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In this study, two-phase non-Newtonian turbulent fluid flow in an inclined geothermal pipe with chemical reaction was
considered. The governing nonlinear partial differential equations derived were solved numerically using Finite Difference
Method. Influence of flow parameters on the temperature, concentration and velocity profiles were analyzed graphically. From
the mathematical analysis of the model, it was established that the chemical reaction parameter significantly influenced the
concentration distribution in both gaseous and liquid phases. Findings further revealed that decreasing the chemical reaction
parameter resulted in decreased concentration of the geothermal fluid, which causes corrosion of geothermal pipes. These
findings provide important information to engineers and researchers in making better decisions in terms of design, sizing and
maintenance of flow systems in geothermal pipes.

1. Introduction

Corrosion of geothermal pipes is one of the causes of ineffi-
ciency in production of electricity. It is important for the
geothermal plants to minimize the losses arising from these
corrosion so as to ensure maximum production of electricity
to serve adequately the growing population. The geothermal
fluids pick up metals and minerals which lead to corrosion
and scaling of geothermal pipes and tanks, which these fluids
come into contact with.

Two-phase flows occur in geothermal pipes due to the
variation of density of the fluid. Two-phase turbulent strati-
fied flows find practical applications in geothermal power
plants, nuclear reactors, oil and gas pipelines and refrigera-
tion equipment. A turbulent fluid flow in a pipe represents
real-life flow frequently encountered in engineering applica-
tions like plants for generating power. For power generation
to be optimized through a stable operation in a geothermal
power plant, it is important to secure the flow channel in
pipe conduits [1]. Ojiambo et al. [2] investigated two-phase
Jeffrey Hammel flow in a geothermal pipe. They studied a

two dimensional, incompressible lamina flow by considering
viscosity as a non-linear function of temperature, annular
flow regime and silica deposition on the geothermal pipes.
The resulting governing equations of the flow were solved
using BVP4c collocation method. Their findings revealed
that Reynolds’ number had a significant effect in the gaseous
phase as compared to the liquid phase and there was an
increase on the temperature gradient due to the increase in
Eckert number.

Different flow regimes occur in horizontal and vertical
pipes e.g annular, plug and stratified flow regimes. Palsson
et al. [3] examined the behavior of a two phase flow from
geothermal wells where different models were used to deter-
mine two phase flow regimes. Pressure drop models were
compared with the actual measurements. They concluded
that the most common flow regime in a horizontal pipe is
stratified wavy flow which depends on the flow velocity
and the void fraction. Also, Li et al. [4] examined a flow
structure and flow regime transitions of downward two-
phase flow in large diameter pipes. For the downward flow,
the following three flow regimes were observed: cap-bubbly,
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churn turbulent and annular flow. While for the horizontal
section, pseudo-slug , stratified and plug flow regimes were
observed. They found out that transition between annular
flow and churn turbulent flow occurred at a certain superfi-
cial liquid velocity.

Eghbali et al. [5] investigated a two-phase fluid flow and
heat transfer in a vertical geothermal, oil and gas wells where
heat transfer and two-phase flow models were used to pre-
dict temperature and pressure profiles. A bubbly flow regime
was also considered and the equations of continuity,
momentum and energy were solved. For a two phase system
of air-water, the production pressure was higher compared
to a single phase system. Hou et al. [6] used a modified heat
transfer model to predict the temperature of a two-phase
geothermal fluid flow in the production pipelines. To predict
the behavior of the flow, a Computational Fluid Dynamics
(CFD) model was used. The equations of continuity,
momentum and energy were considered and the flow was
a compressible, one dimensional turbulent flow. The turbu-
lent kinetic energy and the velocity profiles increased across
the flow meter but the temperature profile decreased across
the flow meter.

Zhao et al. [7] investigated a geothermal two-phase flow.
The Seventh power law was used for the new proposed void
fraction correlation model for the two-phase velocity distri-
bution. In geothermal pipes, the new void fraction correla-
tion gave a good agreement between the measured and
predicted two phase pressure drops. A mathematical model-
ing of silica scaling in geothermal wells was carried out by
[8]. They came up with a mathematical model where the
two-phase pressure drop well-bore fluid temperature and
solubility temperature correlation were integrated. Based
on their results, precipitation of silica scaling increased with
decrease in temperature.

The fluid flow in geothermal pipes is turbulent and dif-
ferent models can be used to model the turbulence. Duan
et al. [9] carried out a numerical analysis of a two phase
stratified smooth turbulent flow through a circular pipe.
They studied a steady, two-dimensional momentum equa-
tion and employed a low Reynolds turbulence model. The
non-linear equations were solved using the Newtons-
Raphson Method. The findings of the study showed that
the profiles of k and ε near the interface were higher in the
gas phase compared to the liquid phase. It was also observed
that between the interface and the near wall of the pipe, the
interface caused less fluid flow resistance and it behaved like
a moving wall. Abdulwahid et al. [10] analyzed unsteady two
phase turbulent flow patterns and void fraction in a vertical
and horizontal pipes where ANSYS FLUENT program with
Volume of fluid(VOF) model was used to investigate
unsteady turbulent flow. RNG model was also used to solve
the turbulent fluid flow with annular and churn flow
regimes, whereas k − ε (realizable) model was used to solve
slug and bubble flow regimes. They concluded from the
results that transition among the flow patterns depended
on the air superficial velocity. Menge [11] investigated a
steady 3D turbulent flow in a pipe using Computational
Fluid Dynamics. They compared two models (κ − ε and
κ − ω models) and found out that κ − ε model gave better

approximations for the center-line velocities and is suit-
able to predict turbulent flow in a pipe.

Corrosion of geothermal pipes plays a significant part in
the long term operation and stability of the Geothermal
power plants. The chemical problems can be managed
through chemical modeling. Effects of chemical reactions
have been reported in literature by various studies. Akter
et al. [12] investigated a boundary layer mass transfer
through an inclined plate with the effects of thermal diffu-
sion and chemical reaction. They found out that there was
a decrease in concentration distribution and velocity distri-
bution as the reaction parameter was increased, but the
temperature profile remained unchanged for different
values of the reaction parameter. Mondal et al. [13] inves-
tigated Soret-Dufour and thermophoresis on magneto-
hydrodynamic mixed convective mass and heat transfers
of a semi-infinite plate in the presence of chemical reaction
and uniform heat source. They found out that there was
retardation in concentration distribution at the boundary
layer due to increase in the thermophoretic number. The
concentration distribution decreased with increase in the
Schmidt number. The concentration profiles decreased with
increase in chemical parameter. Rasool et al. [14] considered
an incompressible mixed convection of a second grade nano-
fluidic viscous flow past a heated vertical Riga plate. The find-
ings showed that concentration of the nanoparticles was
enhanced by the chemical reaction parameter.

The above studies on geothermal pipes have generally
neglected chemical reaction effects, variable thermal conduc-
tivity and inclined geothermal pipe. In many geothermal
plants, chemical reaction arise due to salts/metals present
in the geothermal fluid.

The motivation for the present work covers the following
novel aspects: Firstly, formulation of a viscous, Non-Newto-
nian, incompressible, two-phase stratified turbulent fluid
flow in a geothermal pipe with chemical reaction. Geother-
mal pipe is inclined at an angle α due to the terrain. Thermal
conductivity is temperature dependent and a first order
chemical reaction is considered. Secondly, the solution of
the non-linear PDEs using Finite Difference Method and
its implementation in MATLAB. Finally, analysis of the
effect of flow parameters on the flow variables were exam-
ined graphically. Table 1 represents nomenclature used in
the study.

2. Mathematical Model

A stratified two layer flow of an incompressible fluid in a
Geothermal pipe inclined at an angle α as shown in
Figure 1 is considered. Due to the inclination of the pipe,
buoyancy forces are taken into account. The liquid phase is
placed at the bottom of the pipe while the gaseous phase is
at the top. The fluid flow is turbulent and unsteady. A
non-linear viscosity which is a function of temperature and
tangential direction in both the liquid phase and the gaseous
phase is taken into consideration in the momentum
equation. In the energy equation, a temperature dependent
thermal conductivity is considered together with the effects
of viscous dissipation. The flow system is modelled using
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cylindrical polar coordinate ðr, θ, zÞ and the z- axis is taken
along the pipe axis.

From the governing equations presented in [15] and also
taking into consideration above assumptions, the specific
equations governing the flow are expressed as follows:

Continuity equation

1
r
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∂r

+ 1
r
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+ ∂ wð Þ
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= 0: ð1Þ
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Equation (2) represents the momentum equation in the
radial direction.

ρ
∂v
∂t

+ u
∂v
∂r

+ v
r
∂v
∂θ

+w
∂v
∂z

+ uv
r

� �

= −
1
r
∂p
∂θ

+ ∂μ
∂θ

2
r2
∂v
∂θ

+ 2 u
r2

� �

+ μ −
v
r2

+ 1
r
∂
∂r

r
∂v
∂r

� �
+ 1
r2
∂2v
∂θ2

+ 2
r2
∂u
∂θ

+ ∂2v
∂z2

" #
:

ð3Þ

Equation (3) represents the momentum equation in the
θ-direction.

ρ
∂w
∂t

+ u
∂w
∂r

+ v
r
∂w
∂θ

+w
∂w
∂z

� �

= −
∂p
∂z

+ ∂μ
∂θ

1
r2
∂w
∂θ

+ 1
r
∂v
∂z

� �

+ μ
1
r
∂
∂r

r
∂w
∂r

� �
+ 1
r2
∂2w
∂θ2

+ ∂2w
∂z2

" #

+ ρg sin α βT T − T∞ð Þ + βc C − C∞ð Þ½ �:

ð4Þ

The momentum equation in the z direction is given
by (4).

Energy equation
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Concentration equation
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From the equations above, μ is the coefficient of viscos-
ity, ρ is density of the fluid, p is the pressure, g is gravita-
tional force, α is the angle of inclination, βT is coefficient
of thermal expansion, βC is coefficient of mass expansion,
Dm is diffusion coefficient, Kr is the chemical reaction

Table 1: Nomenclature.

Symbol Meaning SI Units

g Acceleration due to gravity ms−2
Â Ã

p Pressure force Nm−2Â Ã
r, θ, z Cylindrical coordinate variables

u! Velocity vector ms−1
Â Ã

F Body forces tensor [N]

ρ Fluid density kgm−3Â Ã
μ Coefficient of viscosity kgm−3Â Ã
κ Coefficient of thermal conductivity Wm−1k−1

Â Ã
F
!
B Buoyancy forces [N]

α Angle of inclination

Cp Specific heat at constant pressure Jkg−1k−1
Â Ã

Dm Diffusion coefficient

T Temperature of the fluid [K]

T∞ Ambient temperature of the fluid [K]

t Time [s]

μ0 Flow consistency index [m2/s]
μT Eddy viscosity

νT Kinematic Eddy Viscosity

k∗ Coefficient of thermal conductivity

σk
Turbulent Prandtl number for

kinetic Energy

αT Turbulent thermal diffusivity

αc Turbulent mass diffusivity

σε
Turbulent Prandtl number
for dissipation Energy

Re Reynolds number

g Velocity gradient
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parameter, κ is the coefficient of thermal conductivity and
Cp is the specific heat at constant pressure.

Using the power law model as presented in [16], the vis-
cosity can be expressed as follows:

μ = μ0g
n−1, g = g θð Þ: ð7Þ

From equation (7), μ0 is the flow consistency index and
g represents velocity gradient.

Using the piece-wise function for a two-phase flow as
presented in [2], a modified version of the function is
given as:

g θ, Tð Þ =
θs 1 + γ T − T∞ð Þ½ � for γ < 0, s ≠ 0:

θs

1 + γ T − T∞ð Þ½ � for γ > 0, s ≠ 0:
ð8Þ

Where γ < 0 represents the viscosity for gaseous phase
and γ > 0 the liquid phase. γ and s are constants. Thermal
conductivity ðκÞ as presented in [17] is a variable which
depends on temperature and it is defined as:

κ = κ∗ 1 + b
T − T∞
ΔT

� �
, ð9Þ

where κ∗ is the thermal conductivity of the fluid and b is a
small parameter which takes negative values for gases and
positive values for liquids.

2.1. Reynolds Decomposition and Turbulence Modeling. The
fluid flow under consideration is turbulent. Before decom-
posing equations (1), (2), (3), (4), (5), (6), we substitute
equations (9), (8) and (7) into equations (1), (2), (3), (4),
(5), (6) to simplify them and then apply Reynolds decompo-

sition rules to obtain the Reynolds Averaged Navier Stokes
equations(RANS). For the RANS equations to be solved,
the Reynolds stresses are expressed in the mean flow quanti-
ties and the following modeling equations are used [18]:

−�u′u′ = νT ∇uð Þ + ∇uð ÞT
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2
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δij is the Kronecker delta;

−�u′T ′ = αT
∂�T
∂r

,−�v′T ′ = αT
r
∂�T
∂θ

,−�w′T ′ = αT
∂�T
∂z

,

−�u′C′ = αc
∂�C
∂r

,−�v′C′ = αc
r
∂�C
∂θ

,−�w′C′ = αc
∂�C
∂z

:

ð11Þ

Substituting the modeling equations (10) and (11) into
RANS equations, we have the following final equations:
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where �u is the time average velocity in the radial direction, �v
is the time average velocity in the θ-direction, �w is time-

Ground level
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Gas

Z
r

𝛼
𝜃

Figure 1: Flow Configuration for turbulent two-phase flow inclined at an angle.
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average velocity in the axial direction, �p is the time-average
pressure and �T is the time-average temperature and �C is
the time-average concentration.
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where ϕ is the viscous dissipation.

∂�C
∂t

+ �u
∂�C
∂r

+ �v
r
∂�C
∂θ

+ �w
∂�C
∂z

= Dm + αcð Þ 1
r
∂
∂r

r
∂�C
∂r

� �
+ 1
r2
∂2�C
∂θ2

+ ∂2�C
∂z2

" #

− kr �C − C∞
À Á

:

ð20Þ

2.2. Turbulence Kinetic Energy and Dissipation equations.
According to [19], to derive the Turbulent Kinetic Energy
(TKE) the following steps are taken: Firstly, the momentum
equations are replaced with the mean and fluctuating
velocities; secondly, each equation is multiplied by the fluc-
tuating velocities in their respective directions; thirdly, take
time average of the decomposed equations; and lastly, apply
the Reynolds decomposition rules. The equations are put
together by adding them to form a single equation and this
summation forms the turbulent kinetic energy equation.
According to [19, 20], the TKE equation in vector form is
given as:

ρ
∂κ
∂t

+ �u · ρ∇κ = ∇ · μ + μT
σk

� �
∇κ

� �
+ μTϕ − ρε: ð21Þ
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The first term on the LHS of (21) represents the local
change of the turbulent kinetic energy, second term is the
convection of turbulent kinetic energy. The first term on
the RHS represents diffusion of turbulent energy, the second
term represents the production of turbulent kinetic energy
and the last term represents the dissipation of turbulent
kinetic energy. σk is the turbulent Prandtl number for kinetic
energy.

The dissipation equation in vector form as given in [9] is:
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ε2

k
,
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where f1 and f2 are turbulent model wall functions used to
correct the behavior of eddy viscosity.

After substituting (19) and (8) into (22) and (21) and
simplifying, the final forms are given as:
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∂�u
∂θ

+ ∂�v
∂r

−
�v
r

� �2
" #

+ νT
∂�v
∂z

+ 1
r
∂�w
∂θ

� �2
+ ∂�w

∂r
+ ∂�u
∂z

� �2
" #

− ε,

ð23Þ

∂κ
∂t

+ �u
∂κ
∂r

+ �v
r
∂κ
∂θ

+ �w
∂k
∂z

= 1
r2
μ0
ρ

s n − 1ð Þgn−2θs−1
1 + γ �T − T∞

À ÁÂ Ã ∂κ
∂θ

+ μ0g
n−1

ρ
+ νT
σκ

� �

Á 1
r
∂
∂r

r
∂κ
∂r

� �
+ 1
r2
∂2κ
∂θ2

+ ∂2κ
∂z2

 !

+ 2νT
∂�u
∂r

� �2
+ 1

r
∂�v
∂θ

+ �u
r

� �2
+ ∂�w

∂z

� �2
" #

+ νT
1
r
∂�u
∂θ

+ ∂�v
∂r

−
�v
r

� �2
" #

+ νT
∂�v
∂z

+ 1
r
∂�w
∂θ

� �2
+ ∂�w

∂r
+ ∂�u
∂z

� �2
" #

− ε:

ð24Þ

Equations (23) and (24) represent TKE for the gaseous
and liquid phases respectively.

∂ε
∂t

+ �u
∂ε
∂r

+ �v
r
∂ε
∂θ

+ �w
∂ε
∂z

= 1
ρr2

μ0s n − 1ð Þgn−2θs−1 1 + γ �T − T∞
À ÁÂ Ã ∂ε

∂θ

+ μ0g
n−1

ρ
+ νT

σε

� �
× 1

r
∂
∂r

r
∂ε
∂r

� �
+ 1
r2
∂2ε
∂θ2

+ ∂2ε
∂z2

 !

+ 2f1Cε,1
ε

k
νT

∂�u
∂r

� �2
+ 1

r
∂�v
∂θ

+ �u
r

� �2
+ ∂�u

∂z

� �2
" #

+ f1Cε,1
ε

k
νT

1
r
∂�u
∂θ

+ ∂�v
∂r

−
�v
r

� �2
" #

+ f1νTCε,1
ε

k
∂�v
∂z

+ 1
r
∂�w
∂θ

� �2
+ ∂�w

∂r
+ ∂�u
∂z

� �2
" #

− f2Cε,2
ε2

k
,

ð25Þ

∂ε
∂t

+ �u
∂ε
∂r

+ �v
r
∂ε
∂θ

+ �w
∂ε
∂z

= 1
r2
μ0
ρ

s n − 1ð Þgn−2θs−1
1 + γ �T − T∞

À ÁÂ Ã ∂ε
∂θ

+ μ0g
n−1

ρ
+ νT

σε

� �

× 1
r
∂
∂r

r
∂ε
∂r

� �
+ 1
r2
∂2ε
∂θ2

+ ∂2ε
∂z2

 !

+ 2f1Cε,1
ε

k
νT

∂�u
∂r

� �2
+ 1

r
∂�v
∂θ

+ �u
r

� �2
+ ∂�w

∂z

� �2
" #

+ f1Cε,1
ε

k
νT

1
r
∂�u
∂θ

+ ∂�v
∂r

−
�v
r

� �2
" #

+ f1νTCε,1
ε

k
∂�v
∂z

+ 1
r
∂�w
∂θ

� �2
+ ∂�w

∂r
+ ∂�u
∂z

� �2
" #

− f2Cε,2
ε2

k
:

ð26Þ

Equations (25) and (26) represent viscous dissipation
equations for the gaseous and liquid phases respectively.
Cμ, Cε,1, Cε,2, σε and σk are model constants taken from
[21]. Their values are given as: Cμ = 0:09, Cε,1 = 1:44, Cε,2 =
1:92, σε = 1:3, σk = 1.

The relationship between dissipation(ε), turbulent
kinetic energy(k) and turbulent viscosity(νT) is given as:

νT = Cμ

f μk
2

ε
: ð27Þ
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As a result of turbulent eddies, there is damping near the
walls. The following functions have been introduced as pre-
sented in the work of [21]:

f μ = 1 − exp −0:0165Re kð Þ
� �h i2

1 + 20:5
Re tð Þ

 !
,

f1 = 1 + 0:05
f μ

 !3

,

f2 = 1 − exp −R2
e tð Þ

� �
,

ð28Þ

where ReðkÞ = ρκ1/2dw/μt = κ1/2dw/νt , ReðtÞ = ρk2/μtε = κ2/νtε
and dw is the shortest distance to the interface or wall. ReðtÞ
and ReðkÞ are turbulent Reynolds numbers.

2.3. Boundary Conditions. With the assumption that there
was no slip condition at the walls of the pipe, the fol-
lowing boundary conditions were applied successfully
by [9, 19]:

At r =D+/2;

u = v =w = 0, k = 0, ε = 0, T = Tw, C = Cw: ð29Þ

At r = 0 (the interface is treated as a moving wall);

C = C∞, T = T∞, u = u∞, v = u∞,w = u∞, κ = 0, ∂ε
∂r

= 0:

ð30Þ

At r =D−/2;

u = v =w = 0, k = 0, ε = 0, T = Tw, C = Cw: ð31Þ

At z = 0;

w = u∞, v = 0, u = 0, T = T∞, C = C∞: ð32Þ

At z =∞, the gradients of all variables in the flow direc-
tion are zero as suggested by [22];

∂v
∂z

= 0, ∂u
∂z

= 0, ∂w
∂z

= 0, ∂κ
∂z

= 0, ∂ε
∂z

= 0 ð33Þ

2.4. Non-dimensionalization. In order to solve the problem,
equations (12), (13), (14), (15), (16), (17), (18), (20),
(23), (24), (25) and (26) are converted to non-
dimensionless forms. The following non-dimensional vari-

ables have been employed for non-dimensionalization as
presented in [23]:

u∗ = �u
u∞

, v∗ = �v
u∞

,w∗ = �w
u∞

, t∗ = tu∞
D

, p∗ =
�p

ρu2∞
,

θ∗ = θ, z∗ = z
D
,

ν∗T = νT
Du∞

, r∗ = r
D
, T∗ =

�T − T∞
Tw − T∞

, αT = αT
Du∞

, ε∗ = εD
u3∞

,

k∗ = k
u2∞

,

α∗c =
αc

Du∞
, C∗ =

�C − C∞
Cw − C∞

:

ð34Þ

Substituting these non-dimensional variables into equa-
tions (12), (13), (14), (15), (16), (17), (18), (20), (23), (24),
(25) and (26), we obtain the following dimensionless govern-
ing equations:

∂u∗

∂t∗
+ u∗

∂u∗

∂r∗
+ v∗

r∗
∂u∗

∂θ∗
+w∗ ∂u∗

∂z∗
−
v∗2

r∗

= −
∂p∗

∂r
+ 1

Re
θs n−1ð Þ 1 + γT∗ΔT½ � + ν∗T

� �

× 1
r∗

∂
∂r∗

r∗
∂u∗

∂r∗

� �
−

u∗

r∗2
+ 1
r∗2

∂2u∗

∂θ∗2
+ ∂2u∗

∂z∗2

"

−
2
r∗2

∂v∗

∂θ∗

�
+ 1
Re

s n − 1ð Þθs n−1ð Þ−1 1 + γT∗ΔT½ �n−1

Á 1
r∗2

∂u∗

∂θ∗
−

v∗

r∗2
+ 1
r∗

∂v∗

∂r∗

� �

+ cos α T∗
Gr Tð Þ

R2
e

+ C∗
Gr Cð Þ

R2
e

 !
,

ð35Þ

∂u∗

∂t∗
+ u∗

∂u∗

∂r∗
+ v∗

r∗
∂u∗

∂θ∗
+w∗ ∂u∗

∂z∗
−
v∗2

r∗

= −
∂p∗

∂r
+ 1

Re

θs n−1ð Þ

1 + γT∗ΔT½ �n−1
+ ν∗T

 !

× 1
r∗

∂
∂r∗

r∗
∂u∗

∂r∗

� �
−

u∗

r∗2
+ 1
r∗2

∂2u∗

∂θ∗2
+ ∂2u∗

∂z∗2

"

−
2
r∗2

∂v∗

∂θ∗

�
+ 1
Re

s n − 1ð Þθs n−1ð Þ−1

1 + γT∗ΔT½ �n−1

Á 1
r∗2

∂u∗

∂θ∗
−

v∗

r∗2
+ 1
r∗

∂v∗

∂r∗

� �

+ cos α T∗
Gr Tð Þ

R2
e

+ C∗
Gr Cð Þ

R2
e

 !
,

ð36Þ
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equations (35) and (36) represent the dimensionless form of
the momentum equation in the radial direction for the gas-
eous and liquid phase respectively.

∂v∗

∂t∗
+ u∗

∂v∗

∂r∗
+ v∗

r∗
∂v∗

∂θ∗
+w∗ ∂v∗

∂z∗
+ u∗v∗

r∗

= −
1
r∗

∂p∗

∂θ∗
+ 1
Re

s n − 1ð Þgn−2θs−1 1 + γT∗ Tw − T∞ð Þ½ �

Á 2
r∗2

∂v∗

∂θ∗
+ 2 u

∗

r∗2

� �
+ 1

Re
gn−1 + ν∗T

� �

Á 1
r∗

∂
∂r∗

r∗
∂v∗

∂r∗

� �
−

v∗

r∗2
+ 1
r∗2

∂2v∗

∂θ∗2
+ ∂2v∗

∂z∗2
+ 2
r∗2

∂u∗

∂θ∗

" #
,

ð37Þ

∂v∗

∂t∗
+ u∗

∂v∗

∂r∗
+ v∗

r∗
∂v∗

∂θ∗
+w∗ ∂v∗

∂z∗
+ u∗u∗θ

r∗

= −
1
r∗

∂p∗

∂θ∗
+ 1
Re

s n − 1ð Þgn−2θs−1
1 + γT∗ Tw − T∞ð Þ½ �

2
r∗2

∂v∗

∂θ∗
+ 2 u

∗

r∗2

� �

+ 1
Re

gn−1 + ν∗T

� �
× 1

r∗
∂
∂r∗

r∗
∂v∗

∂r∗

� �
−

v∗

r∗2

�

+ 1
r∗2

∂2v∗

∂θ∗2
+ ∂2v∗

∂z∗2
+ 2
r∗2

∂u∗

∂θ∗

#
,

ð38Þ
equations (37) and (38) represent the dimensionless form

of the momentum equation in the θ-direction for the gaseous
and liquid phase respectively.

∂w∗

∂t∗
+ u∗

∂w∗

∂r∗
+ v∗

r∗
∂w∗

∂θ∗
+w∗ ∂w∗

∂z∗

= −
∂p∗

∂z∗
+ 1
Re

s n − 1ð Þgn−2θs−1

r∗2 1 + γT∗ Tw − T∞ð Þ½ �
∂w∗

∂θ∗
+ r∗

∂v∗

∂z∗

� �

+ 1
Re

gn−1 + ν∗T

� � 1
r∗

∂
∂r∗

r∗
∂w∗

∂r∗

� �
+ 1
r∗2

∂w∗

∂θ∗2

�

+ ∂2w∗

∂z∗2

#
+ sin α T∗

Gr Tð Þ

R2
e

+ C∗
Gr Cð Þ

R2
e

" #
,

ð39Þ

∂w∗

∂t∗
+ u∗

∂w∗

∂r∗
+ v∗

r∗
∂w∗

∂θ∗
+w∗ ∂w∗

∂z∗

= −
∂p∗

∂z∗
+ 1
Re

1
r∗2

s n − 1ð Þgn−2θs−1 1 + γT∗ Tw − T∞ð Þ½ �

Á ∂w∗

∂θ∗
+ r∗

∂v∗

∂z∗

� �
+ 1

Re
gn−1 + ν∗T

� �

Á 1
r∗

∂
∂r∗

r∗
∂w∗

∂r∗

� �
+ 1
r∗2

∂w∗

∂θ∗2
+ ∂2w∗

∂z∗2

" #

+ sin α T∗
Gr Tð Þ

R2
e

+ C∗
Gr Cð Þ

R2
e

" #
,

ð40Þ

equations (39) and (40) represent the dimensionless form of
the momentum equation in the axial direction for the liquid
and gaseous phase respectively.

∂T∗

∂t∗
+ u∗

∂T∗

∂r∗
+ v∗

r∗
∂T∗

∂θ∗
+w∗ ∂T

∗

∂z∗

= −
b

PrRe

∂T∗

∂r∗

� �2
+ 1
r∗2

∂T∗

∂θ∗

� �2
+ ∂T∗

∂z∗

� �2
" #

+ 1 + bT∗½ �
PrRe

+ α∗T

� � 1
r∗

∂T∗

∂r∗
+ ∂2T∗

∂r∗2

 

+ 1
r∗2

∂2T∗

∂θ∗2
+ ∂2T∗

∂z∗2

!
+ Ec

Re
gn−1

× 2 ∂u∗

∂r∗

� �2
+ 1

r
∂v∗

∂θ∗
+ u∗

r∗

� �2
+ ∂w∗

∂z∗

� �2
" #(

+ 1
r∗

∂u∗

∂θ∗
+ ∂v∗

∂r∗
−
v∗

r∗

� �2
)

+ Ec

Re
gn−1 ∂v∗

∂z∗
+ 1
r∗

∂w∗

∂θ∗

� �2
+ ∂w∗

∂r∗
+ ∂u∗

∂z∗

� �2
" #

+ Ecε
∗,

ð41Þ

equation (41) represents the dimensionless form of the
Energy equation.

∂C∗

∂t∗
+ u∗

∂C∗

∂r∗
+ v∗

r∗
∂C∗

∂θ∗
+w∗ ∂C

∗

∂z∗

= 1
ScRe

+ α∗c

� �
× 1

r∗
∂
∂r∗

r∗
∂C∗

∂r∗

� �
+ 1
r∗2

∂2C∗

∂θ∗2
+ ∂2C∗

∂z∗2

" #

− KcReC
∗,

ð42Þ

equation (42) represents the dimensionless form of the
Concentration equation.

∂κ∗

∂t∗
+ u∗

∂κ∗

∂r∗
+ v∗

r∗
∂κ∗

∂θ∗
+w∗ ∂κ∗

∂z∗

= 1
r∗2

1
Re

s n − 1ð Þθns−s−1
1 + γT∗ΔT½ �n−1

∂k∗

∂θ∗
+ 1

Re

θs n−1ð Þ

1 + γT∗ΔT½ �n−1
+ ν∗T

σk

 !

Á 1
r∗

∂
∂r∗

r∗
∂κ∗

∂r∗

� �
+ 1
r∗2

∂2κ∗

∂θ∗2
+ ∂2κ∗

∂z∗2

 !

+ 2ν∗T
∂u∗

∂r∗

� �2
+ 1

r∗
∂v∗

∂θ∗
+ u∗

r

� �2
+ ∂w∗

∂z∗

� �2
" #

+ ν∗T
1
r∗

∂u∗

∂θ∗
+ ∂v∗

∂r∗
−
v∗

r∗

� �2
" #

+ ν∗T
∂v∗

∂z∗
+ 1
r∗

∂w∗

∂θ∗

� �2
+ ∂w∗

∂r∗
+ ∂u∗

∂z∗

� �2
" #

− ε∗,

ð43Þ
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equation (43) represents the dimensionless form of the
turbulent kinetic energy equation.

∂ε∗

∂t∗
+ u∗

∂ε∗

∂r∗
+ v∗

r∗
∂ε∗

∂θ∗
+w∗ ∂ε∗

∂z∗

= 1
r∗2

1
Re

s n − 1ð Þθns−s−1
1 + γT∗ΔT½ �n−1

∂ε∗

∂θ∗

+ 1
Re

θs n−1ð Þ

1 + γT∗ΔT½ �n−1
+ ν∗T

σε

 !

Á 1
r∗

∂
∂r∗

r∗
∂ε∗

∂r∗

� �
+ 1
r∗2

∂2ε∗

∂θ∗2
+ ∂2ε∗

∂z∗2

 !

+ 2f1Cε,1
ε∗

k ∗
ν∗T

∂u∗

∂r∗

� �2
+ 1

r∗
∂v∗

∂θ∗
+ u∗

r∗

� �2
"

+ ∂w∗

∂z∗

� �2
#
+ f1Cε,1

ε∗

k∗
ν∗T

1
r∗

∂u∗

∂θ∗
+ ∂v∗

∂r∗
−
v∗

r∗

� �2
" #

+ f1ν
∗
TCε,1

ε∗

k∗
∂u∗θ
∂z∗

+ 1
r∗

∂w∗

∂θ∗

� �2
+ ∂w∗

∂r∗
+ ∂u∗

∂z∗

� �2
" #

− f2Cε,2
ε∗2

k∗
,

ð44Þ

equation (44) represents the dimensionless form of the
dissipation equation.

νT∗ = Cμ f μ
κ∗2

ε∗
, ð45Þ

equation (45) represents the dimensionless form of the
relationship between dissipation, turbulent kinetic energy
and turbulent viscosity.

The following are non-dimensional numbers obtained
from the equations above: Reynolds Number, Re = u∞D/ν∞;
Thermal Grasholf Number, GrðTÞ = gβTðTw − T∞Þ/ν2∞; Solu-

tal Grasholf Number, GrðcÞ = gβcðCw − C∞Þ/ν2∞; Schmidt

Number, Sc = ν∞/Dm; Chemical Reaction Parameter, Kc =
Krν∞/u2∞; Eckert Number, Ec =U2

∞/CpðTw − T∞Þ and
Prandtl Number, Pr = μ∞Cp/κ∗.

2.4.1. Dimensionless Boundary Conditions. At r∗ = 0:5

u∗ = v∗ =w∗ = 0, k∗ = 0, ε∗ = 0, T∗ = 1, C∗ = 1: ð46Þ

At r∗ = 0

C∗ = 0, T∗ = 0, u∗ = 1, v∗ = 1,w∗ = 1, κ∗ = 0, ∂ε
∗

∂r∗
= 0: ð47Þ

At r∗ = −0:5

u∗ = v∗ =w∗ = 0, k∗ = 0, ε∗ = 0, T∗ = 1, C∗ = 1: ð48Þ

At z = 0

w∗ = 1, v∗ = 0, u∗ = 0, T = 0, C = 0: ð49Þ

At z =∞

∂u∗

∂z∗
= 0, ∂u

∗

∂z∗
= 0, ∂w

∗

∂z∗
= 0, ∂κ

∗

∂z∗
= 0, ∂ε

∗

∂z∗
= 0: ð50Þ

3. Methodology

Equations (35)–(44) are non-linear PDEs, hence cannot be
solved analytically. An explicit Finite Difference Method
(FDM) has been used to solve the non-linear partial differ-
ential equations governing the fluid flow. Finite Difference
methods are accurate, stable, of rapid convergence and sim-
ple in solving Partial differential equations. In implementing
the method, the partial derivatives in PDEs are replaced by
approximations based on Taylor series expansions near the
point of interest. When FDM is applied, the continuous
domain is discretized and the differential terms of the equa-
tion are converted to linear algebraic equations.

The domain is discretized using a cylindrical mesh. Let
uðr, θ, z, tÞ be described at the point ðri, θ j, zk, tmÞ and for
simplicity the point ðri, θj, zk, tmÞ is written as ði, j, k,mÞ
and Uðr, θ, z, tÞ as umi,j,k. Assume we have I points along r,
N points along θ, Q points along z and M points along t
directions to form the mesh. Let the step size Δr be along
r, Δθ be along θ, Δz along z and Δt along t.

ri = R0 + iΔr, θj = θ0 + jΔθ, zk = z0 + kΔz and tm =
t0 +mΔt where i = 1, 2,⋯⋯ , I, j = 1, 2,⋯⋯ ,N , k =
1, 2,⋯⋯ ,Q and m = 1, 2,⋯⋯ ,M

For our set of equations, a second order Finite difference
approximation(forward in time and central in space) scheme
would be used. These approximations are given as:

∂u
∂t

=
um+1
i,j,k − umi,j,k

Δt
, ð51Þ

∂u
∂r

=
umi+1,j,k − umi−1,j,k

2Δr , ð52Þ

∂2u
∂r2

=
umi+1,j,k − 2umi,j,k + umi−1,j,k

Δrð Þ2 : ð53Þ

Substituting equations (51)–(53) into equations (35)–(44),
we have the following set of finite difference equations:

um+1
i,j,k − umi,j,k

Δt
+ umi,j,k

umi+1,j,k − umi−1,j,k
2Δr +

vmi,j,k
ri

umi,j+1,k − umi,j−1,k
2Δθ

+wm
i,j,k

umi,j,k+1 − umi,j,k−1
2Δz −

vmi,j,k
� �2

ri

= −
∂p
∂r

+ θs n−1ð Þ

Re 1 + γTm
i,j,kΔT

h in−1 + νT

0
B@

1
CA
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× 1
ri

umi+1,j,k − umi−1,j,k
2Δr +

umi+1,j,k − 2umi,j,k + umi−1,j,k
Δrð Þ2

 

−
umi,j,k
r2i

+
umi,j+1,k − 2umi,j,k + umi,j−1,k

Δθð Þ2
!

+ θs n−1ð Þ

Re 1 + γTm
i,j,kΔT

h in−1 + νT

0
B@

1
CA

Á umi,j,k+1 − 2umi,j,k + umi,j,k−1
Δzð Þ2 −

2
r2i

vmi,j+1,k − vmi,j−1,k
2Δθð Þ

 !

+ 1
Re

s n − 1ð Þθs n−1ð Þ−1

1 + γTm
i,j,kΔT

h in−1 1
r2i

umi,j+1,k − umi,j−1,k
2Δθ −

vmi,j,k
r2i

�

+ 1
ri

vmi+1,j,k − vmi−1,j,k
2Δr

�
+ cos α Tm

i,j,k
Gr Tð Þ
Re2

+ Cm
i,j,k

Gr cð Þ
Re2

� �
,

ð54Þ

Um+1
i,j,k −Um

i,j,k
Δt

+Um
i,j,k

Um
i+1,j,k −Um

i−1,j,k
2Δr

+
Vm

i,j,k
ri

Um
i,j+1,k −Um
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equations (54) and (55) are radial momentum equations in
discrete form for the liquid and gaseous phases respectively.
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equations (56) and (57) represent tangential momentum
equation in discrete form for the liquid and gaseous phases
respectively.
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equations (58) and (59) represent axial momentum equations
in discrete form for liquid and gas phases respectively.
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equation (60) represents energy equation in discrete form.
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equation (61) represents Concentration equation in discrete
form.
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equations (63) and (62) are Turbulent Kinetic Energy
equations in discrete form for liquid and gaseous phase
respectively.
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Equations (64) and (65) are dissipation equations in
discrete form for gas and liquid phases respectively. Equa-
tions (54)–(65) are rearranged in a way that the quantities
at time m + 1 are on the left hand side (since they depend
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explicitly on the time at m), before being implemented in
MATLAB.

4. Results and Discussions

This section deals with the physical explanation of the effect
of the various flow parameters on the velocity and tempera-
ture profiles. Computations were carried out for: Pr = 0:71
(Air-gas phase) and Pr = 7:0(water-liquid phase).

Figure 2 displays the effect of Reynolds number on
velocity profile. It is important to note that as the Reynolds
number increases the velocity distribution for both the gas-
eous and liquid phase increase. Moreover, the momentum
boundary layer thickness increases. Physically, increase in

the Reynolds number results in the reduction of the viscous
forces which oppose the fluid flow. Therefore, there is an
increase in the velocity profile.

Figure 3 depicts the influence of Solutal Grasholf num-
ber on the velocity profile. It is worth noting that the velocity
profiles decrease as solutal Grashof number increases for
both phases. Physically, increase in the solutal Grasholf
Number leads to an increase in the viscous forces which
resist the fluid flow. Consequently, the velocity profile
decreases.

Effect of Thermal Grasholf number on velocity profile is
analyzed in Figure 4 for both liquid and gas phases. There is
an increase in velocity as Thermal Grashof number
increases. An increase in Thermal Grasholf number leads
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to enhancement of buoyancy forces and there is also an
addition of thermal energy into the molecules of the fluid
which loosen up the inter-molecular forces of the fluid par-
ticles. Thus, there is an increase in the velocity profiles.

Figure 5 shows the effect of the angle of inclination, α, on
the velocity profiles for both phases. There is a decrease in
the velocity distribution as the angle of inclination increases.
As α increases, the magnitude of cos α decreases. Thus, the
effect of buoyancy forces decrease along the radial direction.
Consequently, there are decreased velocity profiles along the
radial direction.

Effect of Reynolds number on the temperature profiles
for both gas and liquid phases are displayed in Figure 6. It
is important to note that temperature decreases with

increase in Reynolds number for the gaseous phase but it
increases with increase in Reynolds number for the liquid
phase. As Re increases the viscous forces become less impor-
tant. The viscous forces are directly proportional to temper-
ature for gases but inversely proportional to temperature in
liquids. Therefore, an increase in Reynolds number results
in an increase in temperature profile for the liquid phase
but a decrease in temperature profile for the gaseous phase.

Figure 7 displays the effect of Eckert number on the
temperature profiles. Here, temperature profiles increase
for both phases as Eckert number increases. As Ec increases,
the kinetic energy of the molecules increases, hence
increased vibration of molecules which leads to conversion
of kinetic energy to heat energy. Consequently, an increase
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in Eckert number leads to an increase in the temperature of
the fluid. There is also an additional heating caused by vis-
cous dissipation.

From Figure 8, an increase in α leads to increase in the
temperature profiles for both phases. An increase in α results
in an increase in the thermal boundary layer thickness. Thus,
there is increased temperature distribution.

Figure 9 portrays the effect of Thermal Grasholf Number
on the temperature field. Temperature distribution decreases
with increase in Thermal Grasholf number. Increase in
Thermal Grasholf number results in an enhancement of
buoyancy forces. Buoyancy forces are inversely proportional
to temperature of the fluid. Consequently, increase in Ther-

mal Grasholf number leads to reduction in temperature
distribution.

Figure 10 displays the effect of Schmidt number on con-
centration profiles for the gas and liquid phases respectively.
It is worth noting that increase in Schmidt number leads to a
decrease in concentration profile. A high Sc number implies
a decrease in molecular diffusivity which causes a reduction
in the concentration boundary layer thickness. Conse-
quently, increase in Schmidt number results to a decrease
in the concentration.

Effect of Chemical Reaction Parameter on concentration
is analyzed in Figure 11 for gas and liquid phases. An
increase in Chemical reaction parameter increases the
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concentration boundary layer thickness. Thus, there is an
increase in concentration distribution as chemical reaction
parameter increases.

4.1. Validation Of Results. In validating the presented results,
the computed results are compared with the results obtained
by [9] as shown in Figure 12 which proved to be in good
agreement. According to [9] the horizontal velocity profile
of the gaseous phase was symmetrical to the center-line
which were in good agreement with the experimental data
by [24] which confirmed the validity of the method.

5. Conclusion

In this paper, two-phase turbulent fluid flow in a geothermal
pipe with chemical reaction was investigated and effects of
various flow parameters discussed. The results for various
variations of flow parameters were presented in graphical
form. The following important deductions were got from
the results:

(i) Fluid flow was enhanced with increase in Reynolds
number and Thermal Grasholf number;

(ii) Higher values of Reynolds number resulted in
reduction of temperature profile for gas phase but
enhancement of temperature profile for the liquid
phase;

(iii) Higher values of Eckert number and angle of incli-
nation led to increase of temperature of the fluid;

(iv) The velocity profile reduced for higher values of
Mass Grasholf Number;

(v) Higher values of Thermal Grasholf Number
resulted in reduction of temperature of the fluid;

(vi) Higher values of Schmidt Number resulted in
reduction of concentration of the fluid;

(vii) Concentration was enhanced with increase in
Chemical reaction Parameter.

For future research, a two-phase stratified wavy flow in
presence of an inclined variable magnetic field can be stud-
ied. Also a different turbulence modeling approach can be
considered.
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