the following system of r equations:

x•jk −
nkbβ jk 1 + αzjk

À Á
1 + α zk, bβk

D E = 0,  j = 1,⋯, r: ð10Þ

Thus, for all k = 1,⋯, s, we apply Theorem 3.5 of [12] to
Equation (10) and get

bβk =
1
nk

Mα,k/Δα,kð Þ−1 x•1k
1 + αz1k

,⋯,
x•rk

1 + αzrk

� �T
, ð11Þ

where

Mα,k =
Δα,k αX•k

zTk 1

" #
ð12Þ

is a block-defined square matrix of order r + 1, Δα,k = diag ð1
+ αz1k,⋯, 1 + αzrkÞ is a diagonal matrix of order r, X•k =
ðx•1k,⋯, x•rkÞT, and

Mα,k/Δα,kð Þ = 1
nk

〠
r

m=1

x•mk

1 + αzmk
ð13Þ

is the Schur complement of Δα,k in Mα,k (see for example
[13] (p. 34) for a reminder on the use of Schur complement
for inverting a block matrix). The proof is thus completed.

3.3. Profile Likelihood

Theorem 2. The profile likelihood function is defined, up to
an additive constant independent of α, by

ℓp αð Þ = x2•• log α − 〠
s

k=1
〠
r

j=1
x•jk log 1 + αzjk

À Á
, ð14Þ

where x2•• =∑s
k=1∑

r
m=1x2mk.

Proof. Expression (5) is equivalent to

ℓ θð Þ = 〠
s

k=1
〠
r

j=1
x•jk log βjk + x2•• log α − 〠

s

k=1
nk log 1 + α zk, βkh ið Þ:

ð15Þ
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For all k = 1,⋯, s, Equation (9) yields

1 + α zk, bβk

D E
= 1 + α〠

r

j=1
zjkbβ jk

= 1 +
α ∑r

j=1 zjkx•jk
À Á

/ 1 + αzjk
À Á� �

∑r
m=1 x•mkð Þ/ 1 + αzmkð Þð Þ

=
∑r

j=1 x•jk
À Á

/ 1 + αzjk
À ÁÀ Á

+∑r
j=1 αzjkx•jk
À Á

/ 1 + αzjk
À Á� �

∑r
m=1 x•mkð Þ/ 1 + αzmkð Þð Þ

=
∑r

j=1 x•jk 1 + αzjk
À ÁÀ Á

/ 1 + αzjk
À Á� �

∑r
m=1 x•mkð Þ/ 1 + αzmkð Þð Þ

=
nk

∑r
m=1 x•mkð Þ/ 1 + αzmkð Þ ,

ð16Þ

and the relationships (9) and (16) enable us to write

ℓp αð Þ = 〠
s

k=1
〠
r

j=1
x•jk log

x•jk
1 + αzjk

 !
− 〠

s

k=1
〠
r

j=1
x•jk log 〠

r

m=1

x•mk

1 + αzmk

 !

+ x2•• log α − 〠
s

k=1
nk log

nk
∑r

m=1 x•mkð Þ/ 1 + αzmkð Þ
� �

:

ð17Þ

After some manipulations on the first, second and fourth
terms, we get:

ℓp αð Þ = 〠
s

k=1
〠
r

j=1
x•jk log x•jk − 〠

s

k=1
〠
r

j=1
x•jk log 1 + αzjk

À Á
− 〠

s

k=1
nk log 〠

r

m=1

x•mk

1 + αzmk

 !
+ x2•• log α

− 〠
s

k=1
nk log nk + 〠

s

k=1
nk log 〠

r

m=1

x•mk

1 + αzmk

 !
:

ð18Þ

Removing the third and sixth terms and the constants
(first and fifth terms), we get (14).

3.4. Design of the PLBA

Lemma 3. Let F be the mapping defined on ℝ+ by

F uð Þ = −x1•• + 〠
s

k=1
〠
r

j=1

x•jk
1 + uzjk

, ð19Þ

where x1•• =∑s
k=1∑

r
j=1x1jk. The MLE bα of α is the unique

root of F.

Proof.

(i) On the one hand, function F is a one-to-one decreas-
ing function (it is continuous and its derivative F ′ðuÞ
is strictly negative for all u ≥ 0) and Fðℝ+Þ = �F∞, F
ð0Þ�, where

F∞ = lim
u⟶+∞

F uð Þ = −x1••,

F 0ð Þ = −x1•• + 〠
s

k=1
〠
r

j=1
x•jk

= −x1•• + 〠
s

k=1
〠
r

j=1
x1jk + x2jk
À Á

= −x1•• + x1•• + x2•• = x2••:

ð20Þ

Since −x1•• < 0 < x2••, Equation FðαÞ = 0 has a unique
solution.

(ii) On the other hand, the MLE bα , if it exists, is solution
to the optimization problem

bα = argmaxα>0ℓp αð Þ: ð21Þ

The profile log-likelihood ℓpðαÞ being differentiable for

every α > 0, the MLE bα is then solution to Equation ℓp′ðαÞ
= 0, where

ℓp′ αð Þ = x2••
α

− 〠
s

k=1
〠
r

j=1

x•jkz jk
1 + αzjk

=
1
α

x2•• − 〠
s

k=1
〠
r

j=1
x•jk −

x•jk
1 + αzjk

 ! !

=
1
α

−x1•• + 〠
s

k=1
〠
r

j=1

x•jk
1 + αzjk

 !

=
F αð Þ
α

ð22Þ

and ∑s
k=1∑

r
j=1x•jk = x1•• + x2••. Thus, Equation ℓp′ðbαÞ = 0 is

equivalent to FðbαÞ = 0, and bα is the unique root of F.

Equation FðuÞ = 0 seems fairly complicated to solve in
closed form for any s > 1 and must therefore be solved
numerically. Obviously, there are many root-finding algo-
rithms (see for example [14] (Chapter 3) or [15] (Chapter
3)). Here, we propose a numerical approximation of bα using
the following one-dimensional Newton-Raphson (NR) root-
finding algorithm:

α m+1ð Þ = α mð Þ −
F α mð ÞÀ Á
F ′ α mð ÞÀ Á ,m = 0, 1, 2,⋯, ð23Þ

where the starting guess αð0Þ should be chosen in ℝ+ by
the user. Our choice of NR algorithm is motivated by the fact
that it converges quadratically to the solution if αð0Þ is cho-
sen near the unknown solution. To overcome the difficulty
of the choice of αð0Þ, we prove that, if we set αð0Þ = 0 as an
automatic starting guess, then, the convergence of NR itera-
tions (23) is always guaranteed.
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Theorem 4. If αð0Þ = 0, then, the sequence ðαðmÞÞ defined by
NR iterations (23) converges to the MLE bα .

To prove Theorem 4, we need the following Lemma 5.

Lemma 5. Let φ be the function linked to NR iterations (23)
such that αðm+1Þ = φðαðmÞÞ, i.e., the function defined for all u
∈ℝ+ by

φ uð Þ = u −
F uð Þ
F ′ uð Þ

: ð24Þ

(i) Function φ is increasing on ½0, bα� and decreasing on
½bα , +∞½.

(ii) The MLE bα is the unique fixed point of φ.

(iii) For all u ≥ 0,

φ uð Þ ≥ u, if u ≤ bα ,
φ uð Þ ≤ u, if u ≥ bα:

 
ð25Þ

(iv) For all u ≥ 0, φðuÞ ≤ bα .
Proof of Lemma 5.

(i) For all u ≥ 0, we have

F ′ uð Þ = −〠
s

k=1
〠
r

j=1

x•jkz jk

1 + uzjk
À Á2 < 0: ð26Þ

Therefore, φ is differentiable and

φ′ uð Þ = 1 −
F ′ uð Þ
� �2

− F uð ÞF ′′ uð Þ

F ′ uð Þ
� �2

0B@
1CA =

F uð ÞF ′′ uð Þ
F ′ uð Þ
� �2 ,

ð27Þ

where for all u ∈ ½0,+∞½,

F ′′ uð Þ = 〠
s

k=1
〠
r

j=1

2x•jk z jk
À Á2

1 + uzjk
À Á3 > 0: ð28Þ

So the sign of φ′ðuÞ is the same as the one of FðuÞ. As F
is a decreasing function and FðbαÞ = 0, we have

F uð Þ ≥ 0, if u ≤ bα ,
F uð Þ ≤ 0, if u ≥ bα:

(
ð29Þ

It means that φ is increasing on ½0, bα� and decreasing on
½bα , +∞½.

(ii) Equation φðuÞ = u is equivalent to FðuÞ = 0, where
F is defined by Formula (19). By Lemma 3, this
equation has bα as unique solution; hence, bα is the
unique fixed point of φ.

(iii) For all u ≥ 0, φðuÞ − u = −FðuÞ/F ′ðuÞ. The relation
(25) is a simple consequence of (26) and (29).

(iv) Let u ≥ 0. If u ≤ bα, then φðuÞ ≤ φðbαÞ = bα because φ is
increasing on ½0, bα� (item (i)). If u ≥ bα, then φðuÞ ≤
φðbαÞ = bα because φ is decreasing on ½bα , +∞½. Thus,
for all u ≥ 0, φðuÞ ≤ bα .

We may now prove Theorem 4.

Proof of Theorem 4. Assume that αð0Þ = 0. Then, αð0Þ ≤ bα and
by item (iii) and (iv) of Lemma 5, αð0Þ ≤ φðαð0ÞÞ = αð1Þ ≤ bα . It
can be easily proved by induction that

α 0ð Þ ≤ α 1ð Þ ≤⋯≤ α mð Þ ≤ α m+1ð Þ ≤ bα: ð30Þ

Thus, the sequence ðαðmÞÞ is increasing and bounded;
hence, it converges to the unique fixed point of φ which
is bα .
Remark 6. Actually, from the proof of Theorem 4, it is clear
that any starting value αð0Þ ∈ ½0, bα� will guarantee conver-
gence of the sequence ðαðmÞÞ generated by NR iterations
(23). However, since bα is unknown, it is difficult to find a
value other than αð0Þ = 0.

We therefore propose an algorithm (see Algorithm 1)
starting from αð0Þ = 0. The MLE bα is computed using NR

iterations (23); afterwards, bβ is computed from bα .
4. Ascent Property

The ascent property of Algorithm 1 (the fact that the profile
log-likelihood is increased monotonically by the algorithm)
is given by Theorem 7.

Theorem 7. The sequence ðαðmÞÞ generated by Algorithm 1
increases monotonically the profile log-likelihood ℓpðαÞ,
that is

ℓp α m+1ð Þ
� �

≥ ℓp α mð Þ
� �

,m = 0, 1,⋯ ð31Þ

Proof. From (22) and (29), we deduce that, for all α > 0,
ℓp′ðαÞ ≥ 0 if α ≤ bα and ℓp′ðαÞ ≤ 0 if α ≥ bα . Hence, the
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function ℓp is increasing on the interval �0, bα� and
decreasing on ½bα , +∞½. From (30), we know that the
sequence ðαðmÞÞ is increasing and still belongs to the
interval �0, bα�. Then, for all iteration m, we have αðmÞ ≤
αðm+1Þ and ℓpðαðmÞÞ ≤ ℓpðαðm+1ÞÞ because ℓp is increasing
on �0, bα�. The proof of Theorem 7 is then completed.

5. Simulation Study

We compare the performance of our PLBA with that of
Newton-Raphson (NR) and MM algorithms in R software
[16]. We implemented the NR algorithm using the R pack-
age pracma [17] and the MM algorithm using Theorem 3.3
of [8]. The choice of these two comparison algorithms is
motivated by the following factors: (a) MM and NR algo-
rithms are two of the most used algorithms in statistics for
parameter estimation; (b) other algorithms such as quasi-
Newton and derivative-free algorithms showed very low
convergence proportions and their results are not reported
here; (c) the results obtained for the particular case s = 1 in
[10] suggest that MM and NR algorithms are much more
efficient than quasi-Newton and derivative-free algorithms.

5.1. Data Generation Principle. For given values of s, r, n1, ...,
ns, the components of matrix z are randomly generated from
a uniform distribution on ½0:5,2:5�. Given the true parameter

vector denoted θ0 = ðα0, ðβ0
1Þ

T,⋯, ðβ0
s Þ

TÞT, the true class
probabilities πijkðθ0jzÞ (see Equation (4)) are computed
afterwards data matrix x (Equation (1)) is generated using
the random generation function linked to the probability
distribution function (3).

The true parameter vector θ0 = ðα0, ðβ0
1Þ

T,⋯, ðβ0
s Þ

TÞT is
presented under the following six scenarios:

Scenario 1: s = 2, r = 3,

α0 = 0:85, β0
1 = 0:52,0:31,0:17ð ÞT, β0

2 = 0:25,0:45,0:30ð ÞT:
ð32Þ

Scenario 2: s = 8, r = 3,

α0 = 0:85, β0
k = 0:50,0:15,0:35ð ÞT, k ∈ 1, 3, 5f g,

 β0
k = 0:43,0:32,0:25ð ÞT, k ∈ 2, 4, 7f g,

 β0
k = 0:35,0:35,0:30ð ÞT, k ∈ 6, 8f g: ð33Þ

Scenario 3: s = 14, r = 3,

α0 = 1:02, β0
k = 0:50,0:15,0:35ð ÞT, k ∈ 1, 3, 5, 9, 11f g,

 
β0
k = 0:43,0:32,0:25ð ÞT, k ∈ 2, 4, 7,12,13f g,

 β0
k = 0:35,0:35,0:30ð ÞT, k ∈ 6, 8, 10, 14f g: ð34Þ

Scenario 4: s = 15, r = 4,

α0 = 1:02, β0
k = 0:40,0:10,0:30,0:20ð ÞT, k ∈ 1, 3, 5, 9, 13, 14f g,

 
β0
k = 0:45,0:10,0:25,0:20ð ÞT, k ∈ 2, 4, 7, 12f g,

 β0
k = 0:25,⋯, 0:25|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

4

0BB@
1CCA

T

, k ∈ 6, 8, 10,11,15f g:

ð35Þ

Scenario 5: s = 20, r = 4,

α0 = 1:25, β0
k = 0:62,0:16,0:07,0:15ð ÞT, k ∈ 1, 3, 5, 9, 11,13,15,19f g,

 
β0
k = 0:50,0:15,0:10,0:25ð ÞT, k ∈ 2, 4, 7,12,14,17f g,

Input: x, z and ε > 0
Output: MLE bθ
1 Initialize m = 0 and αð0Þ = 0 ;
2 repeat
3 αðm+1Þ = αðmÞ − FðαðmÞÞ/F ′ðαðmÞÞ;
4 Set m⟵m + 1 ;
5 until jFðαðmÞÞj < ε;
6 Set bα = αðmÞ ;
7 For every k = 1,⋯, s, compute bβk asbβk = ð1/∑r

j=1x•jk/ð1 + bαzjkÞÞðx•1k/ð1 + bαz1kÞ,⋯, x•rk/ð1 + bαzrkÞÞT ;
8 Set bθ = ðbα , bβT

1 ,⋯, bβT
s Þ

T
.

Algorithm 1: PLBA for computing bθ:
Table 1: Number of parameters (1 + sr) for the different scenarios.

Scenario 1 2 3 4 5 6

Number of parameters 7 25 43 61 81 101
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 β0
k = 0:25,⋯, 0:25|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

4

0BB@
1CCA

T

, k ∈ 6, 8, 10,16,18,20f g: ð36Þ

Scenario 6: s = 20, r = 5,

α0 = 1:25, β0
k = 0:63,0:16,0:06,0:05,0:10ð ÞT, k ∈ 1, 3, 5, 9, 11,13,15,19f g,

 
β0
k = 0:32,0:18,0:25,0:10,0:15ð ÞT, k ∈ 2, 4, 7,12,14,17f g,

 β0
k = 0:20,⋯, 0:20|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

5

0BB@
1CCA

T

, k ∈ 6, 8, 10,16,18,20f g: ð37Þ

For these different scenarios, the number of parameters
(1 + sr) is given by Table 1.

For the nk’s (k = 1,⋯, s), we have chosen two common
values: a low value (n = 50) and a great value (n = 5000).
Except for the proposed algorithm whose starting guess is
automated, the other algorithms were given randomly
generated starting guesses.

5.2. Results. Tables 2–7 present the average results obtained
for the different scenarios over 1000 replications (i.e., 1000

repetitions of the data generation and computation of bθ).
In these tables, CPU times are given in seconds and CPU
time ratios are calculated as the ratio of the mean CPU time
of a given algorithm to the CPU time of the PLBA. Thus, the
CPU time ratio of the PLBA is always equal to 1. The Mean
Square Error (MSE) is defined as

MSE bθ , θ0� �
=

1
1 + sr

bα − α0
À Á2 + 〠

s

k=1
〠
r

j=1

bβ jk − β0
jk

� �2 !
:

ð38Þ

Due to the increasing number of parameters, the MLE bθ
has only been included for Scenario 1 (Table 2).

From these tables, it can be seen that PLBA and MM
algorithms have always converged while the convergence
proportion of NR algorithm decreases (from 55.9% to
19.6%) with the number of parameters (see Figure 1). As

Table 2: Results for Scenario 1 (values in brackets are standard deviations).

PLBA MM NR

n = 50

α 0.864 (0.180) 0.864 (0.180) 0.878 (0.181)

β11 0.515 (0.071) 0.515 (0.071) 0.513 (0.071)

β21 0.310 (0.066) 0.310 (0.066) 0.309 (0.067)

β31 0.175 (0.054) 0.175 (0.054) 0.179 (0.054)

β12 0.248 (0.062) 0.248 (0.062) 0.249 (0.063)

β22 0.453 (0.068) 0.453 (0.068) 0.448 (0.068)

β32 0.299 (0.064) 0.299 (0.064) 0.302 (0.064)

Convergence proportion (%) 100 100 54.3

Iterations 5.7 (0.5) 27.8 (5.6) 7 (1.2)

CPU time (secs) 0.0005 0.0043 0.0029

Time ratio 1 8 6

Log-likelihood −191.95 −191.95 −191.95
MSE 8:2e − 03 8:2e − 03 8:4e − 03

n = 5000

α 0.851 (0.017) 0.851 (0.017) 0.852 (0.017)

β11 0.520 (0.007) 0.520 (0.007) 0.520 (0.007)

β21 0.310 (0.007) 0.310 (0.007) 0.310 (0.007)

β31 0.170 (0.005) 0.170 (0.005) 0.170 (0.005)

β12 0.250 (0.006) 0.250 (0.006) 0.250 (0.006)

β22 0.450 (0.007) 0.450 (0.007) 0.450 (0.007)

β32 0.300 (0.007) 0.300 (0.007) 0.300 (0.007)

Convergence proportion (%) 100 100 55.9

Iterations 6 (0.1) 36.3 (4.5) 7 (1.3)

CPU time (secs) 0.0004 0.0056 0.0030

Time ratio 1 14 7

Log-likelihood −19380 −19380 −19380
MSE 7:8e − 05 7:8e − 05 7:6e − 05
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Table 3: Results for Scenario 2 (values in brackets are standard deviations).

PLBA MM NR

n = 50

Convergence proportion (%) 100 100 35.5

Iterations 6 (0.1) 29.9 (3) 7.7 (1.3)

CPU time (secs) 0.0005 0.0087 0.0068

Time ratio 1 18 14

Log-likelihood −773.57 −773.57 −773.57
MSE 4:4e − 03 4:4e − 03 4:4e − 03

n = 5000

Convergence proportion (%) 100 100 38.7

Iterations 6 (0) 38.6 (2.6) 7.7 (1.4)

CPU time (secs) 0.0005 0.0108 0.0069

Time ratio 1 21 14

Log-likelihood −78015.32 −78015.32 −78015.32
MSE 4:5e − 05 4:5e − 05 4:5e − 05

Table 4: Results for Scenario 3 (values in brackets are standard deviations).

PLBA MM NR

n = 50

Convergence proportion (%) 100 100 35.5

Iterations 6 (0) 35.2 (3) 8.2 (1.6)

CPU time (secs) 0.0005 0.0134 0.0113

Time ratio 1 25 21

Log-likelihood −1356.98 −1356.98 −1356.98
MSE 4:4e − 03 4:4e − 03 4:5e − 03

n = 5000

Convergence proportion (%) 100 100 37.1

Iterations 6 (0) 45.4 (2.5) 8.2 (1.6)

CPU time (secs) 0.0005 0.0160 0.0106

Time ratio 1 35 23

Log-likelihood −137298.2 −137298.2 −137298.2
MSE 4:5e − 05 4:5e − 05 4:6e − 05

Table 5: Results for Scenario 4 (values in brackets are standard deviations).

PLBA MM NR

n = 50

Convergence proportion (%) 100 100 29.6

Iterations 6 (0) 34.9 (2.9) 8.3 (1.3)

CPU time (secs) 0.0006 0.0135 0.0149

Time ratio 1 24 26

Log-likelihood −1647.49 −1647.49 −1647.49
MSE 3:6e − 03 3:6e − 03 3:6e − 03

n = 5000

Convergence proportion (%) 100 100 29.4

Iterations 6 (0) 45.4 (2.6) 8.3 (1.4)

CPU time (secs) 0.0005 0.0166 0.0142

Time ratio 1 31 27

Log-likelihood −166241.8 −166241.8 −166241.8
MSE 3:8e − 05 3:8e − 05 3:7e − 05
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far as the MSE is concerned, the trend for all the algorithms
is that the MSE decreases when the sample size n increases.

By taking a look at the CPU times ratios, we notice that
the CPU time ratios of the MM and NR algorithms are all
well above 1. This means that the PLBA is significantly faster
than these two algorithms. As shown on Figures 2 and 3, the
CPU time ratios of MM and NR algorithms increase with
the number of parameters. The PLBA is on average 8 to 50
times faster than MM and 6 to 74 times quicker than NR.

5.3. Analysis of the Results. It appears that our proposed
PLBA outperforms the Minorization-Maximization (MM)
and the full Newton-Raphson (NR) algorithms. It always
converges; it requires a low number of iterations and little
computation time. The number of iterations varies slightly
and seems to stabilize around six iterations whatever the
starting guess and the number of parameters to be estimated.
The MM algorithm also has a convergence rate of 100%, but
its number of iterations is quite high, and this may indicate
some sensitivity to the starting guess. The NR algorithm has

Table 6: Results for Scenario 5 (Values in brackets are standard deviations).

PLBA MM NR

n = 50

Convergence proportion (%) 100 100 25.9

Iterations 6 (0) 42.2 (3.2) 8.7 (1.8)

CPU time (secs) 0.0005 0.0181 0.0213

Time ratio 1 36 42

Log-likelihood −2102.95 −2102.95 −2102.95
MSE 3:2e − 03 3:2e − 03 3:3e − 03

n = 5000

Convergence proportion (%) 100 100 26.3

Iterations 6.6 (0.5) 56.2 (2.9) 8.5 (1.6)

CPU time (secs) 0.0006 0.0234 0.0196

Time ratio 1 37 31

Log-likelihood −210936.75 −210936.75 −210936.75
MSE 3:5e − 05 3:5e − 05 3:5e − 05

Table 7: Results for Scenario 6 (values in brackets are standard deviations).

PLBA MM NR

n = 50

Convergence proportion (%) 100 100 19.6

Iterations 6 (0) 41.1 (3.1) 8.8 (1.4)

CPU time (secs) 0.0004 0.0177 0.0307

Time ratio 1 43 74

Log-likelihood −2308.19 −2308.19 −2308.19
MSE 2:8e − 03 2:8e − 03 2:8e − 03

n = 5000

Convergence proportion (%) 100 100 21.9

Iterations 6.6 (0.5) 56.4 (3.3) 8.7 (1.6)

CPU time (secs) 0.0005 0.0227 0.0278

Time ratio 1 50 61

Log-likelihood −230371.92 −230371.92 −230371.92
MSE 3e − 05 3e − 05 3e − 05
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Figure 1: Convergence proportions for NR.
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a convergence proportion at most slightly higher than 50%
and this proportion decreases when the number of parame-
ters increases. This is not surprising because at each iterationof
theNRalgorithm, a squarematrix of order 1 + sr is numerically
inverted. This numerical inversion can be complicated or
impossible when the matrix to be inverted is ill-conditioned
or singular. The fact that NR does not converge for all the rep-
lications is also not surprising since it is well known that NR
may converge to bad values or may not converge at all if the
starting guess is far from the true parameter vector.

The good results obtained by our proposed algorithm
PLBA can be explained by several factors. First, the principle
of profile likelihood enables to reduce the search for 1 + sr
solutions to that of the single solution bα from which the

remaining sr estimates bβ jk (j = 1,⋯, r, k = 1,⋯, s) can be
obtained by a simple formula. This also enables to reduce

the computation time required by our proposed PLBA to
converge. Secondly, the fact that the estimation of α relies
on a one-dimensional NR enables our algorithm to enjoy
the quadratic convergence of the NR algorithm. Thirdly,
the definition of the automated starting guess ensures the
convergence of our proposed algorithm PLBA, and the
ascension property ensures its numerical stability.

6. Conclusion

In this article, we have built a profile-likelihood-based algo-
rithm (PLBA) to compute, under constraints, the maximum
likelihood estimate (MLE) of the parameter vector of a sta-
tistical model used in the analysis of a road safety measure
applied to s sites presenting in total r accident severity levels.

The parameter vector of the model is of the form θ =
ðα, βTÞT, where α is the parameter of interest and β is a vec-
tor of sr secondary parameters. Using the likelihood equa-
tions, we obtained the closed-form expression of the
components of β as a function of the main parameter α
and then used the principle of profile likelihood to express
the log-likelihood only as a function of α. We then built an
algorithm mixing a one-dimensional Newton method to
compute the estimate of the parameter of interest α and
the computation of the secondary parameters from their
closed-form expressions. The starting guess of our proposed
algorithm is automated in such a way as to guarantee its

convergence towards the MLE bθ . The numerical studies
suggest that our PLBA outperforms the Minorization-
Maximization (MM) and the full Newton-Raphson (NR)
algorithms in terms of computation time. Our PLBA con-
verges to estimates close to the true values of the parameter
vector even for small sample sizes. They also suggest that the
problem addressed in this paper is difficult to tackle for the
full NR algorithm (the latter having a convergence propor-
tion at most slightly higher than 50%).

Data Availability

This study uses simulated data, and the data generation pro-
cess is described in the paper.
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