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The problems of polynomial interpolation with several variables present more difficulties than those of one-dimensional
interpolation. The first problem is to study the regularity of the interpolation schemes. In fact, it is well-known that, in
contrast to the univariate case, there is no universal space of polynomials which admits unique Lagrange interpolation for all
point sets of a given cardinality, and so the interpolation space will depend on the set Z of interpolation points. Techniques of
univariate Newton interpolating polynomials are extended to multivariate data points by different generalizations and practical
algorithms. The Newton basis format, with divided-difference algorithm for coefficients, generalizes in a straightforward way
when interpolating at nodes on a grid within certain schemes. In this work, we propose a random algorithm for computing
several interpolating multivariate Lagrange polynomials, called RLMVPIA (Random Lagrange Multivariate Polynomial
Interpolation Algorithm), for any finite interpolation set. We will use a Newton-type polynomials basis, and we will introduce
a new concept called ðZ, zÞ-partition. All the given algorithms are tested on examples. RLMVPIA is easy to implement and
requires no storage.

1. Introduction

Let K be a commutative field and p, n ∈ℕ∗. By Πp =K½x1,
⋯, xp�, we denote the algebra of all polynomials in p vari-

ables, and we denote by Πp
d the subspace of all polynomials

of total degree less than or equal to d, where d is a nonnull
integer.

Given a finite interpolation set Zn = fz1,⋯zng ⊂Kp of
distincts nodes, the Lagrange interpolation problem consists
of finding, for a given data vector R = ðrz : z ∈ ZnÞ ∈KZn , a
polynomial P ∈Πp such that

P Znð Þ = R, that is, P zð Þ = rz , z ∈ Zn: ð1Þ

We will then say that P is an interpolating polynomial
for R on Z. More precisely, Zn is called poised or correct
or unisolvent [1–3] for a subspace P of Πp; if the Lagrange

interpolation problem (1) has a unique interpolating
polynomial in P for any given data vector R = ðrz : z ∈
ZnÞ ∈KZn , it means, in other words, that the function

P ∈P ↦ P zð Þ: z ∈ Znð Þ ∈KZn ð2Þ

is a linear isomorphism. Then, it is necessary that dim
P = n. The problem of researching such subspaces will
be denoted P ðZnÞ.

In this article, we construct a random algorithm for find-
ing several sub-spaces solutions of the problem P ðZnÞ.

It is well-known that in the univariate case (p = 1) the
Lagrange interpolation problem with respect to n distinct
points is always uniquely solvable, if one takes P to be the
space of all polynomials of degree less than or equal to n − 1.
In several variables, however, the situation is much more
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difficult. In order to successfully interpolate Zn on Πp
d, we

must have

n =
p + d

p

 !
, ð3Þ

since

dim Πp
d =

p + d

p

 !
: ð4Þ

And even if this is the case, there can be the problem
that the points lie on some algebraic surface of degree d;
i.e., there is some polynomial Q of total degree at most d
which vanishes on Zn . For example, take p = 2, d = 1, and
Z = fð−1, 0Þ, ð0, 0Þ, ð1, 0Þg; it is easy to see that the set Z is
not poised on the spaceΠ2

1 = spanf1, x, yg (since P = y van-
ishes on Z).

So the poisedness of multivariate polynomial interpola-
tion depends on the geometric structure of the interpolation
set Zn. Tensor product interpolation is the oldest particular
case extending the univariate theory where the interpolation
set and space are obtained by tensor products of the univar-
iate ones. The Lagrange formula and the Newton formula
with divided differences are easily extended to this problem,
as can be found in [4–15].

In a recent publication [7], the author proposed a gener-
alization of the univariate program of Newton form basis
and divided-difference algorithm in Kp. The required inter-
polation sets are those which admit an indexation having a
regular structure as triangular, rectangular, or more gener-
ally a lower set [2, 7, 8, 16–18]. He shows how the index
set structure appropriately determines the interpolation
space. When the sum of indices is bounded by d, there is a
unique interpolation with a polynomial of degree ≤ d.

In [5], by using the Schur complements and the Sylvester
identity, the authors established the RMVPIA (Recursive
MultiVariate Polynomial Interpolation Algorithm) when
the interpolation set is a full grid.

Polynomial interpolation with several variables occurs in
several topics of applied mathematics and engineering
[19–22], hence the interest in seeking consistent and simple
to implement polynomial interpolation algorithms.

In this work, we propose a new algorithm for computing
several interpolation spaces for any finite interpolation set.
This algorithm which is called RLMVPIA (Random
Lagrange MultiVariate Polynomial Interpolation Algorithm)
is based on a recursive random scheme. RLMVPIA allows us
to simultaneously determine interpolating polynomials. For
that, we will use a Newton-type polynomials basis, and we
will introduce a new concept called ðZ, zÞ-partition. All the
given algorithms are tested on examples. As RMVPIA,
RLMVPIA is easy to implement and requires no storage.

The principle of our approach is to solve P ðZnÞ know-
ing a solution of P ðZn−1Þ, where Zn−1 = fz1,⋯, zn−1g is a
subset of Zn with n − 1 nodes. More precisely, if P n−1 is an
interpolation space for Zn−1, and Pn−1 ∈P n−1 verifying

Pn−1ðzÞ = rz , z ∈ Zn−1; then, we construct, in a way, a poly-
nomial Qn verifying

Qn zð Þ = 0,∀z ∈ Zn−1,
Qn znð Þ ≠ 0:

ð5Þ

So P n =P n−1 +KQn is a solution of P ðZnÞ, and the
solution of (1) in P n is a polynomial in the form

Pn = Pn−1 + snQn, ð6Þ

where sn is a scalar to compute.
This work is organized as follows: in Section 2 we pres-

ent the notion of ðZ, zÞ-partition. In Section 3, we give the
algorithm RLMVPIA. In Section 4, we illustrate our algo-
rithms by different examples.

2. ðZ, zÞ-Partition Concept

This new approach takes into consideration the distribution
of the nodes of the considered interpolation set Zn by intro-
ducing a new concept described in the following. We define
a notion of ðZ, zÞ-partition, and we present a random algo-
rithm for computing the polynomials Qi, for i ∈ ½½1 ; n��,
which will be used for giving the algorithm RLMVPIA.

In this section, Z is a finite set of Kp, p ∈ℕ∗, and z ∈
Kp \ Z. For k ∈ f1,⋯, pg, we note xk the canonical coordi-
nated form, defined as

xk :
Kp ⟶ K

t = α1,⋯, αp
� �

↦ xk tð Þ = αk
, ð7Þ

and xkðZÞ = fxkðtÞ: t ∈ Zg.

Definition 1. For k ∈ ½½1 ; p��, let Ik be a subset of xkðZÞ.

(1) It will be said that ðI1,⋯, IpÞ is a Z-partition if

∀t ∈ Z,∃k ∈ 1 ; p½ �½ �: xk tð Þ ∈ Ik ð8Þ

In this case, ∑p
k=1 card ðIkÞ is called the length of the Z

-partition ðI1,⋯, IpÞ.

(2) Let z ∈Kp \ Z. It is said that ðI1,⋯, IpÞ is a ðZ, zÞ
-partition if

(a) ðI1,⋯, IpÞ is a Z-partition
(b) ∀k ∈ ½½1 ; p��, xkðzÞ ∉ Ik

Proposition 2. For all z ∈Kp \ Z, a ðZ, zÞ-partition still
exists.
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Proof. To prove that, we show how to construct a ðZ, zÞ
-partition. Let ϕ be the function

Z⟶ 1 ; p½ �½ �,
t⟶max k : xk tð Þ ≠ xk zð Þf g: ð9Þ

ϕ is well defined because z ∉ Z. We set

ϕ Zð Þ = p1,⋯, pif g ⊂ 1 ; p½ �½ �, ð10Þ

and for k ∈ ½½1 ; p��, we take

Ik =
xk ϕ−1 kf gð Þ� �

, if k ∈ p1,⋯, pif g,
∅, else:

(
ð11Þ

Then ðI1,⋯, IpÞ is a ðZ, zÞ-partition.
To illustrate the proof of the proposition, we give below

some examples in the cases p = 2 and p = 3

2.1. Case p = 2

Example 1. We set

Z = 1, 1ð Þ, 2, 1ð Þ, 0, 2ð Þ, 1, 2ð Þ, 2, 2ð Þf g and z = 3, 1ð Þ: ð12Þ

We have ϕðZÞ = f1, 2g and

ϕ−1 1f gð Þ = 1, 1ð Þ, 2, 1ð Þf g, ϕ−1 2f gð Þ = 0, 2ð Þ, 1, 2ð Þ, 2, 2ð Þf g:
ð13Þ

It follows that

I1 = x1 ϕ−1
� �

1f gð Þ = 1, 2f g, I2 = x2 ϕ−1
� �

2f gð Þ = 2f g: ð14Þ

Example 2. We take

Z = 1,−1ð Þ, 1, 0ð Þ, 1, 1ð Þ, 1, 2ð Þ, 1, 3ð Þ, 1, 4ð Þ, 5, 4ð Þ, 6, 4ð Þ, 7, 4ð Þ, 8, 4ð Þ, 9, 4ð Þf g,
ð15Þ

with z = ð11, 5Þ, and we have ϕðZÞ = f2g, so we obtain

I1 =∅,I2 = −1, 0, 1, 2, 3, 4f g: ð16Þ

2.2. Case p = 3

Example 3. We take

Z = 0, 1, 0ð Þ, 1, 1, 0ð Þ, 7,−1, 0ð Þ, 2, 2,−1ð Þ, 2, 2, 3ð Þ, 0, 3, 1ð Þ, 5, 3, 1ð Þ, −10, 3, 1ð Þf g,
ð17Þ

with z = ð2, 3, 1Þ, and we have ϕðZÞ = f1, 3g,

ϕ−1 1f gð Þ = 0, 3, 1ð Þ, 5, 3, 1ð Þ, −10, 3, 1ð Þf g,
ϕ−1 3f gð Þ = 0, 1, 0ð Þ, 1, 1, 0ð Þ, 7,−1, 0ð Þ, 2, 2,−1ð Þ, 2, 2, 3ð Þf g,

ð18Þ

so

I1 = 0, 5, − 10f g, I2 =∅ and I3 = 0, − 1, 3f g: ð19Þ

Now, one can easily get the following result.

Proposition 6. Let I = ðI1,⋯, IpÞ be a ðZ, zÞ-partition, and
let QI be the polynomial associated, given by

QI =
Yp
k=1

Y
α∈Ik

xk − αð Þ, ð20Þ

with the convention that the product is equal to 1 when the set
of indices is empty. So we have

∀t ∈ Z,
QI tð Þ = 0:

QI zð Þ ≠ 0:

ð21Þ

The following algorithm called ZPNA (ðZ, zÞ-Partition
Newton Algorithm) randomly constructs a ðZ, zÞ-partition
and the associated polynomial.

Remark 7.

input: Z, z
Initialization: I1,⋯, Ip : p empty sets
for t in Z (a random choice)

Index = f1,⋯, pg
i = a random number of Index:
while xiðtÞ = xiðzÞ:

remove i from Index
i = a random number of Index

endwhile
remove i from Index
for j in Index:

if xjðtÞ in I j:
pass to next element in Z

endif
endfor
if xiðtÞ not in Ii

add xiðtÞ to Ii
Q =Q ∗ ðxi − xiðtÞÞ

endif
endfor
output Q, I1,⋯, Ip

Algorithm 1: ZPNA
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(1) All operations in the algorithm ZPNA have constant
costs, so the complexity depends linearly on the
length of Z

(2) For a ðZ, zÞ-partition, the total degree of the associ-
ated polynomial is equal to the length of the parti-
tion which is less than ∑p

k=1 card ðxkðZÞÞ
(3) The algorithm ZPNA is not deterministic. If we

apply the algorithm several times, one can obtain
several ðZ, zÞ-partitions from which we can choose
those of minimum length

Point 3 of the precedent remark can be illustrated by the
following example:

Z = 1,−1ð Þ, 1, 0ð Þ, 1, 1ð Þ, 1, 2ð Þ, 1, 3ð Þ, 1, 4ð Þ, 5, 4ð Þ, 6, 4ð Þ, 7, 4ð Þ, 8, 4ð Þ, 9, 4ð Þf g,
ð22Þ

and z = ð11, 5Þ. Applying the algorithm ZPNA several times,
we get the following ðZ, zÞ-partitions and the associated
polynomials.

(1) I1 = f1g, I2 = f4g and Q = ðx − 1Þðy − 4Þ
(2) I1 = f1, 5, 6, 7g, I2 = f−1, 4g and Q = ðx − 7Þðx − 6Þð

x − 5Þðx − 1Þðy − 4Þðy + 1Þ
(3) I1 =∅, I2 = f−1, 0, 1, 2, 3, 4g and Q = yðy − 4Þð

y + 1Þðy − 1Þðy − 2Þðy − 3Þ
(4) I1 = f1, 5, 6, 7, 8g, I2 = f−1, 0, 1, 2, 4g and Q = yðx −

8Þðx − 7Þðx − 6Þðx − 5Þðx − 1Þðy − 4Þðy − 2Þðy − 1Þðy
+ 1Þ

It is clear that the first solution is the best.

Theorem 8. The algorithm ZPNA is correct.

Proof. For proving that, we use loop invariant to help us
understand why an algorithm is correct. We must show
three things about a loop invariant:

(i) Initialization: it is true prior to the first iteration of
the loop.

(ii) Maintenance: if it is true before an iteration of the
loop, it remains true before the next iteration.

(iii) Termination: when the loop ends, the invariant
gives us a useful property showing that the algo-
rithm is correct.

For the ZPNA algorithm, we note for k ∈ ½½1 ; n��, z1,⋯zk
the elements treated in the k first iterations, Zk = fz1,⋯zkg
et Ik1,⋯, Ikp the values of I1,⋯, Ip in the iteration k. So the
following property is a loop invariant: At the start of each
iteration of the for loop, the Ik−11 ,⋯, Ik−1p is a ðZk−1, zÞ
-partition.

For initialization, we start by showing that the loop invari-
ant holds before the first loop iteration: when k = 1, the Ik−11 ,
⋯, Ik−1p are empty, and no item is treated, we take Z0 =∅, so

by convention, the Ik−11 ,⋯, Ik−1p is a ðZk−1, zÞ-partition.
For maintenance, next, we tackle the second property,

showing that each iteration maintains the loop invariant.
Assume that the Ik−11 ,⋯, Ik−1p is a ðZk−1, zÞ-partition, we
note zk the element chosen at the start of the iteration k,
as z ∉ Z, the loop (while xiðtÞ = xiðzÞ) ends, so we note i
the index founded such as xiðzkÞ ≠ xiðzÞ. The analysis of
the sequence of the iteration k makes it possible without
difficulty to assert that Ikj = Ik−1j if j ≠ i and for j = i two

cases arise: either Iki = Ik−1i if xjðzkÞ is already present in

one of the I j, otherwise Iki = Ik−1i ∪ fxiðzkÞg. In both cases,

we have Ik1,⋯, Ikp is a ðZk, zÞ-partition: for t ∈ Zk, if t ∈
Zk−1, then there is a j ∈ ½½1 ; n�� such as xjðtÞ ∈ I j because
Ik−11 ,⋯, Ik−1p is a ðZk−1, zÞ-partition; if t = zk by construc-
tion, we also have the result. On the other hand, as xjðzÞ is
not in any of the Ik−1j , j ∈ ½½1 ; n��, and as by construction

xiðzkÞ ≠ xiðzÞ, it follows that xiðzÞ ∉ Iki , hence the result.
For termination, we examine finally what will happen

when the loop terminates. When the loop terminates (for t
in Z (a random choice)), the set Zn = Z, with the invariant
of the loop, we have In1 ,⋯, Inp (which are the sets returned
by the algorithm) which is a ðZn = Z, zÞ-partition. Therefore,
the algorithm is correct.

3. RLMVPIA Random Approach

For solving, recursively, the problem P ðZnÞ, we start by
choosing P 1 = spanfð1Þg as an obvious solution of the
problem P ðZ1Þ, since we have, for all r1 ∈K, the constant
polynomial

P1 = r1, ð23Þ

which is the interpolating polynomial of R1 = ðr1Þ on Z1 =
fz1g in P 1: So we take Q1 = 1 as a basis of P 1 and we will
use the notion of ðZ, zÞ-partition for computing the polyno-
mials Qi, for i ∈ ½½2 ; n��, in order to give the algorithm
RLMVPIA.

The following result shows how the solution of the prob-
lem P ðZnÞ can be constructed recursively using the relation-
ship (6).

Theorem 9. For k ∈ f2,⋯, ng, let I ðkÞ = ðIðkÞ1 ,⋯, IðkÞp Þ be a
ðZk−1, zkÞ-partition, and let

Qk =
Yp
i=1

Y
α∈I kð Þ

i

xi − αð Þ ð24Þ

be the associated polynomial. Then, the space P k = spanfQ1,
⋯Qkg is a solution of the problem P ðZkÞ. More precisely, giv-
ing Rk = ðri : i = 1,⋯, kÞ a data vector, the interpolating

4 Journal of Applied Mathematics



polynomial for Rk on Zk in P k is given by Pk:

Pk = Pk−1 + skQk, ð25Þ

where Pk−1 is the interpolating polynomial for Rk−1 = ðri : i =
1,⋯, k − 1Þ on Zk−1 in P k−1 = spanfQ1,⋯,Qk−1g and

sk =
rk − Pk−1 zkð Þ

Qk zkð Þ : ð26Þ

Proof. Let Rk = ðri : i = 1,⋯, kÞ be a given data vector, and let
us consider Pk−1 the interpolating polynomial for Rk−1 =
ðri : i = 1,⋯, k − 1Þ on Zk−1 in P k−1. For i = 1,⋯, k − 1,
as ðIðkÞ1 ,⋯, IðkÞp Þ is a ðZk−1, zkÞ-partition, then QkðziÞ = 0.
So the polynomial Pk defined by the expression (25)
above verifies PkðziÞ = Pk−1ðziÞ = ri, i = 1,⋯, k − 1. On the
other hand, we have by definition xiðzkÞ ∉ Iki , ∀i ∈ f1,⋯, pg;
then, QkðzkÞ ≠ 0. So taking

sk =
rk − Pk−1 zkð Þ

Qk zkð Þ , ð27Þ

we obtain PkðzkÞ = rk: We conclude that

Pk zið Þ = ri, ∀i = 1,⋯, k, ð28Þ

so Pk is an interpolating polynomial for Rk on Zk in P k =
spanfQ1,⋯,Qkg. We deduce that the linear mapping

P ∈P k ↦ P z1ð Þ,⋯, P zkð Þð Þ ∈KZk ð29Þ

is surjective. But as dim P k ≤ k, we conclude that the mapping
is a linear isomorphism and that P k is an interpolation space
for Zk, hence the result.

Remark 10.

(1) The interpolating polynomials Pk obtained by the
previous theorem depend on the indexation choice
of the nodes of Zn

(2) For constructing a solution of P ðZnÞ, the following
algorithm RLMVPIA chooses a random indexation
of the interpolation nodes

4. Examples

4.1. Examples for the Case p = 2. We will give two examples:
the first one concerns the particular case where the interpo-
lation set is a full grid. We will see that the RLMVPIA and
the RMVPIA [5] are equivalent. The second one is for a ran-
dom configuration.

4.1.1. Example 1: Grid Case. When the interpolation set is a
full grid, RLMVPIA gives a similar result to the one obtained
in [5, 7]. In the following example already studied in [5]

where the set of nodes, Zn = Zðn1+1Þðn2+1Þ is presented in
Figure 1.

We take

Z12 = 0, 1, 2f g × 0, 1,− 12 ,
1
2

� �
,

R12 = 1, 0,−2,−1, 1, 12 ,−1, 1, 0,
3
2 ,

7
3 ,−4,

� �
,

ð30Þ

by applying the random RLMVPIA, several times; we obtain
the same interpolating polynomial given in [5].

P = 1 − 1
2 x −

1
2 x

2 + 3y + 71
12 xy −

21
4 x2y +

−3y2 + 107
6 xy2 −

49
6 x2y2 − 2y3 − 20xy3 + 38

3 x2y3:

ð31Þ

For a random configuration using the RLMVPIA, we
obtain different solutions, as can be seen in the following
example.

4.1.2. Example 2. In this example, we take the interpolation
set (Figure 2)

Z11 = 1,−1ð Þ, 1, 0ð Þ, 1, 1ð Þ, 1, 2ð Þ, 1, 3ð Þ, 1, 4ð Þ, 5, 4ð Þ, 6, 4ð Þ, 7, 4ð Þ, 8, 4ð Þ, 9, 4ð Þf g,
ð32Þ

and for interpolation values

R11 = 34, 34,−19,−16,−4,−18,−1,24,18,−27,−4f g, ð33Þ

by applying the random RLMVPIA several times; we give
among the solutions obtained the two following ones. The
first one

Sol1 =
79
140 x

5 −
359
24 x4 + 3103

21 x3 −
15961
24 x2 + 548803

420 x

+ 7
5 y

5 −
27
2 y4 + 229

6 y3 − 13y2 − 991
15 y − 741,

ð34Þ

Input: Interpolation set Z and interpolation values R
n = lenght(Z)
P0=0
Z0 = ½�
for k = 1 to n :

zk = a random point of Z
Qk = ZPNAðZk−1, zkÞ[1]
Zk = Zk−1 ∪ fzkg
remove zk from Z
sk = ðrk, − , Pk−1; ðzkÞÞ/QkðzkÞ
Pk = Pk−1 + skQk

endfor
return Pn

Algorithm 2: RLMVPIA.
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Figure 2: The interpolation set is a random configuration.
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and the second one

Sol2 = −
1

4800 x
5y5 + 53

40320 x
5y4 −

1
630 x

5y3 −
53

40320 x
5y2

+ 181
100800 x

5y + 187
336 x

5 + 7
960 x

4y5 −
53
1152 x

4y4

+ 203
2880 x

4y3 + 53
1152 x

4y2 −
7
90 x

4y −
187
12 x4

−
97
960 x

3y5 + 5141
8064 x

3y4 −
21841
20160 x

3y3 −
5141
8064 x

3y2

+ 11939
10080 x

3y + 4559
28 x3 + 133

192 x
2y5 −

5035
1152 x

2y4

+ 21607
2880 x2y3 + 5035

1152 x
2y2 −

11801
1440 x2y −

18547
24 x2

−
1879
800 xy5 + 103507

6720 xy4 −
175969
6720 xy3 −

103507
6720 xy2

+ 918863
33600 xy + 531425

336 x + 63
20 y

5 −
201
8 y4

+ 5555
96 y3 −

11
8 y2 −

41437
480 y −

7381
8 :

ð35Þ

4.2. Examples for the Case p = 3. In this section, we also give
two examples for a full grid and for a random configuration.

4.2.1. Example 3: Grid Case. In this example, we take the full
grid of ℝ3 considered in [5] (Figure 3)

Z12 = 0, 1f g × 2, 0f g × 1,− 1
2 ,

7
3

� �
, ð36Þ

and the interpolation values

R12 = 1, 0,−2,−1, 1, 12 ,−1, 1,
22
7 , 0, 92 ,−3

� �
: ð37Þ

by applying the random RLMVPIA, several times; we obtain
the same interpolating polynomial given in [5].

P = −943
408 + 1091

408 x + 8647
5712 y −

8899
5712 y +

139
408 xz +

3887
5712 yz

−
671
408 z −

1283
5712 xyz +

133
68 z2 −

137
68 xz2 −

661
952 yz

2 + 745
952 xyz

2,

ð38Þ

which coincides with the solution obtained by RMVPIA
in [5].

4.2.2. Example 4. In this example, we consider another con-
figuration of the interpolation set in ℝ3 (Figure 4)

Z12 = 0, 0, 0ð Þ, 0, 0, 1ð Þ, 0, 0, 2ð Þ, 0, 0, 3ð Þ, 0, 1, 3ð Þ, 0, 2, 3ð Þ,f
� 0, 3, 3ð Þ, 0, 4, 3ð Þ, 1, 4, 3ð Þ, 2, 4, 3ð Þ, 3, 4, 3ð Þ, 4, 4, 3ð Þg,

ð39Þ

and we take them as interpolation values

R12 = 0, 4, 13 , 1,−1, 7,
4
3 , 2, 3,

1
2 ,−2, 5

� �
: ð40Þ

Applying the random RLMVPIA several times, we give
among the solutions obtained the two following ones. The
first one

Sol1 =
1
576 x

4y4z3 −
1
192 x

4y4z2 + 1
288 x

4y4z −
1
96 x

4y3z3

+ 1
32 x

4y3z2 −
1
48 x

4y3z + 11
576 x

4y2z3 −
11
192 x

4y2z2

+ 11
288 x

4y2z −
1
96 x

4yz3 + 1
32 x

4yz2 −
1
48 x

4yz

−
11
1728 x

3y4z3 + 11
576 x

3y4z2 −
11
864 x

3y4z

+ 11
288 x

3y3z3 −
11
96 x

3y3z2 + 11
144 x

3y3z −
121
1728 x

3y2z3

+ 121
576 x

3y2z2 −
121
864 x

3y2z + 11
288 x

3yz3 −
11
96 x

3yz2

+ 11
144 x

3yz −
1
192 x

2y4z3 + 1
64 x

2y4z2 −
1
96 x

2y4z

+ 1
32 x

2y3z3 −
3
32 x

2y3z2 + 1
16 x

2y3z −
11
192 x

2y2z3

+ 11
64 x

2y2z2 −
11
96 x

2y2z + 1
32 x

2yz3 −
3
32 x

2yz2

+ 1
16 x

2yz + 29
1728 xy

4z3 −
29
576 xy

4z2 + 29
864 xy

4z

−
29
288 xy

3z3 + 29
96 xy

3z2 −
29
144 xy

3z + 319
1728 xy

2z3

−
319
576 xy

2z2 + 319
864 xy

2z −
29
288 xyz

3 + 29
96 xyz

2

−
29
144 xyz +

131
432 y

4z3 −
131
144 y

4z2 + 131
216 y

4z −
535
216 y

3z3

+ 535
72 y3z2 −

535
108 y

3z + 2653
432 y2z3 −

2653
144 y2z2

+ 2653
216 y2z −

929
216 yz

3 + 929
72 yz2 −

929
108 yz

+ 2z3 − 59
6 z2 + 71

6 z:

ð41Þ

The second one with a lower degree

Sol2 =
1
4 x

4 −
11
12 x

3 −
3
4 x

2 + 29
12 x +

131
72 y4 + 1

8 y
3z −

1097
72 y3

−
7
8 y

2z + 1421
36 y2

1
2 yz

3 + 3yz2 − 15
4 yz −

505
18 y

+ 2z3 − 59
6 z2 + 71

6 z:

ð42Þ

Remark 11. The last example shows the importance of the
random approach, in some cases, to get solutions of fairly
low degree, which can influence the cost of evaluations.
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5. Conclusion

In conclusion, this work contributes to solve the problem of
Lagrange multivariate polynomial interpolation with any
finite set of interpolation nodes, using a recursive algorithm
RLMVPIA with a random approach based on the ðZ, zÞ
-partition concept. This study shows that RLMVPIA is easy
to implement and requires no storage.

Currently, we are interested firstly, in refining the ran-
dom approach of the algorithm, to build, in a more deter-
ministic way, optimal solutions of smaller degree. The
problem of optimal solution and the study of the numerical
stability of the RLMVPIA are under investigation. One can
also find natural applications of RLMVPIA in different
topics of applied mathematics and engineering as the
numerical resolution of PDEs, computer-aided design
(CAD), cryptography, etc.
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