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In this paper, by the use of a new fixed point theorem and the Green function of BVPs, the existence of at least one positive
solution for the third-order boundary value problem with the integral boundary conditions is considered,where there is a
nonnegative continuous function. Finally, an example which to illustrate the main conclusions of this paper is given.

1. Introduction

Third-order boundary value problems are originated in a
variety of different fields of applied mathematics and phys-
ics, for example, deflection of a buckling beam with a fixed
or varying cross-section, three-layer beams, electromagnetic
waves, and flood tides from gravitational blowing. In recent
year, researches on third-order nonlinear boundary value
problems have received widespread attention, and many
excellent results have been obtained, in references [1–10].

As we all know, boundary value problems with integral
boundary conditions can describe many valuable phenomena
more accurately. The study of many problems in the fields of
heat conduction, chemical engineering, groundwater flow,
thermoelasticity, plasma physics, etc. can be reduced to the
study of boundary value problems with integral boundary
conditions. However, in recent years, although the third-
order boundary value problems with integral boundary condi-
tions have received widespread attention, there are relatively
few researches on the third-order boundary value problems
with integral boundary conditions, in references [11–13].

By using the Guo-Krasnoselskii fixed point theorem,
Zhao and Cunchen [11] investigated the existence and non-
existence of at least one or two monotone positive solutions

for the following third-order boundary value problem with
integral boundary conditions:

u′′′ tð Þ + f t, u tð Þ, u′ tð Þ
� �

= 0, t ∈ 0, 1ð Þ,

u 0ð Þ = u′′ 1ð Þ = 0, u′ 0ð Þ =
ð1
0
g tð Þu tð Þdt:

8>><
>>: ð1Þ

By using the mixed monotone operator method, He and
Xiaoling [13] proved the existence and uniqueness of positive
solutions for the following third-order ordinary differential
equations with integral boundary conditions:

−u′′′ tð Þ = f t, u tð Þ, u ξtð Þð Þ + g t, u tð Þð Þ, t ∈ 0, 1ð Þ, ξ ∈ 0, 1ð Þ,

u 0ð Þ = u′′ 0ð Þ = 0, u′ 1ð Þ =
ð1
0
q tð Þu′ tð Þdt:

8><
>:

ð2Þ

All the above works were done under the assumption that
derivative x′ is not involved explicitly in the nonlinear term f .
In this paper, we are concerned with the existence of positive
solutions for the third-order boundary value problem with
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the integral boundary conditions:

x′′′ tð Þ + f t, x, x′
� �

+ g t, xð Þ = 0, 0 < t < 1,

x 0ð Þ = 0, x′ 0ð Þ =
ð1
0
q tð Þx′ tð Þdt, x′′ 1ð Þ = 0:

8>><
>>: ð3Þ

Throughout, we assume ðH1Þ

f : ½0, 1� × ½0,+∞Þ2 ⟶ ½0,+∞Þ andg : ½0, 1� × ½0,+∞Þ⟶ ½
0,+∞Þ are continuous; ðH2Þ
μ = Ð 1

0qðtÞdt, t ∈ ½0, 1� andμ ≠ 1, σ = Ð 1
0tqðtÞdt, σ ∈ ½0, 1�:

2. Preliminary

Let Y = C½0, 1� be the Banach space equipped with the norm
kxk0 = max

t∈½0,1�
jxðtÞj:

Lemma 1 (see [12]). Let μ ≠ 1. Then for any yðtÞ ∈ C½0, 1�, the
problem

x′′′ tð Þ + y tð Þ = 0, 0 < t < 1,

x 0ð Þ = 0, x′ 0ð Þ =
ð1
0
q tð Þx′ tð Þdt, x′′ 1ð Þ = 0,

8><
>: ð4Þ

has a unique solution

x tð Þ =
ð1
0
G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
y sð Þds, t ∈ 0, 1½ �,

ð5Þ

where,

G1 t, sð Þ = 1
2

2ts − s2, 0 ≤ s ≤ t ≤ 1,
t2, 0 ≤ t ≤ s ≤ 1,

(

G2 t, sð Þ = 1
2

s, 0 ≤ s ≤ t ≤ 1,
t, 0 ≤ t ≤ s ≤ 1,

(

G t, sð Þ =G1 t, sð Þ + t
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ:

ð6Þ

By (5), we get x′ðtÞ = Ð 1
0½G2ðt, sÞ + 1/ð1 − μÞÐ 10G2ðτ, sÞq

ðτÞdτ�yðsÞds:
Let μ < 1, γ ∈ ð0, 1Þ:

Lemma 2 (see [11]). For any ðt, sÞ ∈ ½0, 1� × ½0, 1�, G1ðt, sÞ
and G2ðt, sÞ have

(i) t2G1ð1, sÞ ≤G1ðt, sÞ ≤ 2s − s2/2
(ii) ts ≤ G2ðt, sÞ ≤ s

Lemma 3. If y ∈ C½0, 1�, yðtÞ ≥ 0, then the unique solution x
ðtÞ of problem (1) satisfies

x tð Þ ≥ 0, t ∈ 0, 1½ �, min
t∈ γ,1½ �

x tð Þ ≥ γ2 xk k0: ð7Þ

Proof. By Lemma 1, we get

x tð Þ =
ð1
0
G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
y sð Þds, t ∈ 0, 1½ �:

ð8Þ

By Lemma 2, we get

0 ≤ x tð Þ ≤
ð1
0

2s − s2

2 + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
y sð Þds: ð9Þ

So,

xk k0 ≤
ð1
0

2s − s2

2 + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
y sð Þds: ð10Þ

For γ ∈ ð0, 1Þ, we have

min
t∈ γ,1½ �

x tð Þ = min
t∈ γ,1½ �

ð1
0
G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
y sð Þds

≥ min
t∈ γ,1½ �

ð1
0
t2G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
y sð Þds

≥ γ2
ð1
0

2s − s2

2 + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
y sð Þds ≥ γ2 xk k0:

ð11Þ

The proof is completed.

Let X be a Banach space and K ⊂ X a cone. Suppose α,
β : X ⟶ R+ are two continuous convex functionals satisfy-
ing αðλxÞ = jλjαðxÞ, βðλxÞ = jλjβðxÞ, for x ∈ X, λ ∈ R, and k
xk ≤M max fαðxÞ, βðxÞg, for x ∈ X and αðxÞ ≤ αðyÞ for x, y
∈ K , x ≤ y, where M > 0 is a constant.

Theorem 4 (see [14]). Let r2 > r1 > 0, L > 0 be constants and
Ωi = fx ∈ X : αðxÞ < ri, βðxÞ < Lg, i = 1, 2,(13) two bounded
open sets in X. Set

Di = x ∈ X : α xð Þ = rif g, i = 1, 2: ð12Þ
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Assume T : K ⟶ K is a completely continuous opera-
tor satisfying the following:

(A1)αðTxÞ < r1, x ∈D1
T

K ; αðTxÞ > r2, x ∈D2
T

K

(A2)βðTxÞ < L, x ∈ K
(A3) There is a p ∈ ðΩ2

T
KÞ \ f0g such that αðpÞ ≠ 0 and

αðx + λpÞ ≥ αðxÞ, for all x ∈ K and λ ≥ 0
Then, T has at least one fixed point in ðΩ2 \ �Ω1Þ

T
K:

3. The Main Results

Let X = C1½0, 1� be the Banach space equipped with the norm
kxk = max

t∈½0,1�
jxðtÞj + max

t∈½0,1�
jx′ðtÞj and K = fx ∈ X : xðtÞ ≥ 0,

min
t∈½γ,1�

xðtÞ ≥ γ2kxk0g is a cone in X:

Define two continuous convex functionals αðxÞ = max
t∈½0,1�

j
xðtÞj and βðxÞ = max

t∈½0,1�
jx′ðtÞj, for each x ∈ X, and then kxk

≤ 2 max fαðxÞ, βðxÞg and αðλxÞ = jλjαðxÞ, βðλxÞ = jλjβðxÞ,
for x ∈ X, λ ∈ R ; αðxÞ ≤ αðyÞ for x, y ∈ K , x ≤ y:

In the following, we denote

η0 =
1
3 + 1

1 − μ

ð1
0

ð1
0
G2 τ, sð Þq τð Þdτds,

η1 =
ð1
γ

2s − s2

2 + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
ds,

η2 =
1
2 + 1

1 − μ

ð1
0

ð1
0
G2 τ, sð Þq τð Þdτds:

ð13Þ

Wewill suppose that there are L > b > γ2b > c > 0 such that
f ðt, x, yÞ + gðt, xÞ satisfies the following growth conditions: ð
H3Þf ðt, x, yÞ + gðt, xÞ < c/η0, for ðt, x, yÞ ∈ ½0, 1� × ½0, c� × ½−L
, L�, ðt, xÞ ∈ ½0, 1� × ½0, c�; ðH4Þf ðt, x, yÞ + gðt, xÞ ≥ b/γ2η1, for
ðt, x, yÞ ∈ ½γ, 1� × ½γ2b, b� × ½−L, L�, ðt, xÞ ∈ ½γ, 1� × ½γ2b, b�;
and ðH5Þf ðt, x, yÞ + gðt, sÞ < L/η2, for ðt, x, yÞ ∈ ½0, 1� × ½0, b�
× ½−L, L�, ðt, xÞ ∈ ½0, 1� × ½0, b�.

Let

f ∗ t, x, yð Þ =
f t, x, yð Þ, t, x, yð Þ ∈ 0, 1½ � × 0, b½ � × −∞,∞ð Þ,
f t, b, yð Þ, t, x, yð Þ ∈ 0, 1½ � × b,∞ð Þ × −∞,∞ð Þ,

(

f1 t, x, yð Þ =
f ∗ t, x, yð Þ, t, x, yð Þ ∈ 0, 1½ � × 0,∞½ Þ × −L, L½ �,
f ∗ t, x,−Lð Þ, t, x, yð Þ ∈ 0, 1½ � × 0,∞½ Þ × −∞,−Lð �,
f ∗ t, x, Lð Þ, t, x, yð Þ ∈ 0, 1½ � × 0,∞½ Þ × L,∞½ Þ:

8>><
>>:

ð14Þ

Let

g∗ t, xð Þ =
g t, xð Þ, t, xð Þ ∈ 0, 1½ � × 0, b½ �,
g t, bð Þ, t, xð Þ ∈ 0, 1½ � × b,∞ð Þ,

(

g1 t, xð Þ =
g∗ t, xð Þ, t, xð Þ ∈ 0, 1½ � × 0,∞½ Þ,
g∗ t, xð Þ, t, xð Þ ∈ 0, 1½ � × 0,∞½ Þ,
g∗ t, xð Þ, t, xð Þ ∈ 0, 1½ � × 0,∞½ Þ:

8>><
>>:

ð15Þ

We denote

Txð Þ tð Þ =
ð1
0
G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �

� f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds,

Txð Þ′ tð Þ =
ð1
0
G2 t, sð Þ + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �

� f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds:

ð16Þ

Lemma 5. Suppose ðH1Þ hold. Then, T : K ⟶ K is
completely continuous.

Proof. For x ∈ K , by Lemma 3, we have Tx ≥ 0:
So, we can get TðKÞ ⊂ K:
In the following, we will show that T : K ⟶ K is

completely continuous.
At first we show that T : K ⟶ K is continuous.
Let xn, x∗ ∈ K ; it satisfies kxn − x∗k⟶ 0, ðn⟶∞Þ;

then, there is a constant M0 > 0, such that max
t∈½0,1�

fjxnðtÞj, jx∗

ðtÞj, jxn′ðtÞj, jx∗′ðtÞjg ≤M0, then

Txnð Þ tð Þ − Tx∗ð Þ tð Þj j

=
ð1
0
G t, sð Þ f1 s, xn, xn′

� �
+ g1 s, xnð Þ

� �
ds

����
−
ð1
0
G t, sð Þ f1 s, x∗, x∗′

� �
+ g1 s, x∗ð Þ

� �
ds
����

≤
ð1
0
G t, sð Þj j f1 s, xn, xn′

� �
+ g1 s, xnð Þ − f1 s, x∗, x∗′

� �����
+ g1 s, x∗ð ÞÞjds,

Txnð Þ′ tð Þ − Tx∗ð Þ tð Þ�� ��
=

ð1
0
G2 t, sð Þ + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
f1 s, x, xn′
� ������

+ g1 s, xnð ÞÞds −
ð1
0
G2 t, sð Þ + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �

× f1 s, x∗, x∗′
� �

+ g1 s, x∗ð Þ
� �

ds
���

≤
ð1
0
G2 t, sð Þ + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

����
���� f1 s, x, xn′

� ����
+ g1 s, xnð Þ − f1 s, x∗, x∗′

� �
+ g1 s, x∗ð Þ

� ����ds
<
ð1
0
s + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
f1 s, x, xn′
� �

+ g1 s, xnð Þ
���

− f1 s, x∗, x∗′
� �

+ g1 s, x∗ð Þ
� ����ds:

ð17Þ

If f is uniformly continuous on ½0, 1� × ½−M0,M0� × ½−
M0,M0�, we get
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Txn − Tx∗k k⟶ 0, n⟶∞ð Þ: ð18Þ

Next, we show that T : K ⟶ K is compact.
Let B ⊂ K be bounded, and then, there isM > 0, such that

kxk ≤M: For x ∈ B, we have

Txð Þ tð Þj j =
ð1
0
G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �����
� f1 s, x, x′

� �
+ g1 s, xð Þ

� �
ds
���

<
ð1
0

2s − s2

2 + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
ds × C∗,

ð19Þ

where C∗ =max fj f1ðt, x, x′Þ + g1ðt, xÞj ; t ∈ ½0, 1�, x ∈ Bg:

Txð Þ′ tð Þ�� �� = ð1
0
G2 t, sð Þ + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �����
� f1 s, x, x′

� �
+ g1 s, xð Þ

� �
ds
���

<
ð1
0
s + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
ds

����
���� × C∗:

ð20Þ

It is clear that TðBÞ is a bounded set in K ; because Gðt, sÞ
is uniformly continuous on ½0, 1� × ½0, 1�, for ε > 0, there
exists δ ∈ ð0, εÞ, such that jG1ðt1, sÞ −G1ðt2, sÞj < ε, jG2ðt1, sÞ
−G2ðt2, sÞj < ε for t1, t2 ∈ ½0, 1�, jt1 − t2j < δ:

For x ∈ B, we have

Txð Þ′ t1ð Þ − Txð Þ′ t2ð Þ�� �� = ð1
0

∂G t, sð Þ
∂t

����
����
t=t1

f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds

� −
ð1
0

∂G t, sð Þ
∂t

����
t=t2

f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds
���

=
ð1
0
G2 t1, sð Þ + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds
����

−
ð1
0
G2 t2, sð Þ + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds
����

≤
ðt1
0

s + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds
����

−
ðt2
0

s + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds
����

≤
1
2 t1 − t2ð Þ t1 + t2ð Þj j × C∗ ≤ εC∗:

ð21Þ

Therefore TðBÞ is equicontinuous. Using the Arzela-
Ascoli theorem, a standard proof yields T : K ⟶ K is
completely continuous.

Theorem 6. Suppose ðH1Þ-ðH5Þ hold. Then, BVP (1) has at
least one positive solution xðtÞ satisfying

c < α xð Þ < b, β xð Þ < L: ð22Þ

Proof. Take Ω1 = fx ∈ X : jxðtÞj < c, jx′ðtÞj < Lg andΩ2 = fx

∈ X : jxðtÞj < b, jx′ðtÞj < Lg, two bounded open sets in X,
and D1 = fx ∈ X : αðxÞ = cg andD2 = fx ∈ X : αðxÞ = bg:

By Lemma 5, T : K ⟶ K is completely continuous, and
there is a p ∈ ðΩ2

T
KÞ \ f0g such that αðpÞ ≠ 0, for all u ∈ K

and λ ≥ 0:
By Lemma 2 and ðH3Þ, for x ∈D1 ∩ K , αðxÞ = c, we get

α Txð Þ = max
t∈ 0,1½ �

ð1
0
G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �����
� f1 s, x, x′

� �
+ g1 s, xð Þ

� �
ds
���

≤
ð1
0

2s − s2

2 + 1
1 − σ

ð1
0
G τ, sð Þg τð Þdτ

� �

� f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds

= 1
3 + 1

1 − μ

ð1
0

ð1
0
G2 τ, sð Þg τð Þdτð Þds

� �
× c
η0

= c:

ð23Þ

By Lemma 2, for x ∈D2 ∩ K , αðxÞ = b, there is xðtÞ ≥ γ2

αðxÞ = γ2b, t ∈ ½γ, 1�:
So, by ðH4Þ, we get

α Txð Þ = max
t∈ 0,1½ �

ð1
0
G1 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �����
� f1 s, x, x′

� �
+ g1 s, xð Þ

� �
ds
���

≥
ð1
0
t2G1 1, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �

� f1 s, x, x′
� �

+ g1 s, xð Þ
� �

ds

> γ2
ð1
γ

2s − s2

2 + 1
1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �
ds × b

γ2η1
= b:

ð24Þ

By ðH5Þ, for x ∈ K , we have

β Txð Þ = max
t∈ 0,1½ �

ð1
0
G2 t, sð Þ + t

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �����
� f1 s, x, x′

� �
+ g1 s, xð Þ

� �
ds
����

≤
ð1
0
s + 1

1 − μ

ð1
0
G2 τ, sð Þq τð Þdτ

� �����
� f1 s, x, x′

� �
+ g1 s, xð Þ

� �
ds
����

< 1
2 + 1

1 − μ

ð1
0

ð1
0
G2 τ, sð Þg τð Þdτð Þds

� �
× L
η2

= L:

ð25Þ

Theorem 4 implies there is x ∈ ðΩ2 \ �Ω1Þ
T

K such
that x = Tx: So, xðtÞ is a positive solution for BVP (1)

4 Journal of Applied Mathematics



satisfying

c < α xð Þ < b, β xð Þ < L: ð26Þ

Thus, Theorem 6 is completed.

4. Example

Example 1. Consider the following boundary value problem

x
′′′ð Þ tð Þ + f t, x, x′

� �
+ g t, xð Þ = 0, 0 < t < 1,

x 0ð Þ = 0, x′ 0ð Þ =
ð1
0
q tð Þx′ tð Þdt, x′′ 1ð Þ = 0,

8>><
>>: ð27Þ

where,

f t, x, yð Þ + g t, xð Þ =

t
3 x + x + cos yj j,
t, x, yð Þ ∈ 0, 1½ � × 0,2:2½ � × −60306, 60306½ �, t, xð Þ ∈ 0, 1½ � × 0,2:2½ �
2280t
3 x − 2:2ð Þ + 420001 x − 2:2ð Þ + 11t

15 + 2:2 + cos yj j,
t, x, yð Þ ∈ 0, 1½ � × 2:2,2:3½ � × −60306, 60306½ �, t, xð Þ ∈ 0, 1½ � × 2:2,2:3½ �
t
3 231 − xð Þ + 180:039 x + 231ð Þ + cos yj j,
t, x, yð Þ ∈ 0, 1½ � × 2:3,231½ � × −60306, 60306½ �, t, xð Þ ∈ 0, 1½ � × 2:3,231½ �:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð28Þ

In this problem, we know that qðtÞ = t2; then, we can
get μ = Ð 01t2dt = 1/3: Choose γ = 1/10 ∈ ð0, 1/2Þ, then ρ =
4δ2ð1 − δÞ = 7/128:

Furthermore, we obtain

η0 =
67
120 ,

η1 ≈ 0:551,

η2 =
29
40 :

ð29Þ

If we take c = 2:2, b = 231, and L = 60306, then we get γ2

b ≈ 2:31 > 2:3.

f t, x, yð Þ + g t, xð Þ = t
3 x + x + cos yj j ≤ 2:17

< c
η0

≈ 3:94, for t, x, yð Þ ∈ 0, 1½ � × 0,2:2½ �

× −60306, 60306½ �, t, xð Þ ∈ 0, 1½ � × 0,2:2½ �,

f t, x, yð Þ + g t, xð Þ = t
3 231 − xð Þ + 180:039 x + 231ð Þ

+ cos yj j > 42011:7 > b
γ2η1

≈ 42000, for t, x, yð Þ ∈ 0, 1½ �

× 2:3,231½ � × −60306, 60306½ �, t, xð Þ ∈ 0, 1½ � × 2:3,231½ �,

f t, x, yð Þ + g t, xð Þ t3 231 − xð Þ + 180:039 x + 231ð Þ

+ cos yj j < 83179:02 < L
η2

≈ 83180:69, for t, x, yð Þ ∈ 0, 1½ �

× 2:3,231½ � × −60306, 60306½ �, t, xð Þ ∈ 0, 1½ � × 2:3,231½ �:
ð30Þ

Then, all the conditions of Theorem 6 are satisfied.
Therefore, by Theorem 6 we know that boundary value
problem (1) has at least one positive solution xðtÞ satisfying

2:2 < α xð Þ < 231, β xð Þ < 60306: ð31Þ
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