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In this paper, the transmission dynamics of cotton leaf curl virus (CLCuV) disease in cotton plants was proposed and investigated
qualitatively using the stability theory of a nonlinear ordinary differential equations. Cotton and vector populations were both
taken into account in the models. Cotton population was categorized as susceptible (A) and infected (B). The vector
population was also categorized as susceptible (C) and infected (D). We established that all model solutions are positive and
bounded by relevant initial conditions. The existence of unique CLCuV free and endemic equilibrium points, as well as the
basic reproduction number, which is computed using the next generation matrix approach, are investigated. The conditions for
the local and global asymptotic stability of these equilibrium points are then established. When the basic reproduction number
is less than one, the system has locally and globally asymptotically stable CLCuV free equilibrium point, but when the basic
reproduction number is more than one, the system has locally and globally asymptotically stable endemic equilibrium point.
The numerical simulation findings show that lowering the infection rate of cotton vectors has a significant impact on
controlling cotton leaf curl virus (CLCuV) in the time frame given.

1. Introduction

Cotton (Gossypium spp.) is the most significant fiber, oil,
and protein crop on the planet (Monga and Sain [1]). Cotton
is well-known for its versatility, performance, attractiveness,
natural comfort, and, most importantly, its many applica-
tions, which include astronaut in-flight space suits, towels,
tarpaulins, tents, sheets, and all types of clothing (Vanitha
et al. [2]). It is referred to as “white gold, “ and it is one of
the most important crops in developing countries, as well
as a raw material for the local textile and oil industries (Sain
et al. [3]). Cotton is significant since it is not only the world’s
most important fiber crop, but also the world’s second-
largest oilseed crop (Zhang et al. [4]).

The majority of Ethiopian cotton is exported to Africa,
Asia, and Europe, with Asia accounting for 67% of total
exports. Ethiopian cotton has now been priced by the Textile
Industry Development Institute (Zeleke et al. [5]). The leaf is
the most susceptible to diseases, which cause plant damage
and death (Kumar et al. [6]). Cotton leaf curl virus (CLCuV)

disease is caused by a group of viruses in the genus Begomo-
virus, which is spread by whiteflies and poses a serious threat
to the cotton crop (Farooq et al. [7]). It can be found in
Africa, Pakistan, and Northwestern India (Sattar et al. [8]).

Cotton symptoms often appear 2-3 weeks after B. tabaci
inoculation (and are characterized by a deep downward cup-
ping of the youngest leaves). Cotton plant infected with
CLCuV exhibits thickening and yellowing veins, upward
and downward curling, enations on the underside of the
leaves, and stunting. CLCuV control relies on insecticide
treatments against the insect vector Bemisia tabaci (Brid-
don) [9].

The mathematical modeling of crop disease in plant
pathology is presently a rapidly emerging topic. Fouda
et al. [10] constructed a mathematical model of bleached
cotton plain single jersey knitted fabrics that may be used
to anticipate fabric attributes and define fabric geometrical
relationships before manufacturing. Furthermore, the fabric
measuring method measures the real yarn diameter and esti-
mates the fabric thickness as a result. According to the
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findings, the thickness of a simple single jersey is related to
three times the yarn diameter.

Levins et al. [11] devised a model that describes the dif-
ferential equations of interactions between prey and preda-
tor, crop and pest, and migration effect. The models were
used to find answers to environmental questions.

Hernández-Bautista et al. [12] proposed a mathematical
model that portrays cotton dyeing in cones on three scales:
micro, meso, and macro. To simulate cotton dyeing, the
mass and momentum conservation equations were applied;
Banks et al. [13] provided a mathematical model and statis-
tical models, including ANOVA-based model comparison
tests and residual plot analysis, that they used to make the
best selections. They also investigate the statistical assump-
tions that are frequently made inadvertently during the
parameter estimation process, as well as the effects of mak-
ing erroneous assumptions.

Mamatov et al. [14] introduced a single parabolic-type
boundary value problem for calculating the temperature field
of raw cotton and air components in drum dryers. The pro-
posed model and numerical technique are shown to accurately
explain the raw cotton drying process. Dome et al. [15] devel-
oped a mathematical model for calculating input demand in
relation to cotton production costs. They also assert that cot-
ton farmers are very vulnerable to swings in input prices,
which determine whether they generate profitable or loss-
making output when compared to total costs per hectare.

Monomolecular, Logistic, Gompertz, Richards, Qua-
dratic, and Reciprocal growth models were provided by Sun-
dar Rajan and Palanivel [16] for India Cotton area, output,
and productivity statistics from 1980 to 2013. The chosen
model had the highest R2, lower residual sum of squares,
and mean square error of the six models considered.

Aboukarima et al. [17] created a multiple regression
model to forecast the leaf area of a cotton crop for agricul-
tural research purposes. The developed model could be a
viable and quick alternative, especially in areas where mod-
ern technology or other tools for measuring leaf area are
not available.

Su et al. [18] studied leaf area index (LAI) models and
the relationships between LAI, dry matter, and yield for cot-
ton cultivated under three soil conditioners in Korla, Xin-
jiang, China, with the goal of improving water use
efficiency and finding optimal soil conditioner application
rates. Khan et al. [19] investigated the association between
the occurrence of cotton leaf curl virus (CLCuV), environ-
mental circumstances, and the population of silver leaf
whiteflies in Pakistan’s agricultural sector. The proposed
mathematical relationship can anticipate disease incidence
in future months, which can aid agriculturists in disease
control in Pakistan’s agricultural areas.

Ahmad et al. [20] developed a mathematical model of
cotton leaf curl viral infection in Pakistan and its link to
meteorological variables. They employ mathematics to con-
nect the intensity of the cotton leaf curl virus (CLCuV) to
environmental factors including temperature, rainfall, and
humidity, as well as the population of whiteflies in Pakistan’s
agricultural sector. Humidity and rainfall have been con-
nected to the sickness.

Saeed et al. [21] examined cotton leaf curl virus, fiber
quality, and yield components in germplasm imported from
the United States. 79 cotton genotypes were evaluated using
statistical techniques such as correlation analysis, clustering,
and principal components. Cotton leaf curl virus demon-
strated a substantial negative association with plant height,
monopodial and sympodial branches, and a significant pos-
itive relationship with fiber fineness, but not with other
characteristics.

Inspired by the literature, we develop a new ecoepide-
miological model that uses differential equations to investi-
gate and analyze the dynamics of the cotton leaf curl virus
(CLCuV) of cotton plants. Moreover, our present model is
unique in that it divides the cotton leaf curl virus (CLCuV)
model into cotton and vector populations. Cotton and vec-
tor populations both have susceptible and infected sub-
classes. The findings of our study are useful in developing
effective methods for preventing or eradicating the spread
of a cotton leaf curl virus disease. This research is structured
as follows. Part two involves the development of a novel
mathematical model for the transmission dynamics of cot-
ton leaf curl virus (CLCuV). The existence and stability of
cotton leaf curl virus (CLCuV) equilibria, as well as the pos-
itivity and boundedness of solutions, are discussed in part
three. Part four addresses numerical simulation. Part five
concludes with conclusions.

2. Model Formulation

In this section, we divided the cotton leaf curl virus
(CLCuV) model into cotton and vector populations. We
considered the susceptible and infected subgroups of these
populations. AðtÞ represents susceptible cotton, and BðtÞ
represents infected cotton. Similarly, CðtÞ represents the sus-
ceptible vector, and DðtÞ represents the infected vector. The
model assumed recruitment rate of susceptible vectors by k2
and moves to infected vectors ðDÞ with ω2 rate after con-
suming ill plants or cotton. The susceptible cotton ðAÞ also
replanted at rate k1 and the diseases spread to cotton, when
infected vectors ðDÞ react with susceptible cotton ðAÞ at rate
of ω1 through eating. Cotton once become infected not ever
mends and gives yield or produce very low yield of cotton.
The model also assumes that α is the natural death rate for
cotton population and β is natural death rate for vector pop-
ulation. All the descriptions of the parameters are listed in
Table 1.

Using the assumptions and flow chart of the model in
Figure 1, we can derive the following nonlinear ordinary dif-
ferential equations:

dA
dt

= k1 − ω1AD − αA, ð1Þ

dB
dt

= ω1AD − αB, ð2Þ

dC
dt

= k2 − ω2BC − βC, ð3Þ
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dD
dt

= ω2BC − βD, ð4Þ

with

A 0ð Þ = A0 > 0, B 0ð Þ = B0 ≥ 0, C 0ð Þ = C0 ≥ 0,D 0ð Þ =D0 ≥ 0:
ð5Þ

3. Model Analysis

3.1. Positivity of Solution. In this subsection, our model
(Equations (1), (2), (3), and (4)) to be ecoepidemiologically
meaningful and well posed, it is necessary to prove that all
state variables of system with positive initial data will remain
positive for all times t ≥ 0. The following theorem is used to
demonstrate the positivity of the system of Equations (1),
(2), (3), and (4).

Theorem 1. Let Ω = fðA, B, C,DÞ ∈ R4 : Að0Þ > 0, Bð0Þ > 0,
Cð0Þ>,Dð0Þ > 0g. Then, the solution set fAðtÞ, BðtÞ, CðtÞ,Dð
tÞg of system of Equations (1), (2), (3), and (4) are positive
for all t ≥ 0.

Proof. From the first equation of system Equations (1), (2),
(3), and (4), we have that

dA
dt

= k1 − ω1D + αð ÞA ≥ − ω1D + αð ÞA: ð6Þ

Using separation variables and by integrating Equation (6)

ð
dA
A

≥ −
ð
ω1D + αð Þdt,

lnA tð Þ ≥ −
ð
ω1D + αð Þdt + c1,

A tð Þ ≥ e−
Ð

ω1D+αð Þdt+c1 ,

A tð Þ ≥ A 0ð Þe−
Ð

ω1D+αð Þdt > 0:

ð7Þ

From the second equation of system Equations (1), (2),
(3), and (4), we have that:

dB
dt

= ω1AD − αB ≥ −αB: ð8Þ

Using separation variables and by integrating Equation (8)

ð
dB
B

≥ −
ð
αdt,

lnB tð Þ ≥ −αt + c2,
B tð Þ ≥ e−αt+c2 ,
B tð Þ ≥ B 0ð Þe−αt ≥ 0:

ð9Þ

Furthermore, using similar procedure on the above, we
have

C tð Þ ≥ C 0ð Þe−
Ð

ω2B+βð Þdt ≥ 0,

D tð Þ ≥D 0ð Þe−βt ≥ 0:
ð10Þ

Hence, all the solution sets are positive for t ≥ 0, that is the
model is meaningful and well posed.

3.2. Invariant Region. We determine a region in which the
solution of system of Equations (1), (2), (3), and (4) are
bounded. Now, differentiating the total cotton population,
Nc = A + B with respect to time, we have

dNc

dt
= k1 − αNc: ð11Þ

By re-arranging and multiplying Equation (11) by inte-

grating factor e
Ð
αdt = eαt , we have

dNc

dt
eαt + αNce

αt = k1e
αt: ð12Þ

That is

d
dt

Nce
αt� �

= k1e
αt: ð13Þ

By integrating and solving Equation (13), we obtain

Nc tð Þ =
k1
α

+ e−αt Nc 0ð Þ − k1
α

� �
: ð14Þ

Table 1: Parameters of the model.

Parameter Description

k1 Replanting rate of cotton

k2 Recruitment rate of vector

ω1 Infection rate of cotton

ω2 Infection rate of vector

α Natural death rate of cotton

β Natural death rate of vector

k1 𝜔1AD

𝛼 𝛼

k2 𝜔2BC

𝛽 𝛽

DC

A B

Figure 1: Flow chart of the model.
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Taking the limit as t⟶∞ to Equation (14), we obtain

Ωc = A, Bð Þ ∈ R2
+ : Nc ≤

k1
α

� �
: ð15Þ

And differentiating the cotton leaf curl virus population,
Nv = C +D, we have

dNv

dt
= k2 − βNv: ð16Þ

Using similar procedure on the above

Nv tð Þ = k2
β

+ e−βt Nv 0ð Þ − k2
β

� �
: ð17Þ

Taking the limit as t⟶∞ to Equation (17), we obtain

Ωv = C,Dð Þ ∈ R2
+ : Nv ≤

k2
β

� �
: ð18Þ

As a result, the feasible solution set for the CLCuV
model is given by:

Ω =Ωc ×Ωv = A, B, C,Dð Þ ∈ R4
+ : Nc ≤

k1
α
: Nv ≤

k2
β

� �
ð19Þ

that is positively invariant inside in which the model is con-
sidered to be ecoepidemiologically meaningful and mathe-
matically well posed.

3.3. Disease Free Equilibrium Point of the Model. The
model’s disease-free equilibrium points, E0, are stationary
solutions in which there is no infection. It is obtained by
equating Equations (1), (2), (3), and (4) to zero and using
B = 0 and D = 0. Then, disease free equilibrium point, E0 of
our model Equation (1) is given by

E0 = A0, B0, C0,D0� �
= k1

α
, 0, k2

β
, 0

� �
: ð20Þ

The basic reproduction number R0: The basic reproduc-
tion number, R0, quantifies the predicted number of second-
ary infections caused by a single newly infected individual
delivered directly into a susceptible group (Kinene et al.
[22]). By rewriting the system of Equations (1), (2), (3),
and (4) starting with newly infective classes and using the
next generation matrix method, the basic reproduction
number R0 can be obtained as

dB
dt

= ω1AD − αB,

dD
dt

= ω2BC − βD:

ð21Þ

Then, we consider

f =
ω1AD

ω2BC

 !
, v =

αB

βD

 !
: ð22Þ

Now, the Jacobian matrix of f and v with respect to B
and D at disease free equilibrium point, E0 = ððk1/αÞ, 0, ðk2/
βÞ, 0Þ, is

F =
0 ω1k1

α

ω2k2
β

0

0
BB@

1
CCA, V =

α 0
0 β

 !
: ð23Þ

Then, by the principle of next generation matrix, the
basic reproduction number R0 is the dominant eigen value
of the FV−1 or spectral radius of FV−1 where

FV−1 =
0 ω1k1

α

ω2k2
β

0

0
BB@

1
CCA

1
α

0

0 1
β

0
BB@

1
CCA =

0 ω1k1
αβ

ω2k2
βα

0

0
BBB@

1
CCCA:

ð24Þ

The characteristic equations of Equation (24) becomes

λ2 −
k1k2ω1ω2
α2β2 = 0: ð25Þ

That is

λ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2ω1ω2
α2β2

s
: ð26Þ

Since, basic reproduction number R0 is the maximum
eigen values of FV−1 or the spectral radius of FV−1. As a
result,

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2ω1ω2
α2β2

s
: ð27Þ

The two generation are required to transmission of
CLCuV to take place in the cotton field that is from an infec-
tious cotton plant to susceptible vector and then from an
infectious vector to susceptible cotton (Van den Driessche
and Watmough [23]). That is why the square root found
in R0. It implies that

R0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2ω1ω2
α2β2

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ω1
α2

k2ω2
β2

s
=

ffiffiffiffiffiffiffiffiffi
k1ω1
α2

r ffiffiffiffiffiffiffiffiffi
k2ω2
β2

s
= R0c × R0v:

ð28Þ
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where R0c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ω1/α2

p
is the cotton plants contribution when

they infect the vector and R0v =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ω2/α2

p
is the contribution

of the vector population when it infects cotton plants.

3.4. Local Stability of the Disease Free Equilibrium Point. The
linearization system of Equations (1), (2), (3), and (4) at E0
can be used to find the local stability of the model at
disease-free equilibrium point, E0.

Theorem 2. Disease free equilibrium point, E0 of system of
Equations (1), (2), (3), and (4) are locally asymptotically sta-
ble, if R0 < 1:

Proof. The Jacobian matrix of system of Equations (1), (2),
(3), and (4) is

J =

− ω1D + αð Þ 0 0 −ω1A

ω1D −α 0 ω1A

0 −ω2C − ω2B + βð Þ 0
0 ω2C ω2B −β

0
BBBBB@

1
CCCCCA:

ð29Þ

Evaluating the Jacobian matrix of system of Equation
(29) at disease free equilibrium point E0 = ðk1/α, 0, k2/β, 0Þ is

J E0ð Þ =

−α 0 0 −
ω1k1
α

0 −α 0 ω1l1
α

0 −
ω2k2
β

−β 0

0 ω2k2
β

0 −β

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð30Þ

The characteristic equation of Jacobian matrix of Equa-
tion (30) at disease free equilibrium point, E0, is jJðE0Þ − λ
I4j = 0. That is

−α − λ 0 0 −
ω1k1
α

0 −α − λ 0 ω1k1
α

0 −
ω2k2
β

−β − λ 0

0 ω2k2
β

0 −β − λ

																		

																		

= 0: ð31Þ

Evaluating Equation (31) simplifying it, we get

−α − λð Þ −β − λð Þ λ2 + d1λ + d2
� �

= 0, ð32Þ

where

d1 = α + β,

d2 = αβ −
k1k2ω1ω2

αβ
= αβ 1 − k1k2ω1ω2

α2β2


 �
= αβ 1 − R2

0
� �

:

ð33Þ

Clearly, from Equation (32), we observe that

λ1 = −α < 0,
λ2 = −β < 0,

ð34Þ

and from the last expression of Equation (32), that is

λ2 + d1λ + d2 = 0, ð35Þ

By using the Routh-Hurwitz criteria, Equation (35) has
strictly a negative real root if d1 > 0 and d2 > 0. Clearly, we
observe that d1 = α + β > 0 and

d2 = αβ 1 − R2
0

� �
> 0, ð36Þ

if ð1 − R2
0Þ > 0. That is, R2

0 < 1 implies that R0 < 1. As a result,
our model Equations (1), (2), (3), and (4) at E0 offers all
eigenvalues with a negative real part, and so it is locally
asymptotically stable if R0 < 1.

3.5. Global Stability of the Disease Free Equilibrium Point. To
establish the global stability of the disease free equilibrium
point E0, we use the method proposed by Castillo-Chavez
et al. [24] and Fantaye and Birhanu [25]. Based on these,
we have written the system of Equations (1), (2), (3), and
(4) in the following form:

dM
dt

= J M, Lð Þ, ð37Þ

dL
dt

= P M, Lð Þ, ð38Þ

P M, 0ð Þ = 0, ð39Þ
where M = ðA, CÞ ∈ R2 represent the number of uninfected
classes, while L = ðB,DÞ ∈ R2 represent the number of
infected classes and E0 = ðM∗, 0Þ represents the disease-free
equilibrium of this system. The disease-free equilibrium E0
is globally asymptotically stable equilibrium for the model
if the following conditions are fulfilled:

(1) dM/dt = JðM, 0Þ,M∗ is globally asymptotically
stable:

dL
dt

=DLP M∗, 0ð ÞL − P̂ M, Lð Þ, P̂ M, Lð Þ ≥ 0∀ M, Lð Þ ∈Ω,

ð40Þ
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where DLPðM∗, 0Þ is an M-matrix and PðM, LÞ taken in ðB
,DÞ and evaluated at ðM∗, 0Þ = ðk1/α, k2/β, 0, 0Þ. If system
of Equation (37) satisfies the above conditions, then the fol-
lowing theorem holds.

Theorem 3. The disease free equilibrium point, E0 = ðM∗, 0Þ
of system of Equation (37) is globally asymptotically stable if
R0 ≤ 1, and Conditions (1) and (5) are holds.

Proof. From our model of Equations (1), (2), (3), and (4), we
can obtain JðM, LÞ and PðM, LÞ:

J M, Lð Þ =
k1 − ω1AD − αA

k2 − ω2BC − βC

 !
,

P M, Lð Þ =
ω1AD − αB

ω2BC − βD

 !
:

ð41Þ

Now, we consider the reduced system dM/dt = JðM, 0Þ
from Condition (1):

dA
dt

= k1 − αA, ð42Þ

dC
dt

= k2 − βC: ð43Þ

M∗ = ðk1/α, k2/βÞ is a globally asymptotically stable
equilibrium point for the reduced system dM/dt = JðM, 0Þ.
This can be verifed from the solution of Equation (42); we
get AðtÞ = ðk1/αÞ + ðAð0Þ − ðk1/αÞÞe−αt which approaches k1
/α as t⟶∞, and from Equation (43), we obtain CðtÞ = ð
k2/βðk2/βÞÞ + ðCð0Þ − ðk2/βðk2/βÞÞÞe−βt which approaches
k2/β as t⟶∞, We note that this asymptomatic dynamics
is independent of the initial conditions in Ω; therefore, the
convergence of the solutions of the reduced system (42)
and (43) is global in Ω. Now, we compute

DLP M∗, 0ð Þ =
−α

k1ω1
α

k2ω2
β

−β

0
BB@

1
CCA: ð44Þ

Then, PðM, LÞ can be written as

P M, Lð Þ =DLP M∗, 0ð ÞL − P̂ M, Lð Þ, ð45Þ

and we want to show P̂ðM, LÞ, which is obtained as

P̂ M, Lð Þ =
ω1D

k1
α

− A
� �

ω2B
k2
β

− C
� �

0
BBB@

1
CCCA: ð46Þ

Here ðk1/αðk1/αÞÞ ≥ A and ððk2/βÞk2/βÞ ≥ B. Hence, it is
clear that P̂ðM, LÞ ≥ 0, ∀ðM, LÞ ∈Ω. Thus, this proves that

disease free equilibrium point E0 is globally asymptotically
stable when R0 ≤ 1.

3.6. Disease Endemic Equilibrium Point of the Model. The
endemic equilibrium point, E1, of the model is the steady
state solution where leaf curl virus persist in the population
of cotton plants. We can obtain by equating each system of
the equation equal to zero; that is,

k1 − ω1A
∗D∗ − αA∗ = 0, ð47Þ

ω1A
∗D∗ − αB∗ = 0, ð48Þ

k2 − ω2B
∗C∗ − βC∗ = 0, ð49Þ

ω2B
∗C∗ − βD∗ = 0, ð50Þ

From first equation of (47), we get

A∗ = k1
ω1D

∗ + α
: ð51Þ

From second equation of (47), we have

B∗ = ω1A
∗D∗

α
: ð52Þ

Substituting the value of A∗ from Equation (51) into
Equation (52), we obtain

B∗ = k1ω1D
∗

α ω1D
∗ + μð Þ : ð53Þ

From third equation of (47), we have

C∗ = k2
ω2B

∗ + β
: ð54Þ

Substituting the value of B∗ from Equation (53) into
Equation (54), we obtain

C∗ = k2α ω1D
∗ + αð Þ

k1ω1ω2D
∗ + βα ω1D

∗ + αð Þ : ð55Þ

From the last Equation (47), we have

ω2B
∗C∗ = βD∗: ð56Þ

Substituting the value B∗ from Equation (53) and the
value C∗ from Equation (55) in Equation (56), we have

k1k2ω1ω2
k1ω1ω2D

∗ + βα ω1D
∗ + αð Þ = β: ð57Þ

By re-arranging and simplifying Equation (57), we get

D∗ = α2β R2
0 − 1

� �
ω1 k1ω2 + αβð Þ : ð58Þ
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Thus, by substituting Equation (58) into Equations (51),
(53), and (55), we obtain

A∗ = k1 k1ω2 + αβð Þ
α2β R2

0 − 1
� �

+ α k1ω2 + αβð Þ ,

B∗ = k1β R2
0 − 1

� �
αβ R2

0 − 1
� �

+ k1ω2 + αβð Þ ,

C∗ = k2 αβ R2
0 − 1

� �
+ k1ω2 + αβ

� �
β k1ω2 + αβð Þ R2

0 − 1
� �

+ k1ω2 + αβ
� � :

ð59Þ

3.7. Local Stability of the Endemic Equilibrium Point. In this
part, we use the Jacobian stability approach to demonstrate
the local stability of the disease endemic equilibrium
condition.

Theorem 4. When R0 > 1, the model’s endemic equilibrium
point, E1, is locally asymptotically stable.

Proof. The local stability of the endemic equilibrium, E1, is
determined based on the signs of the eigenvalues of the Jaco-
bian matrix which is computed at the disease endemic equi-
librium, E1. Now, the Jacobian matrix of the model at E1 is
given by

J =

− ω1D
∗ + αð Þ 0 0 −ω1A

∗

ω1D
∗ −α 0 ω1A

∗

0 −ω2C
∗ − ω2B

∗ + βð Þ 0
0 ω2C

∗ ω2B
∗ −β

0
BBBBB@

1
CCCCCA:

ð60Þ

The characteristic equation of Jacobian matrix of Equation
(60) at disease endemic equilibrium point, E1, is jJðE1Þ − λI4j
= 0. That is:

− ω1D
∗ + αð Þ − λ 0 0 −ω1A

∗

ω1D
∗ −α − λ 0 ω1A

∗

0 −ω2C
∗ − ω2B

∗ + βð Þ − λ 0
0 ω2C

∗ ω2B
∗ −β − λ

											

											
= 0:

ð61Þ

Equation (61) can be simplified as

P λð Þ = f4λ
4 + f3λ

3 + f2λ
2 + f1λ + f0, ð62Þ

where

f4 = 1, f3 = 2α + 2β + ω1D
∗ + ω2B

∗,

f2 = αβ + α + βð Þ α + βð ÞαÞβ + 2β + αð Þω1D
∗

+ 2α + βð Þω2B
∗ + ω1ω2 B∗ − A∗C∗ð Þ,

f1 = μβ α + βð Þ + α + βð Þαβ + αβ + α + βð Þαð Þω2B
∗

+ α + βð ÞÞβω1ÞD∗ + α + βð Þω1ω2B
∗D∗ − ω1ω2 α + βð ÞA∗C∗,

f0 = βω1ω2αB
∗D∗ + ω1β

2αD∗ + βαω2αB
∗ + α2β2 − αβω1ω2A

∗C∗:

ð63Þ

Now, the characteristic polynomial of Equation (62) can be
analyzed by Routh-Hurwitz criteria. The coefficients f4, f3, f2
, f1, f0 of the characteristic polynomial are real positive. As a
result, the necessary criterion for the disease endemic equilib-
rium point’s stability ismet. The adequate condition for system
stability using the Hurwitz array for the characteristic polyno-
mial is then provided as follows:

s4

s3

s2

s1

s0

f 4 f 2 f 0
f 3 f 1 0
g1 g2 g3
h1 h2 h3
k1 k2 k3

													
, ð64Þ

where f4, f3, f2, f1, f0 are the coefficients of the characteristic
polynomial and the remaining elements in the array are
obtained as follows:

g1 = −
1
f3

f4 f2

f3 f1

					
					 = f3 f2 − f1

f3
> 0,

g2 = −
1
f3

f4 f0

f3 0

					
					 = f0,

g3 = −
1
f3

f4 0
f3 0

					
					 = 0,

h1 = −
1
g1

f3 f1

g1 g2

					
					 = f1g1 − f3 f0

g1
> 0,

h2 = −
1
g1

f3 0
g1 0

					
					 = 0,

h3 = −
1
g1

f3 0
g1 0

					
					 = 0,

k1 = −
1
h1

g1 g2

h1 0

					
					 = f0,

k2 = −
1
h1

g1 0
h1 0

					
					 = 0,

k3 = −
1
h1

g1 0
h1 0

					
					 = 0: ð65Þ
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Since the coefficients of the characteristic polynomial, f4,
f3, f2, f1, f0 are real positive, and the first column of the
Routh-Hurwitz array has the same positive sign. Therefore,
by using the Routh-Hurwitz criteria, all eigenvalues of the
characteristics polynomial are negative. Thus, the disease
endemic equilibrium point E1 is locally asymptotically stable
if R0 > 1.

3.8. Global Stability of Disease Endemic Equilibrium Point

Theorem 5. For R0 > 1, then the system of Equations (1), (2),
(3), and (4) at E1 is globally asymptotical stable.

Proof. To investigate the global stability of the endemic equi-
librium point E1, we consider the following Lyapunov func-
tion for model of Equations (1), (2), (3), and (4):

V tð Þ = K1
A − A∗ð Þ2

2 + K2
B − B∗ð Þ2

2

+ K3
C − C∗ð Þ2

2 + K4
D −D∗ð Þ2

2 ,
ð66Þ

where K1, K2, K3, K4 are chosen. By differentiating (66) with
respect to time, we have

dV
dt

= K1 A − A∗ð Þ dA
dt

+ K2 B − B∗ð Þ dB
dt

+ K3 C − C∗ð Þ dC
dt

+ K4 D −D∗ð Þ dD
dt

:

ð67Þ

Using system Equations (1), (2), (3), and (4), Equation
(67) can becomes

dV
dt

= K1 A − A∗ð Þ k1 − ω1D + αð ÞA½ �
+ K2 B − B∗ð Þ ω1AD − αB½ �
+ K3 C − C∗ð Þ k2 − ω2B + βð ÞC½ �
+ K4 D −D∗ð Þ ω2BC − βD½ �:

ð68Þ

By re arranging Equation (68), we have

dV
dt

= −K1 A − A∗ð ÞA −
k1
A

+ ω1D + αð Þ

 �

− K2 B − B∗ð ÞB −
ω1AD
B

+ α


 �

− K3 C − C∗ð ÞC −
k2
C

+ ω2B + βð Þ

 �

− K4 D −D∗ð ÞD −
ω2BC
D

+ β


 �
:

ð69Þ

Here, we can choose

K1 =
A

ω1D + μð ÞA − k1
,

K2 =
B

αB − ω1AD
,

K3 =
C

ω2B + βð ÞC − k2

K4 =
D

βD − ω2BC
:

ð70Þ

Hence, we observe that dV/dt < 0 and an endemic equi-
librium point, E1, of the model is globally stable. Moreover,
dV/dt = 0 if and only if either A = A∗, B = B∗, C − C∗,D −
D∗ or A = B = C =D = 0. Thus, using LaSalle [26], E1 is
global asymptotical stable whenever R0 > 1.

3.9. Sensitivity Analysis of Model Parameters. In order to
establish the robustness of model predictions, sensitivity anal-
ysis is widely used to test and discover parameters that can
alter the basic reproduction number, R0. It demonstrates the
significance of each parameter in disease transmission. Sensi-
tivity indices measure how much a variable changes when a
parameter is altered Rodrigues et al. [27]. When the variable
is a differentiable function of the parameter, then the sensitiv-
ity index can also be calculated using partial derivatives.

Definition 6. The normalized forward sensitivity index of a
R0 that depends differentiably on a parameter, xi, is given as

ΠR0
xi
= ∂R0

∂xi
:
xi
R0

, ð71Þ

where xi represent all the basic parameters. For example,

MR0
k1
= ∂R0

∂k1
:
k1
R0

,

= 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1b2ω1ω2ð Þ/ α2β2� �q k2ω1ω2

α2β2

0
B@

1
CA

:
k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1b2ω1ω2ð Þ/ α2β2� �q , = 1
2 :

ð72Þ

Table 2: The parameter values and sensitivity index of model.

Parameter Value Sensitivity index

k1 0.97 +ve

k2 0.27 +ve

ω1 0.000007 +ve

ω2 0.000005 +ve

α 0.04 -ve

β 0.03 -ve
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Using the same method, we calculate the sensitivity
indexes for the other parameters. Table 2 presents the cri-
teria in decreasing order of sensitivity.

3.10. Interpretation of Sensitivity Indices. Table 2 displays the
sensitivity indices of the basic reproductive number in rela-
tion to the important parameters. Positive indices ðk1, k1,

ω1, andω2Þ indicate that parameters with increasing values
have a significant impact on the spread of the disease. Since
the basic reproduction number rises as their values rise, so
does the average number of secondary cases of infection.
Additionally, those parameters with negative sensitivity indi-
ces ðα, βÞ have the effect of reducing disease burden when
their values rise, while the others remain constant.
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Figure 2: Time series plot of state variables for R0 = 0:3223 < 1:
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Figure 3: Time series plot of state variables for R0 = 24:5286 > 1
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Additionally, as their values rise, the basic reproduction
number falls, resulting in a reduction in the disease’s
endemic areas.

4. Numerical Simulation

In this section, we use MATLAB ode45 solvers to numeri-
cally validate our work. The simulations investigate the effect
of different model parameter combinations on the transmis-
sion dynamics of cotton leaf curl virus (CLCuV). The simu-
lation was performed using a variety of parameter values.
The source of the collection of parameter values is mostly
based on assumptions. The relevant initial circumstances
are used in the simulations and analyses: Að0Þ = 600, Bð0Þ
= 150, Cð0Þ = 100,Dð0Þ = 180, and the parameters values
are displayed in Table 2.

The time series plot of state variables for R0 < 1 and R0 > 1
is shown in Figures 2 and 3. Figure 2 shows that susceptible
cotton begins to rise asymptotically to the disease free equilib-
rium point, whereas infected cotton populations drop asymp-
totically to the disease free equilibrium point. Furthermore,
the susceptible vector population grows asymptotically to the
disease free equilibrium point, but the infected vector popula-
tion falls asymptotically to the disease free equilibrium point.
In this situation, the disease may eventually eliminate in the
long run. The existence of such condition is due to the fact that
R0 = 0:3223 which is less than one. This supports the theorem
that the stability of disease free equilibrium point exists when
R0 < 1, that is, if R0 < 1, then on average, one infected cotton
plant produces less than one newly infectious plant over the
course of its disease period.

Figure 3 shows that susceptible cotton and vector indi-
viduals are reduced due to the influence of infected cotton
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Figure 4: Susceptible cotton population (A) and infected cotton population (B) w.r.t. time t for different values of ω1.
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and vector individuals, after which they join the infected
class, resulting in an increase in infected cotton and vector
people. As a result, there is an increase in infected cotton
and vectors, and the disease endemic equilibrium point
exists and is stable. The existence of this condition is due
to the fact that R0 = 24:5286 which is greater than one. This
supports the theorem that the stability of disease endemic
equilibrium point exists when R0 > 1, that is, if R0 > 1, each
infected cotton and vectors produces, on average more than
one new infected cotton and vectors, then disease will be
able to spread in the given area.

Susceptible cotton population ðAÞ and infected cotton
population ðBÞ with respect to time t for different values of
ω1 are shown in Figure 4. From Figure 4, we observe that
as infection rate of cotton, ω1, increases, susceptible cotton
population ðAÞ decreases, while infected cotton population
ðBÞ increased. Also, susceptible vector population ðCÞ and
infected vector population ðDÞ with respect to time t for dif-
ferent values of ω2 are shown in Figure 5. From Figure 5, we
observe that as the value of infection rate of vector, ω2,
increases, susceptible vector population ðCÞ decreases, while
infected vector population ðDÞ increased.

5. Conclusion

In this study, an ecoepidemiological model for the transmis-
sion dynamics of cotton leaf curl virus (CLCuV) disease in
cotton plant was developed. The model’s well-posedness,
positivity, and boundedness are all explored. The basic
reproduction number and the stability analysis of the
model’s cotton equilibria were investigated. According to
the study, if the basic reproduction number is less than
one, the cotton-free equilibrium is locally and globally
asymptotically stable; however, if the basic reproduction
number is more than one, the endemic equilibrium is locally
asymptotically stable. The numerical simulation shows that
as infection rate of cotton, ω1, increases, susceptible cotton
population ðAÞ decreases, while infected cotton population
ðBÞ increased. Furthermore, as the value of infection rate
of vector, ω2, increases, susceptible vector population ðCÞ
decreases, while infected vector population ðDÞ increased.
Optimal control and the cost-effectiveness analysis of the
integrated strategy would be considered in a future study.

Data Availability

The data supporting this nonlinear ecoepidemiological model
are taken using assumption which are relevant to this paper.
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