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This paper is devoted to the study of numerical approximation for a class of two-dimensional Navier-Stokes equations with slip
boundary conditions of friction type. The objective is to establish the well-posedness and stability of the numerical scheme in
L2-norm and H1-norm for all positive time using the Crank-Nicholson scheme in time and the finite element approximation
in space. The resulting variational structure dealing with is in the form of inequality, and obtaining H1-estimate is more
involved because of the presence of the nondifferentiable term appearing at the boundary where slip occurs. We prove that
the numerical scheme is stable in L2 and H1-norms with the aid of different versions of discrete Grownwall lemmas,
under a CFL-type condition. Finally, some numerical simulations are presented to illustrate our theoretical analysis.

1. Introduction

We consider the Navier-Stokes equations of viscous incom-
pressible fluids:

ut + u · ∇ð Þu − νΔu+∇p = f inQ =Ω ×ℝ+, ð1Þ

div u = 0 inQ, ð2Þ
with the impermeability boundary condition

un = u · n = 0 on S ×ℝ+, ð3Þ

and the slip boundary condition

σnð Þτ
�� �� ≤ g,

σnð Þτ
�� �� < g⇒ uτ = 0,

σnð Þτ
�� �� = g⇒ uτ ≠ 0,− σnð Þτ = g

uτ
uτj j ,

9>>>>=
>>>>;

on S × 0,∞ð Þ:

ð4Þ

On the remaining part of the boundary, Γ, we assume
Dirichlet boundary condition, i.e.,

u = 0 onΓ ×ℝ+: ð5Þ

Finally, the initial condition is given by

u x, 0ð Þ = u0 xð Þ on �Ω: ð6Þ

Here, Ω ⊂ℝ2 is a bounded domain, with boundary ∂Ω.
It is assumed that ∂Ω is made of two components S, and Γ
with �∂Ω = �S ∪ Γ, and S ∩ Γ =∅. ν is a positive quantity rep-
resenting the viscosity coefficient, u0 : Ω⟶ℝ2 is the initial
velocity, and g : S × ð0,∞Þ⟶ ð0,∞Þ is the barrier or
threshold function. The velocity of the fluid is u and p stands
for the pressure, while f is the external force. Furthermore, n
is the outward unit normal to the boundary ∂Ω of Ω,
uτ = u − unn is the tangential component of the velocity u,
and ðσnÞτ = σn − ðn · σnÞn is the tangential traction. Of
course, σ = −pI + 2νεðuÞ is the Cauchy stress tensor, where
I is the identity matrix, and εðuÞ = 1/2ð∇u + ð∇uÞTÞ.
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It can easily be shown that (4) is equivalent to

− σnð Þτ ∈ g∂ uτj j on S × 0,∞ð Þ, ð7Þ

where the symbol ∂j:j is the subdifferential of the real value
function j:j, with juj2 = u · u. We recall that if X is the Hilbert
space with x0 ∈ X, then,

y ∈ ∂Ψ x0ð Þ⇔Ψ xð Þ −Ψ x0ð Þ ≥ y · x − x0ð Þ, for all x ∈ X:
ð8Þ

It should be mentioned that different boundary condi-
tions describe different physical phenomena. The slip
boundary condition of friction type can be justified by the
fact that frictional effects of the fluid at the pores of the solid
can be very important. Many studies have focused on the
properties of the solution of the resulting boundary value
problem, for example, existence, uniqueness, regularity,
and continuous dependence on data, for Stokes, Navier-
Stokes, and Brinkman–Forchheimer equations under such
boundary condition. Details can be found in [1–4] among
others. In [5], a generalization of the boundary condition
(4) is formulated and analyzed for the steady Stokes flow,
while the case of Navier-Stokes equations has been exam-
ined in [6]. There are numerous works devoted to the
development of efficient schemes for the nonstationary
Navier-Stokes problem dealing with Dirichlet or periodic
boundary conditions; some works can be found in [7–11].
It should also be mentioned that there are other works deal-
ing with Navier-Stokes equations with time fractional deriv-
atives (see for instance [12] and references therein). For the
time fractional operators, details can be found in [13, 14].

The subject of the present work is to establish the
well-posedness and stability of the numerical scheme on
L2-norm and H1-norm for all positive times of the two-
dimensional problems (1)-(4) using the Crank-Nicholson
scheme in time and the finite element approximation in
space. The resulting variational structure dealing with is in
the form of inequality, and obtaining H1-estimate is more
involved because of the presence of the nondifferentiable
term appearing at the boundary where slip occurs.

2. Preliminaries and Variational Formulation

In this section, we introduce notations and some results that
will be used throughout our work. We also formulate various
weak formulations and discuss (recall) some existence
results. For the mathematical setting of the problem, we
need to introduce the following spaces:

V = v ∈H1 Ωð Þ2, vjΓ = 0, v · njS = 0
� �

,
Vσ = v ∈ V , div v = 0f g,
H = v ∈ Ł2 Ωð Þ2, div v = 0, vjΓ = 0, v · njS = 0

� �
,

M = L20 Ωð Þ:

ð9Þ

V ′ is the dual space of V , and the duality pairing

between V ′ and V is denoted by h·i. Throughout the paper,
we assume that Ω is bounded, convex planar domain with
polygonal boundary. As usual, ϕðtÞ stands for the function
x ∈Ω↦ ϕðx, tÞ. Next, we introduce the Stokes operator A
by following the approach adopted in [15, 16]. We denote
by P : L2ðΩÞ2 ⟶H the Helmholtz projection operator,
which is bounded projection associated to the Helmholtz
decomposition of L2ðΩÞ2. We define the Stokes operator as
follows A : V ⟶V ′ such that A = −PΔ, with domain
given as follows, DðAÞ = fv ∈ V , such thatAv ∈Hg. Now,
assuming that Γ is C2 and S is C3, then DðAÞ ⊂H2ðΩÞ2 since
kwk2 ≤ CkAwk, and one has

λ1

ð
Ω

vj j2dx ≤
ð
Ω

∇vj j2dx,  for all v ∈ V , ð10Þ

λ1

ð
Ω

∇vj j2dx ≤
ð
Ω

Avj j2dx,  for all v ∈D Að Þ, ð11Þ

where λ1 is the first eigenvalue of the Stokes operator A. It
should be noticed that thanks to (10), k∇vk is a norm on
V equivalent to the usual H1-norm.

The Stokes operator A : DðAÞ⟶H is self-adjoint, pos-
itive with a compact inverse A−1 which is self-adjoint as a
mapping from H to H.

We recall some classical bilinear and trilinear forms
(see [17, 18])

b : V ×M⟶ℝwith b u, pð Þ = div u, pð Þ,
a : V ×V ⟶ℝwith a u, vð Þ = ν ε uð Þ, ε vð Þð Þ = 2ν u, vð Þð Þ,
d : V ×V × V ⟶ℝwith d u, v,wð Þ = u · ∇ð Þv,wð Þ:

ð12Þ

We denote by B a bilinear operator from V ×V into
V ′ such that

B u, vð Þ,wh i = d u, v,wð Þ,  for all u, v,w ∈ V : ð13Þ

The bilinear form bð·, · Þ satisfies the inf-sup condi-
tions; i.e., there exists a positive constant β such that

β pk k ≤ sup
u∈V

b u, pð Þ
uk k1

,  for all p ∈ L20 Ωð Þ: ð14Þ

As a readily obtainable consequence of Korn’s inequality
(11), there exists a positive constant α such that

a v, vð Þ ≥ α vk k21,  for all v ∈ V : ð15Þ

The trilinear form dð·, · , · Þ is continuous onH1ðΩÞ3 and
enjoys the following properties:

d u, v,wð Þj j ≤ cd uk k1/2 Auk k1/2 vk k1 wk k,  for all u ∈D Að Þ, v ∈ V ,w ∈H,
ð16Þ
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d u, v,wð Þj j ≤ cd uk k1/2 uk k1/21 vk k1 wk k1/2 wk k1/21 ,  for all u, v,w ∈V ,
ð17Þ

d u, v, vð Þ = 0,  for all u, v ∈ Vσ, ð18Þ
d u, v,wð Þ = −d u,w, vð Þ,  for all u, v,w ∈ Vσ: ð19Þ
We will make reference to the following inequalities:

2 u − v, uð Þ = uk k2 − vk k2 + u − vk k2,  for all u, v ∈ L2 Ωð Þ, ð20Þ

ab ≤
ε

p
ap + 1

qεq/p
bq,  for all a, b, ϵ > 0 and 1

p
+ 1
q
= 1: ð21Þ

We assume that f ∈ L∞ð0,∞;L2ðΩÞ2Þ, and we set
k f k∞ ≔ k f kL∞ð0,∞;L2ðΩÞ2Þ. We also assume that u0 ∈ L2ðΩÞ2.
With the above notations, we introduce the following
variational formulation for (1)-(6): Find ðuðtÞ, pðtÞÞ ∈ V ×M
such that

u 0ð Þ = u0 inΩ, ð22Þ

and for a.e. t, with t ≥ 0

where JðvÞ = ðg, jvτjÞS.
Note that since the bilinear form bð·, · Þ satisfies the inf-

sup condition (14), the variational inequality problem (23) is
equivalent to the following:

Find uðtÞ ∈ Vσ such that

u 0ð Þ = u0 inΩ, ð24Þ

and for a.e. t, with t ≥ 0

The problem of existence and uniqueness of (24)-(25)
can be stated as follows and has been proved in Kashiwa-
bara [3].

Theorem 1. Assume

f ∈H1 ℝ+, L2 Ωð Þ2� �
,

g ∈H1 ℝ+, L2 Sð Þ2� �
with g 0ð Þ ∈H1 Sð Þ,

u0 ∈H
2 Ωð Þ2 ∩Vσ, and slip boundary condition 1:4ð Þ is satisfied at t = 0, i:e:,

στ u0ð Þj j ≤ g 0ð Þ and στ u0ð Þu0τ + g u0τj j = 0 a:e:on S:

ð26Þ

Then, there exists a unique solution u of problem

(24)-(25) such that

u ∈ L∞ ℝ+, Vσð Þ, and u′ ∈ L∞ ℝ+, L2 Ωð Þ2� �
∩ L2 ℝ+, Vσð Þ:

ð27Þ

Let ftn/tn = nk, n ∈ℕg be a uniform partition of ℝ+

with a given time step k. We consider a time discretiza-
tion of (24)-(25) using the Crank-Nicolson scheme. Find
un ∈ V such that

u0 = u0 inΩ, ð28Þ

and for all n ≥ 1

for all v, qð Þ ∈ V ×M,

u′ tð Þ, v − u tð Þ
D E

+ a u tð Þ, v − u tð Þð Þ + d u tð Þ, u tð Þ, v − u tð Þð Þ − b v − u tð Þ, p tð Þð Þ + J vð Þ − J u tð Þð Þ ≥ f tð Þ, v − u tð Þð Þ,
b u tð Þ, qð Þ = 0,

8>>><
>>>:

ð23Þ

for all v ∈ Vσ,

u′ tð Þ, v − u tð Þ
D E

+ a u tð Þ, v − u tð Þð Þ + d u tð Þ, u tð Þ, v − u tð Þð Þ + J vð Þ − J u tð Þð Þ ≥ f tð Þ, v − u tð Þð Þ:

8<
: ð25Þ

for all v ∈ Vσ,
un − un−1

k
, v − un

� �
+ 1
2 a un + un−1, v − un
� �

+ 1
4 d un + un−1, un + un−1, v − un
� �

+ J vð Þ − J unð Þ ≥ f n, v − unð Þ,

8><
>: ð29Þ
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where f n = ð1/kÞÐ tntn−1 f ðtÞdt. We want to show that the solu-

tion un of (28)-(29) is uniformly bounded for all n ≥ 0, in both
the L2- and H1

0-norms. In what follows, we discretize in space
and derived such a result assuming some kind of stability
condition.

3. Numerical Scheme

For the spatial discretization, we introduce the general
framework as in, e.g., [18, 19]. We consider a family of finite
element spaces Vσh ⊂ L2ðΩÞ2, each of which is endowed with
two scalar products, ð·, · Þh and ðð·, · ÞÞh, with the corre-
sponding norms, k·kh and k·k1,h which mimic the L2- and
H1

0-norms. These norms are related as follows:

uhk kh ≤ K1 uhk k1,h,  for all uh ∈ Vσh, ð30Þ

uhk k1,h ≤ S hð Þ uhk kh,  for all uh ∈ Vσh, ð31Þ
where K1 is independent of h and SðhÞ is such that

S hð Þ⟶∞as h⟶ 0: ð32Þ

We assume that the operator A satisfies the same proper-
ties on Vσh as on V . We also assume that a trilinear continu-
ous form dð·, · , · Þ enjoys the same properties on
Vσh ×Vσh × Vσh with the constant cd independent of h.

We introduce the so-called restriction operators rh : Vσ

⟶Vσh and assume that, if u0 ∈ Vσ ∩ C1ð�ΩÞ2, then,

rhu0k kh ≤ K2 u0k k
C1 �Ω
� �2 , ð33Þ

with the constant K2 being independent of h (see, e.g., [18]).
As for the temporal discretization, we consider the

following scheme, a discrete version of (24)-(25): Find
unh ∈ Vσh such that

u0h = rhu0, ð34Þ

and for all n ≥ 1

Remark 2. For existence and uniqueness of the solution of
(34)-(35), one observes that the variational inequality (34)-
(35) can be seen as a case of following modified variational

formulation associated to the stationary Navier-Stokes equa-
tions with slip boundary condition type.

where Tðu, vÞ = ðu, vÞ + ðk/2Þaðu, vÞ, Dðu, v,wÞ = ðk/4Þdðu,
v,wÞ, jðvÞ = kJðvÞ and F = kf nh. Following [6, 20, 21], (36)
admits a unique solution vh ∈ Vσh.

4. The ðVh, k·khÞ-Stability
We start this section by performing the stability analysis of
the scheme (34)-(35) in ðVσh, k·khÞ and show that the solu-
tion is uniformly bounded, provided that a stability CFL-
type condition is satisfied.

Lemma 3. Let M ≥ K2
1

ffiffiffi
2

p k f k∞/ν be arbitrarily fixed and
assume that ku0k ≤M and

kS2 hð Þ ≤ 4ν

15 c2dM
2 + ν2

� � : ð37Þ

Then, for any integer n ≥ 1, we have

unhk k2h ≤ 1 + Ckð Þ−n u0k k2 + C fk k2∞ 1 − 1 + Ckð Þ−n½ �, ð38Þ

for all vh ∈ Vσh,
unh − un−1h

k
, vh − unh

� �
h

+ 1
2 a unh + un−1h , vh − unh
� �

+ 1
4 d unh + un−1h , unh + un−1h , vh − unh
� �

+ J vhð Þ − J unhð Þ ≥ f nh , vh − unhð Þh:

8><
>:

ð35Þ

Find vh ∈ Vσh,
T vh,wh − vhð Þ +D vh, vh,wh − vhð Þ + j whð Þ − j vhð Þ ≥ F,wh − vhð Þ,  for allwh ∈ Vσh,

(
ð36Þ
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unhk kh ≤M, ð39Þ

J unhð Þ ≤ K2
1

2ν
fk k2∞, ð40Þ

k〠
n

j=i
uj
h




 


2
1,h

≤ C M2 + n − i + 1ð Þk fk k2∞
� �

,  for all i = 1,⋯, n,

ð41Þ

〠
n

i=1
uih − ui−1h



 

2
h
≤ C M2 + nk fk k2∞
� �

: ð42Þ

Proof. We first establish the relation (52) below and next use
it to handle the proof by induction. First, let vh = 0 and
vh = 2unh in (35); one has

1
k

unh − un−1h , unh
� �

h
+ 1
2 a unh + un−1h , unh
� �

+ 1
4 d unh + un−1h , unh + un−1h , unh
� �

+ J unhð Þ = f nh, unhð Þh,

ð43Þ

that is

2 unh − un−1h , unh
� �

h
+ ka unh + un−1h , unh

� �
+ k
2 d unh + un−1h , unh + un−1h , unh
� �

+ 2kJ unhð Þ = 2k f nh, unhð Þh:
ð44Þ

Using relation (20), we have

2 unh − un−1h , unh
� �

h
= unhk k2h − un−1h



 

2
h
+ unh − un−1h



 

2
h
: ð45Þ

Using Cauchy-Schwarz inequality, (31) and (21), we
write

ka unh + un−1h , unh
� �

= 2νk unhk k21,h + ka un−1h − unh, unh
� �

≥ 2νk unhk k21,h − νk unhk k1,h unh − un−1h



 


1,h

≥ 2νk unhk k21,h − νkS hð Þ unhk k1,h unh − un−1h



 


h

≥ 2νk unhk k21,h −
1
6 unh − un−1h



 

2
h

−
3
2 ν

2k2S2 hð Þ unhk k21,h,
ð46Þ

and the right hand side of (44) is bounded as follows:

2k f nh , unhð Þh ≤ 2K1k f nhk kh unhk k1,h ≤ νk unhk k21,h +
K2

1
ν
k fk k2∞:

ð47Þ

To bound the nonlinear term dð·, · , · Þ in (44), we
write it as

k
2 d unh + un−1h , unh + un−1h , unh
� �

= kd un−1h , unh + un−1h , unh
� �

+ k
2 d unh − un−1h , unh + un−1h , unh
� �

:

ð48Þ

Using (18) and (19), we have

d un−1h , unh, unh − un−1h

� �
= d un−1h , unh, unh
� �

− d un−1h , unh, un−1h

� �
= d un−1h , unh, unh
� �

+ d un−1h , un−1h , unh
� �

= d un−1h , unh + un−1h , unh
� �

:

ð49Þ

Hence, using (16),(17), and (21) and recalling (31), we
obtain the following bounds:

kd un−1h , unh + un−1h , unh
� �

= kd un−1h , unh, unh − un−1h

� �
≤ cdkS hð Þ un−1h



 


h
unhk k1,h unh − un−1h



 


h

≤
1
6 unh − un−1h



 

2
h

+ 3
2 c

2
dk

2S hð Þ2 un−1h



 

2
h
unhk k21,h,

ð50Þ

k
2 d unh − un−1h , unh + un−1h , unh
� �

= −
k
2 d unh − un−1h , unh, un−1h

� �
≤ cdkS hð Þ unh − un−1h



 


h
unhk k1,h un−1h



 


h

≤
1
6 unh − un−1h



 

2
h

+ 3
8 c

2
dk

2S hð Þ2 un−1h



 

2
h
unhk k21,h:

ð51Þ
Gathering (44)-(51), we obtain

unhk k2h − un−1h



 

2
h
+ 1
2 unh − un−1h



 

2
h

+ νk 1 − 15
8ν kS hð Þ2 c2d un−1h



 

2
h
+ ν2

� � �
unhk k21,h

+ 2kJ unhð Þ ≤ K2
1
ν
k fk k2∞:

ð52Þ

Note that according to CFL-condition (37), if

unhk kh ≤M, ð53Þ

then

0 ≤ 1 − 15
8ν kS hð Þ2 c2d un−1h



 

2
h
+ ν2

� � �
≤
1
2 : ð54Þ

We now use the induction. It is clear that (38) and
(39) hold for n = 0. Then assuming that (38) holds for
n = 0,⋯,m − 1, for m ≥ 2, we see under the assumption of
Lemma 3 that (39) holds for n = 0,⋯,m − 1. Then (52),
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together with (39) and (37), implies

unhk k2h − un−1h



 

2
h
+ 1
2 unh − un−1h



 

2
h
+ ν

2 k unhk k21,h + 2kJ unhð Þ

≤
K2

1
ν
k fk k2∞,  for all n = 1,⋯,m:

ð55Þ

If we drop the last term on the left hand side and rewrite
the remaining equation with n replaced by j and take the sum
with j = i,⋯, n, for some 1 ≤ i ≤ n, we obtain

unhk k2h +
1
2〠

n

j=i
uj
h − uj−1

h




 


2
h
+ ν

2 k〠
n

j=i
uj
h




 


2
1,h

≤M2 + K2
1
ν

n − i + 1ð Þk fk k2∞,
ð56Þ

and hence, (41) and (42) hold for all n = 1,⋯,m − 1.
Now using (30), relation (55) implies

unhk k2h ≤
1

1 + ν/2K2
1

� �
k

� � un−1h



 

2
h

+ K2
1

1 + ν/2K2
1

� �
k

� �
ν
k fk k2∞,  for all n = 1,⋯,m:

ð57Þ

Using recursively (57), we obtain

umhk k2h ≤
1

1 + ν/2K2
1

� �
k

� �m u0h


 

2

h
+ K2

1
ν
k fk k2∞ 〠

m

i=1

1
1 + ν/2K2

1
� �

k
� �i ,

≤ 1 + ν

2K2
1
k

� �−m

u0


 

2 + C fk k2∞ 1 − 1 + ν

2K2
1
k

� �−m� �
:

ð58Þ

Thus, (38) holds for n =m.

5. The ðVh, k·k1,hÞ-Stability
For proving the uniform bound of unh in ðVh, k·k1,hÞ for all
n ≥ 1, we first show that it is bounded on any finite interval
of time. Then we extend the result to the infinite time using
the discrete uniform Gronwall lemma.

Lemma 4. LetM ≥ K2
1

ffiffiffi
2

p ðk f k∞ + C1kAgkSÞ/ν be arbitrarily
fixed and assume that ku0k ≤M, and assume also that the
CFL-condition (37) is satisfied. Assume that k also satisfies

k ≤
4K2

1

ν
≔ κ1: ð59Þ

Assume also that for some n the following is true:

K3M
2k L1 un−1h



 

2
1,h +

2κ1
ν

fk k2∞ + C1 Agk k2S
� �� �

≤
1
6
, ð60Þ

where L1 = 2 + 3ðc2dM2/ν2Þ, C1 = C2/λ1 is given by (65) and
K3 is given by (64). Then,

unhk k21,h ≤ un−1h



 

2
1,h 1 + K4M

2k un−1h



 

2
1,h + fk k2∞ + Agk k2S

� �h i
+ K5k fk k2∞ + Agk k2S

� �
,

ð61Þ

where K4 and K5 are positive constants independent of h
and n.

Proof. Let vh = unh − Aðunh + un−1h Þ in (35); we obtain

1
k

unh − un−1h , A unh + un−1h

� �� �
h
+ ν

2 A unh + un−1h

� �

 

2
h

+ 1
4 d unh + un−1h , unh + un−1h , A unh + un−1h

� �� �
≤ J unh − A unh + un−1h

� �� �
− J unhð Þ + f nh, A unh + un−1h

� �� �
h
,

ð62Þ

that is

unhk k21,h − un−1h



 

2
1,h +

ν

2 k A unh + un−1h

� �

 

2
h

+ 1
4 kd unh + un−1h , unh + un−1h , A unh + un−1h

� �� �
≤ kJ A unh + un−1h

� �� �
+ k f nh, A unh + un−1h

� �� �
h
:

ð63Þ

Using relations (16) and (21) and the uniform bound
(39), we majorize the trilinear form as

1
4 kd unh + un−1h , unh + un−1h , A unh + un−1h

� �� �
≤
1
4 kcd unh + un−1h



 

3/2
h

unh + un−1h



 


1,h A unh + un−1h

� �

 

3/2
h

≤
1
4 kcd

ffiffiffiffiffi
M

p
unhk k1,h A unh + un−1h

� �

 

3/2
h

n
+ un−1h



 


1,h A unh + un−1h

� �

 

3/2
h

o
≤
ν

8 k A unh + un−1h

� �

 

2
h
+ K3M

2k un−1h



 

4
1,h

+ K3M
2k unhk k41,h,

ð64Þ

where K3 = 27c4d/16ν3.

6 Journal of Applied Mathematics



J A unh + un−1h

� �� �
= Ag, A−1 A unτh + un−1τh

� ��� ��� �
S

≤ Agk kS A−1 A unτh + un−1τh

� ��� ��

 


S

≤ Agk kS unτh + un−1τh



 


S

≤ C Agk kS ∇ unh + un−1h

� �

 


≤

Cffiffiffiffiffi
λ1

p Agk kS A unh + un−1h

� �

 


≤
ν

8 A unh + un−1h

� �

 

2
h
+ C1

2
ν

Agk k2S,

ð65Þ

where C1 = C2/λ1.
Using Cauchy-Schwarz inequality and relation (21), we

have that

k f nh, A unh + un−1h

� �� �
h
≤ k fk k∞ A unh + un−1h

� �

 


h

≤
ν

8 k A unh + un−1h

� �

 

2
h
+ 2
ν
k fk k2∞:

ð66Þ

Gathering relations (63)-(66), we find

unhk k21,h − un−1h



 

2
1,h +

ν

4 k A unh + un−1h

� �

 

2
h

≤ K3M
2k un−1h



 

4
1,h + K3M

2k unhk k41,h
+ 2
ν
k fk k2∞ + C1

2
ν
k Agk k2S,

ð67Þ

from which we obtain

K3M
2k unhk k41,h − unhk k21,h + K3M

2k un−1h



 

4
1,h + un−1h



 

2
1,h

+ 2
ν
k fk k2∞ + C1

2
ν
k Agk k2S ≥ 0,  for all n ≥ 1:

ð68Þ

From (68), we have either

unhk k21,h ≤
1 −

ffiffiffiffiffiffiffiffiffi
Δn−1
h

q
2K3M

2k
ð69Þ

or

unhk k21,h ≥
1 +

ffiffiffiffiffiffiffiffiffi
Δn−1
h

q
2K3M

2k
, ð70Þ

where

Δn−1
h = 1 − 4K3M

2k K3M
2k un−1h



 

4
1,h + un−1h



 

2
1,h +

2
ν
k fk k2∞ + C1

2
ν
k Agk k2S

� �

≥
1
3 by 59ð Þ and 60ð Þ:

ð71Þ

Let us show that with our assumption, (70) is impossible.

Taking vh = un−1h in (35), we find

unh − un−1h



 

2
h
+ ν

2 k unhk k21,h −
ν

2 k un−1h



 

2
1,h

+ 1
4 kd unh + un−1h , unh + un−1h , unh − un−1h

� �
+ k J unhð Þ − J un−1h

� �� �
≤ k f nh , unh − un−1h

� �
h
:

ð72Þ

Using (30) and (21), we bound the right hand side of
(72) by

K1k fk k unhk k1,h + K1k fk k un−1h



 


1,h

≤
ν

12 k unhk k21,h +
ν

2 k un−1h



 

2
1,h +

7K2
1

2ν k fk k2∞:
ð73Þ

Since dð·, · , · Þ is a trilinear form, we can rewrite the
nonlinear term in (72) as

1
4 kd unh + un−1h , unh + un−1h , unh − un−1h

� �
= 1
2 kd unh, un−1h , unh

� �
−
1
2 kd un−1h , unh, un−1h

� �
,

ð74Þ

and using property (17), we obtain the following bounds:

1
2 kd unh , un−1h , unh

� �
≤
1
2 cdk unhk kh unhk k1,h un−1h



 


1,h

≤
ν

12 k unhk k21,h +
3
4ν c

2
dk unhk k2h un−1h



 

2
1,h,

1
2 kd un−1h , unh , un−1h

� �
≤
1
2 cdk un−1h



 


h
un−1h



 


1,h unhk k1,h

≤
ν

12 k unhk k21,h +
3
4ν c

2
dk un−1h



 

2
h
un−1h



 

2
1,h:

ð75Þ

Employing (40), we bound the last term of the left hand
side of (72) by

−
K2

1
2ν k fk k2∞ ≤ k J unhð Þ − J un−1h

� �� �
≤
K2

1
2ν k fk k2∞: ð76Þ

Gathering (72)-(76) and recalling (39), we obtain

unh − un−1h



 

2
h
+ ν

4 k unhk k21,h − ν + 3
2ν c

2
dM

2
� �

k un−1h



 

2
h

≤
8K2

1
2ν k fk k2∞,

ð77Þ

and hence,

k unhk k21,h ≤ 2 2 + 3
ν2

c2dM
2

� �
k un−1h



 

2
h
+ 16K2

1
ν2

k fk k2∞, ð78Þ
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from which we find, using (60),

2K3M
2k unhk k21,h ≤

2
3 < 1: ð79Þ

(79) contradicts (70), and therefore, we obtain

where x = 4K3M
2kðK3M

2kkun−1h k41,h + kun−1h k21,h + ð2/νÞk
k f k2∞ + C1ð2/νÞkkAgk2SÞ.

Since x ≤ 4/5 (by (60)) and

2
1 +

ffiffiffiffiffiffiffiffiffiffi
1 − x

p ≤ 1 + x
2 if 0 ≤ x ≤

4
5 , ð81Þ

we obtain, using (59) and (60) and the fact that M ≥ K2
1
ffiffiffi
2

p
ðk f k∞ + C1kAgkSÞ/ν,

unhk k21,h ≤ K3M
2k un−1h



 

4
1,h + un−1h



 

2
1,h +

2
ν
k fk k2∞ + C1

2
ν
k Agk k2S

� �

× 1 + 2K3M
2k K3M

2k un−1h



 

4
1,h + un−1h



 

2
1,h

�h
+ 2
ν
k fk k2∞ + C1

2
ν
k Agk k2S

��
≤ K3M

2k un−1h



 

4
1,h

+ un−1h



 

2
1,h +

2
ν
k fk k2∞ + C1

2
ν
k Agk k2S

+ 2K3M
2k L1 un−1h



 

2
1,h +

κ1
ν

fk k2∞ + C1 Agk k2S
� �� �2

≤ un−1h



 

2
1,h 1 + K4M

2k un−1h



 

2
1,h + fk k2∞ + Agk k2S

� �h i
+ K5k fk k2∞ + Agk k2S

� �
,

ð82Þ

with appropriate choice of constants K4 and K5.

To prove that scheme (35) is conditionally stable on a
finite interval of time, we need the following discrete
Gronwall lemma [22].

Lemma 5. Discrete Gronwall Lemma.
Given k > 0, an integer n⋆ > 0, and positive sequences αn,

βn, and γn such that

αn ≤ αn−1 1 + kβn−1ð Þ + kγn,  for all n = 1,⋯, n⋆, ð83Þ

we have

αn ≤ α0 exp k〠
n−1

i=0
βi

 !
+ 〠

n−1

i=1
kγi exp k〠

n−1

j=i
βj

 !
+ kγn,  for all n = 2,⋯, n⋆:

ð84Þ

Proof. Using recursively (83), we derive

αn ≤ α0
Yn−1
i=0

1 + kβið Þ + 〠
n−1

i=1
kγi
Yn−1
j=i

1 + kβið Þ + kγn, ð85Þ

and since 1 + x ≤ exp x, for all x ∈ℝ, the conclusion of the
lemma follows.

Proposition 6. Estimates on a finite interval of time.
Let T > 0 and M ≥ K2

1

ffiffiffi
2

p ðk f k∞ + C1kAgkSÞ/ν be fixed,
and let ku0k ≤M. Assume that, besides the CFL-condition
(37), k also satisfies

k ≤min κ1, κ2 M, fk k∞, Agk kS
� �

, κ3 M, u0h


 



1,h, fk k∞, Agk kS, T
� �n o

,

ð86Þ

where

κ2 M, fk k∞
� �

= 1

12K3K6M
2 fk k2∞ + Agk k2S
� � ,

κ3 M, u0h


 



1,h, fk k∞, T
� �

= 1

12K3M
2L1L2 M, u0h



 


1,h, fk k∞, Agk kS, T

� � :
ð87Þ

L2ð·, · , · , · Þ is a monotonically increasing function in all
its arguments and is given in (95) below and K6 = 8K2

1/ν2.
Then,

(a) Relation (58) holds for all n = 1,⋯,N = bT/kc (inte-
ger part of T/k)

(b) kunhk21,h ≤ L2ðM, ku0hk1,h, k f k∞, kAgkS, nkÞ, for all n
= 1,⋯,N = bT/kc

Proof. Let T > 0 and let h, k be such that (37) and (86) are
satisfied.

We will use induction on n. If n = 1, assumption (86)
implies

K3M
2k L1 u0h



 

2
1,h +

2κ1
ν

fk k2∞ + C1 Agk k2S
� �� �

≤
1
6 : ð88Þ

unhk k21,h ≤
1 −

ffiffiffiffiffiffiffiffiffi
Δn−1
h

q
2K3M

2k
= 2

K3M
2k un−1h



 

4
1,h + un−1h



 

2
1,h + 2/νð Þk fk k2∞ + C1 2/νð Þk Agk k2S
1 +

ffiffiffiffiffiffiffiffiffiffi
1 − x

p , ð80Þ
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Thus, the conclusion (61) of Lemma 4 holds for n = 1.
Now assume that (60) holds for n = 1,⋯,m, for some m ≤
N . Hence, (61) holds for n = 1,⋯,m. If we rewrite (61) as
(83) with

αn = unhk k21,h, βn = K4M
2 unhk k21,h + fk k2∞ + Agk k2S
� �

and γn
= K5 fk k2∞ + Agk k2S

� �
ð89Þ

and noting that, using (41), we have

k 〠
m−1

j=i
βj = K4M

2k 〠
m−1

j=i
uj
h




 


2
1,h

+ fk k2∞ + Agk k2S
� �

≤ 2K7M
2 M2 + m − ið Þk fk k2∞ + Agk k2S

� �� �
,

ð90Þ

and therefore,

〠
m−1

i=1
kγi exp k 〠

m−1

j=i
βj

 !
≤ K5k fk k2∞ + Agk k2S

� �

× 〠
m−1

i=1
exp 2K7M

2 M2 + m − ið Þk fk k2∞ + Agk k2S
� �� �� �

≤ K5 fk k2∞ + Agk k2S
� �

mk exp 2K7M
4� �

exp
� 2K7M

2mk fk k2∞ + Agk k2S
� �� �

:

ð91Þ

Similarly, for i = 0, we have

k 〠
m−1

j=0
βj = K4M

2k 〠
m−1

j=0
uj
h




 


2
1,h

+ fk k2∞ + Agk k2S
� �

≤ 2K7M
2 M2 +mk fk k2∞ + Agk k2S

� �� �
+ K4M

2k u0h


 

2

1,h:

ð92Þ

Using (86) and recalling that L1 ≥ 2, the last term of (83)
can be bounded as

K4M
2k u0h


 

2

1,h ≤
K4 u0h


 

2

1,h

12K3L1L2 M, u0h


 



1,h, fk k∞, Agk kS, T
� �

≤
K4
24K3

:

ð93Þ

Then, Lemma 5 and relations (90)-(93) imply

umhk k21,h ≤ L2 M, u0h


 



1,h, fk k∞, Agk kS,mk
� �

, ð94Þ

where

L2 M, u0h


 



1,h, fk k∞, Agk kS,mk
� �
= u0h


 

2

1,h exp 2K7M
4 + K4

24K3

� �
× exp 2K7M

2mk fk k2∞ + Agk k2S
� �� �

+ 2K5 fk k2∞ + Agk k2S
� �

mk exp 2K7M
2� �

exp
� 2K7M

2mk fk k2∞ + Agk k2S
� �� �

:

ð95Þ

Using (94) and recalling assumption (86), it is easily
checked that condition (60) holds for n − 1 =m, and by the
same Lemma 5, we have (61) that holds for n =m + 1.

To prove the uniform bound of kunhk1,h for all n ≥ 1, we
will repeatedly apply Proposition 6 on different intervals of
time, considering different initial values, and we will need
the following discrete uniform Gronwall lemma, a general-
ized version of the discrete uniform Gronwall lemma of
Shen [22], whose proof can be found in [7].

Lemma 7. Discrete uniform Gronwall lemma.
Given k > 0, positive integers n1, n2, n⋆ such that n1 ≤ n⋆,

n1 + n2 + 1 ≤ n⋆, and positive sequences αn, βn and γn
such that

αn ≤ αn−1 1 + kβn−1ð Þ + kγn, for all n = 1,⋯, n⋆: ð96Þ

Assume also that for any n′ satisfying n1 ≤ n′ ≤ n⋆ − n2

〠
n=n

′n′+n2kβn ≤ C1 n1, n⋆ð Þ, 〠
n′+n2

n=n′
kαn

≤ C2 n1, n⋆ð Þ, 〠
n′+n2

n=n′
kγn

≤ C3 n1, n⋆ð Þ,

ð97Þ

then we have

αn ≤
C3 n1, n⋆ð Þ

kn2
+ C2 n1, n⋆ð Þ

� �
exp C1 n1, n⋆ð Þð Þ, for any n1 + n2 + 1 ≤ n ≤ n⋆:

ð98Þ

Theorem 8. Uniform bound of kunhk1,h for all n ≥ 1. Let u0
∈ Vσ ∩ C1ð�ΩÞ2, f ∈ L∞ðℝ+ ;HÞ, and assume that ku0k ≤M
, where M ≥ K2

1

ffiffiffi
2

p ðk f k∞ + C1kAgkSÞ/ν. Also let r ≥ 4κ1 be
arbitrarily fixed and assume that, besides the CFL-condition
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(37), k also satisfies

k ≤min κ1, κ2 M, fk k∞, Agk kS
� �

, κ3


� M, K2 u0h


 



C1 �Ω
� �2 , fk k∞, Agk kS, r

� �
, κ3

� M, ρ1, fk k∞, Agk kS, r
� ��

,

ð99Þ

where κ1, κ2, κ3 are defined above and ρ1 is given in (107)
below.

Then, we have

unhk k21,h ≤ L3 u0h


 



C1 �Ω
� �2 , fk k∞, Agk kS

� �
, for all n ≥ 1,

ð100Þ

where L3ð·, · , · Þ is a continuous function defined on ℝ3
+,

increasing.
Moreover, there exists an N > 0 such that

unhk k21,h ≤ L4 fk k∞, Agk kS
� �

, for all n ≥N: ð101Þ

Proof. In order to derive uniform bounds kunhk1,h for all n ≥ 1
, we apply Proposition 6 on successive intervals of time, with
different initial values. On each interval considered, we
obtain a bound L2ð·, · , · , · Þ which depends on the norm
ku0hk1,h and on the length of the interval. Using the discrete
uniform Gronwall lemma, we majorize the norm of the
initial values ku0hk1,h by a constant ρ1, and recalling the fact
that L2 is an increasing function of its arguments, we obtain
a bound independent on the initial value considered.

First using (33) and (99) and since κ3 is a decreasing
function of its arguments, we can apply Proposition 6 with

T = r to obtain

unhk k21,h ≤ un−1h



 

2
1,h 1 + K4M

2k un−1h



 

2
1,h + fk k2∞ + Agk k2S

� �h i
+ K5k fk k2∞ + Agk k2S

� �
,

ð102Þ

unhk k21,h ≤ L2 M, u0h


 



1,h, fk k∞, Agk kS, r
� �

, for all n = 1,⋯,Nr ≔ r/kb c:

ð103Þ
To extend the bound (103) to n =Nr + 1,⋯, 2Nr , we

apply again Proposition 6, namely, L2ðM, kuNr
h k1,h, k f k∞,

kAgkS, rÞ depends on the discrete initial value; we want to

bound kuNr
h k1,h independent of h and k.

Rewrite (102) in the form of (96) with αn = kunhk21,h,
γn = K5ðk f k2∞ + kAgk2SÞ and βn = K4M

2ðkun−1h k21,h + k f k2∞
+ kAgk2SÞ. Then, we apply Lemma 7 with n1 = 1, n2 =Nr − 2,
n⋆ =Nr to obtain the bound of kuNr

h k1,h. For n′ = 1, 2, using
(41), we have

k〠
n=n

′n′+n2βn = K4M
2k〠

n=n
′n′+n2 unhk k21,h + fk k2∞ + Agk k2S

� �
≤ K8M

2 M2 + r fk k2∞ + Agk k2S
� �� �

,
ð104Þ

k〠
n=n

′n′+n2γn = K5k〠
n=n

′n′+n2 fk k2∞ + Agk k2S
� �

≤ K5r fk k2∞ + Agk k2S
� �

,
ð105Þ

k〠
n=n

′n′+n2αn = k〠
n=n

′n′+n2 unhk k21,h ≤ K9 M2 + r fk k2∞
� �

:

ð106Þ
Then, Lemma 7, together with the assumption r ≥ 4κ1,
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Figure 1: Velocity field, respectively, for g = 1 and g = 4.
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yields

uNr
h




 


2
1,h

≤ 2K9 M2/r + fk k2∞
� �

+ K5r fk k2∞ + Agk k2S
� �� �

× exp K8M
2 M2 + r fk k2∞ + Agk k2S

� �� �� �
≔ ρ1 M, fk k∞, Agk kS, r

� �
:

ð107Þ

Taking into account assumption (99) on the time step k,
relation (107), and the fact that L2ð·, · , · Þ is an increasing
function of its arguments, we apply Proposition 6 with T = r
and initial data uNr

h . We obtain that the relation (61) holds
for all n =Nr + 1,⋯, 2Nr, and

unhk k21,h ≤ L2 M, uNr
h




 



1,h
, fk k∞, Agk kS, r

� �
≤ L2 M, ρ1, fk k∞, Agk kS, r

� �
, for all n =Nr + 1,⋯, 2Nr:

ð108Þ

Applying again Lemma 7 with n1 =Nr + 1, n2 =Nr − 2
and n⋆ = 2Nr, we obtain

u2Nr
h




 


2
1,h

≤ ρ1: ð109Þ

Iterating the above procedure, we find

unhk k21,h ≤ L2 M, ρ1, fk k∞, Agk kS, r
� �

≔ L3 fk k∞, Agk kS
� �

, for alln ≥Nr ,
ð110Þ

and recalling (103), we conclude

As for the N beyond which kunhk1,h is bounded indepen-
dent of u0, we can evidently take N =Nr (see (110)). This
completes the proof of the theorem.

6. Numerical Experiments

Let us explain our numerical experiments. We assume Ω =
ð0, 1Þ2, the boundary of which consists of two portions Γ
and S given by

Γ = 0, yð Þ, 0 < y < 1U x, 0ð Þ, 0 < x < 1U 1, yð Þ, 0
< y1U x, 1ð Þ, 0 < x < 1,

S = x, 1ð Þ
0 < x < 1

 �
:

ð112Þ

The time interval is given by ½0, T� with T = 1. For the
triangulation T h of �Ω, we employ a uniform N ×N mesh,
where N denotes the division number of each side of the
domain. The implementation is done by extending the
Matlab code developed in [23, 24]. In all the examples pre-

sented, the velocity and pressure will be approximated by P
2 − P1 element. Let us consider

u1 t, x, yð Þ = 20x2 1 − xð Þ2y 1 − 2yð Þ exp −tð Þ,
u2 t, x, yð Þ = −20x 1 − xð Þ 1 − 2xð Þ 1 − yð Þ2y2 exp −tð Þ,
p t, x, yð Þ = 2x − 1ð Þ 2y − 1ð Þ exp −tð Þ:

8>><
>>:

ð113Þ

The initial condition is given by u0ðx, yÞ = ðu1ð0, x, yÞ,
u2ðx, yÞÞ.

The functions f and g are chosen such that ðu, pÞ
defined above is the solution of (1)-(5).

It is easy to verify that the solution u satisfies u = 0 on Γ,
u · n = u2 = 0, u1 ≠ 0 on S. By direct computations, we have

στ = −60x2 1 − xð Þ2 exp −tð Þ on S × 0, T½ �,
uτ = 20x2 1 − xð Þ2 exp −tð Þ on S × 0, T½ �,

max
S

στj j = 3:75 exp −tð Þ, ∀t ∈ 0, T½ �:
ð114Þ

unhk k21,h ≤max L2 M, u0h


 



1,h, fk k∞, Agk kS, r
� �

, L3 fk k∞, Agk kS
� �n o

≤max L2 M, K2 u0k k
C1 �Ω
� �2 , fk k∞, Agk kS, r

� �
, L3 fk k∞, Agk kS
� � �

 by  32ð Þ≔ L4 K2 u0k k
C1 �Ω
� �2 , fk k∞, Agk kS

� �
, for all n ≥ 1:

ð111Þ
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On the other hand, from the slip boundary conditions
(5), we have

στj j ≤ g on S × 0, T½ �, ð115Þ

then we find from (104) that for the given function g:

g ≥ 3:75 exp −tð Þ⇒ 113ð Þ remains a solution,
g < 3:75 exp −tð Þ⇒ 6:3ð Þ is no longer a solution and a non

− trivial slip occurs:
ð116Þ

Indeed, it is observable in Figure 1, slip and non-slip
condition on the boundary. In fact in Figure 1(a), g < 3:75
exp ð−tÞ and we see the manifestation of the slip due to
the adherence of the flow at the boundary, whereas in
Figure 1(b), g ≥ 3:75 exp ð−tÞ and no slip occurs.

To analyze the convergence rate, we simulated the same
problem. Since we do not know the explicit exact solution
when g = 1, we employ the approximate solutions with N
= 60 as the reference solutions ðuref , pref Þ, and we compute
the L2-norm for velocity of the difference of the reference
solution and the approximate solution ðuh, phÞ.

For the convergence with respect to the mesh size h, we
choose k = h2 and we solve problem (35) with different
values of h (h = 1/5 ; 1/10 ; 1/15 ; 1/20 ; 1/25). In Figure 2(a),
we plot the log of L2-errors against log ðhÞ.

For the convergence with respect to the time step k, h is
fixed (h = 0:01) and we solve problem (35) with different
time steps k = 0:1 ; 0:05 ; 0:025 ; 0:0125. Figure 2(b) shows
the plots of logL2-error norm against log ðkÞ.

7. Conclusions

In this paper, we have proposed and analyzed the Crank-
Nicolson scheme for the two-dimensional Navier-Stokes

equations driven by slip boundary conditions of friction
type. We established the well-posedness and stability of the
numerical scheme in L2-norm and H1-norm for all positive
time using the Crank-Nicholson scheme in time and the
finite element method in space. We have proven that the
numerical scheme is stable in L2 and H1-norms with the
aid of different versions of discrete Grownwall lemmas,
under a CFL-type condition.
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