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To improve the quality of local feature filtering for dynamic multiframe video sequence images, this study is aimed at designing an
improved nontexture class noise filtering algorithm based on noise construction denoising algorithm and gray histogram of pixel
points, and then designs a texture noise denoising algorithm based on texture smoothing processing and circular gradient values.
The two algorithms are combined to propose a comprehensive filtering and denoising algorithm for horizontal dynamic video
images. The experimental test results show that the normalized correlation coefficient, mutual information quantity, peak
signal-to-noise ratio, and information entropy of the integrated filter denoising algorithm are 0.950, 0.935, 0.816, and 0.933
after convergence of the training effect, which are significantly higher than those of the commonly used median denoising
algorithm and Kalman denoising algorithm. However, the computational time consumption of the proposed integrated
filtering and denoising algorithm is higher than that of the comparison algorithms. The experimental results show that the
integrated filtering algorithm for dynamic video images designed in this study can achieve better filtering and image
reconstruction results in application scenarios with lower requirements for the timeliness of processing results.

1. Introduction

With the socioeconomic development, human beings are
demanding higher and higher standards for the viewing
and working quality of video images [1]. However, video
shooting may result in various types of noise in the video
due to camera shake, insufficient light, or uneven distribu-
tion, which affects the use and viewing of the video by users
or consumers [2]. Therefore, it is particularly important to
denoise video images, and this study innovatively classifies
image noise into texture noise and nontexture noise and
proposes a comprehensive filtering algorithm for the prob-
lem of denoising underwater video images, which is difficult
for dynamic video filtering, where a denoising algorithm
based on noise detection and pixel point gray scale histo-
gram data are used to construct a method for dealing with
nontexture noise, texture smoothing processing and
improved circular gradient values are used to construct a
method to deal with texture noise. Thus, an attempt is made

to improve the processing quality of underwater dynamic
video images by reducing the filtering loss of the original
information of the images, especially the core structure
information while improving the denoising effect of under-
water dynamic video images.

2. Related Works

With the rapid development of image processing computa-
tion, people demand higher and higher quality for process-
ing noise in picture and video images, and in order to
meet consumers’ higher quality requirements for image-
like data, a large number of computer experts, image proces-
sors, and professors of artificial intelligence-related majors at
home and abroad have conducted a lot of academic research.
Zhang et al. address the dimensional disaster and spatial
background caused by high dimension in hyperspectral
image classification. For the problem of underutilization of
information, a new joint spectral-space classification method
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based on edge-preserving filtering was proposed. The
algorithm was validated on hyperspectral datasets from Pine
Tree and University of Pavia, India. Under the same experi-
mental conditions, the method achieves the highest classifi-
cation accuracy and the lowest time consumption, showing
significant advantages in hyperspectral image classification
[3]. Landa et al. designed an adaptive processing method
for large datasets to address the problem that image datasets
are easily corrupted by noise and distortion. Test results
showed that the convergence speed of the method proposed
in this study was improved compared with common image
denoising algorithms [4]. Cheng et al. proposed a new struc-
ture preserving retinal image filtering algorithm (SGRIF) to
recover images based on the attenuation and scattering
model to address the problem of retinal image quality degra-
dation, which consists of a global structure transfer step and
a global edge-preserving smoothing step. Test results show
that the proposed SGRIF method is able to improve the con-
trast of retinal images. Furthermore in two applications,
deep learning-based optic cup segmentation and sparse
learning-based cup-to-disc ratio (CDR) calculation, the
results showed that SGRIF processed images achieve more
accurate image segmentation and CDR measurement [5].
Khan et al. explored content filtering techniques from the
perspective of static images and analyzed content-based fil-
tering that can help label the images as adult natural or safe
images. As the proposed method is chromaticity based on
skin segmentation and detection for undesirable content in
images, the performance of the method was validated using
a certain image dataset and found to be good for image
information filtering [6]. Kong et al. proposed an improved
cost aggregation method to solve the problem of adaptive
cross-region guided image filtering (ACR-GIF) in which
parallax is not considered, resulting in degradation of the
image quality of the filtered output. The results of the evalu-
ation platform show that the proposed cost aggregation
method can significantly improve parallax accuracy with less
additional time overhead compared to ACR-GIF, and the
proposed stereo matching algorithm outperforms other
state-of-the-art local and nonlocal algorithms [7]. Using lin-
ear relations and image filtering ideas, Yu et al. constructed
an improved image encryption algorithm. Experimental
results show that the improved algorithm not only inherits
the advantages of the original algorithm but also improves
the security robustness to differential cryptanalysis [8]. Qiao
et al. designed an optimized SIFT feature extraction algo-
rithm for highlighting stable edge corner point information
and improving the acquisition efficiency of stable edge cor-
ner points. Experimental results show that the improved
SIFT feature extraction algorithm based on image filtering
can improve the extraction of stable feature points of edge
response while suppressing the extraction of unstable feature
points of edge response, thus improving the matching accu-
racy of images [9]. Chatterjee et al. performed a comparative
analysis of three commonly used filtering techniques, i.e.,
Fourier filter, windowed Fourier filter, and wavelet filter to
reduce noise and extract accurate phase information from
phase-shifted interferograms. For this purpose, two basic
types of noise (additive and multiplicative noise) are intro-

duced in the simulated interferogram and processed using
a prefiltering strategy. The practical applicability of the anal-
ysis results was experimentally demonstrated and the results
showed that high accuracy lens defocus error measurements
were obtained using the filtering strategy [10].

Lv et al. discussed the digital holographic microscopy
technology based on multiframe full field heterodyne tech-
nology and proposed a multiframe video sequence denoising
algorithm based on time-frequency spectrum analysis tech-
nology. The experimental results show that the algorithm
focuses on solving the twin image problem in multiframe
video sequences and significantly reduces the random noise
in video signals [11]. Ponomaryov et al. designed a new 3D
data filter to filter the pulse noise in the color multiframe
video sequence data. The input data of the algorithm is in
the form of three primary color channels. The algorithm will
calculate the fuzzy gradient value of the data from eight
directions. The simulation results show that the algorithm
has good filtering effect in different color multiframe video
sequence data, and the calculation time is significantly lower
than the current common filter [12]. Tsang et al. proposed a
multiframe video sequence denoising algorithm that makes
it difficult to use brute force to solve the problem of insuffi-
cient security in multiframe video sequence denoising [13].
The experimental results show that the probability of brute
force cracking of multiframe video sequence data after
denoising by this algorithm is significantly lower than that
of the compared denoising algorithm [13].

In summary, various algorithms have been designed and
improved to improve the quality of image denoising and fil-
tering, but it is relatively rare to study the classification of
noise according to its information characteristics so as to
construct a variety of targeted algorithms combined into a
denoising model, and this design approach combined with
the idea of classification discussion can serve to improve
the filtering effect of the algorithm on certain special types
of images, which is the main idea of this study.

3. Video Sequence Image Local Multicategory
Noise Integrated Filtering Method Design

3.1. Design of Local Feature Filtering Algorithm Based on the
Pixel Difference of Adjacent Frames of Video. Dynamic mul-
tiframe video images where the subject is an underwater
object contain several types of local noise, which can be clas-
sified according to the processing as texture noise generated
by liquid flow, traditional nontexture noise due to insuffi-
cient or uneven distribution of light, poor performance of
the camera equipment, etc. [14]. Now, we first design an
algorithm to deal with nontextural noise, if an image has
local noise, which can be expressed by Equation (1), the

g x, yð Þ = n x, yð Þ + f x, yð Þ: ð1Þ

In Equation (1), gðx, yÞ and f ðx, yÞ are the noise-
contaminated image and the noise-free image, respectively.
nðx, yÞ is used to describe the noise function, and x, y is
the arbitrary pixel coordinates of the noise region. Image
denoising is the process of obtaining f ðx, yÞ backwards from

2 Journal of Applied Mathematics



the captured gðx, yÞ image and the computed nðx, yÞ func-
tion. There are three main types of traditional algorithms
to deal with nontextural noise in images, which are the
median denoising algorithm, Kalman denoising algorithm,
and noise detection-based denoising algorithm [15]. In the
following, these three denoising algorithms are compared
in order to select the most suitable algorithm for subsequent
optimization design. The core logic of median denoising is
to replace the pixel’s own gray value using the median of
the pixel’s domain gray value, which is a nonlinear denoising
method that works well for filtering speckle local noise and
pretzel local noise due to the fact that it does not rely on
extreme values in the domain [16]. For the median filter, it
has little impact on the output of the original image infor-
mation because the noise information is difficult if left unfil-
tered and can achieve relatively balanced results in terms of
both noise removal and retention of key image information
[17]. In addition, since usually noise points are formed by
superimposing normal gray values with noisy gray values,
which will be distributed in a random manner in any local
area of the whole image, noise adjacent image frames also
have up- and downshoot between them, resulting in noise
gray values that are all extreme and differ significantly from
the gray values of surrounding pixel points [18]. However, in
general, the pixel gray levels in an image show a gradient
rule, so if a median denoising filtering algorithm is used to
deal with underwater nontextural noise, the algorithm will
most likely see all the noise as pretzel noise [19]. The follow-
ing describes how the median filter works using the 3 × 3
specification pixel map shown in Figure 1.

As we can see in Figure 1, the median denoising algo-
rithm is to arrange the pixel values of Figure 1 in ascending
order to obtain the median value, and then replace the pixel
values in the middle of the 3 × 3 size image with the median
value and delete the other pixel values [20]. The Kalman
denoising algorithm is an efficient recursive filtering algo-
rithm that can be used to detect Poisson noise points in a
finite set of video sequences containing noise, and therefore
is widely used in various engineering image processing [21].
Specifically, the running states in the Kalman denoising
algorithm can be expressed by real vectors, and each time
the discrete time increases, the linear operator will generate
a new state with noise in the current state and add the
control information of the controller [22]. Meanwhile, the
output of these hidden states will be generated by another
linear operator in the Kalman denoising algorithm. In sum-
mary, the operational logic process of the Kalman denoising
algorithm can be described by Figure 2.

The third nontexture noise denoising method was
chosen for this study because of its better scalability and
denoising performance. The core idea of this algorithm is
to identify normal signal points and noise points in each
frame of the video image using some kind of metric, and
then process the two pixel points in different ways. Specifi-
cally, the algorithm does not process the pixels identified
as signal but outputs them directly, while the pixels identi-
fied as noise are processed differently depending on their
location, which is the innovation of this study. In this study,
in order to reduce the probability of false and missed detec-

tion of noise points and to improve the filtering quality [23].
It is necessary to first calculate the gray histogram data in the
original image hðgÞ, g is the gray level, and the purpose is to
obtain the full potential range of values of the threshold τT ,
which is calculated in Equation (2). If the difference between
the pixel value at the same position between the original
image and its vector frame is defined as Δf kði, jÞ = g, reas-
sign hðgÞ = hðgÞ + 1ðg ∈GÞG as the range of gray level
values, and then set to [0,255].

T = g ∈G h gð Þ > 0jf g: ð2Þ

The Poisson smoothing of Equation (2) is performed
using a rectangular window of size W ×W, and the value of
this window is output xn, which is calculated in the following:

xn = 〠
w−1

σi=0
〠
w−1

σ j=0
λ Δk i − δi,j − δj

À ÁÂ Ã
: ð3Þ

In Equation (3),N represents the total number of samples,
n is the sample number and 0 < n <N , δi,j is the Poisson
smoothing coefficient of the location coordinates ði, jÞ pixels,
and the coefficient λ method is calculated according to

λ =
1, Δk i − δi,j − δj

À Á
> τ,

0, other:

(
ð4Þ

Using xn, the computed variance S2T and the computed
mean xt can be found, and the threshold value needed for
the algorithm is solved by these two indicators. If the relative
rate of change Vt = xt/S2t , the algorithm threshold τ needs to
be determined according to the criteria that make Vt reach
the maximum, so that the image noise can be displayed to
the maximum extent while ensuring that the overall image
information is not damaged. After finding the threshold value
τ, the difference between Δf kði, jÞ and τ is used to determine
whether a point in the image is noisy or not. Then, define a
marker matrix, which has the same dimension and size as
the image to be tested. And use mði, jÞ to represent the value
of each pixel point in the original image, with 0 and 1 to rep-
resent the test location without noise, the presence of noise,
respectively, the matrix initially needs to be initialized as a zero
matrix. By comparing the test result with the threshold value,
it is judged what the value of this position in themarker matrix
should be. After the end of the judgment, then only the judged
noise points can be processed, and the processing method is as
follows: if the number is less than 9, the pixel value of the last
processed point is used to replace the noise point to be proc-
essed. If the number is greater than 9, a selective median filter-
ing is started, i.e., only the pixel values classified as noise
information are replaced. According to this process, the calcu-
lation flow chart of the denoising algorithm based on noise
detection is shown in Figure 3.

3.2. Design of Texture Noise Filtering Algorithm Combining
Texture Smoothing Suppression and Circular Gradient. The
median denoising algorithm, Kalman denoising algorithm,
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and noise detection-based denoising algorithm have poor
filtering effect on texture noise or lose too much core infor-
mation of the image due to their own algorithm characteris-
tics. Therefore, this study proposes a filtering algorithm
combining texture smoothing suppression and circular
gradient for processing texture noise after filtering by noise
detection-based denoising algorithm, and its computational
flow is shown in Figure 4.

Observing Figure 4, we can see that the algorithm mainly
consists of three parts: improved circular gradient value, tex-
ture smoothing suppression, and image reconstruction, and
the following is a detailed analysis of the computational pro-
cess content of the algorithm. The role of circular gradient is
to reduce the effect of the filtering algorithm on the deletion
and dumping of the core information of the image. To
design the calculation method of circular gradient, define
Ωp as the central local window of pixel p and I as the input
signal of one-dimensional form, then the interval gradient
operator of interval gradient algorithm (IG for short) is
defined, see the following:

∇ΩIð Þp = gr
σ Ip
À Á

− glσ Ip
À Á

: ð5Þ

In Equation (5), glσ and gr
σ represent the left and right

one-dimensional Gaussian filter functions, respectively,
whose calculation methods are more common and will not
be repeated here. The interval gradient is different from the
logic of the traditional gradient calculation, in that the
former calculates the color-weighted mean difference located
on both sides of the pixel p. Moreover, for structural and
textured pixels, the interval gradient can serve to amplify
the gradient and cancel the intrablock gradient, respectively,
indicating that the operator also has the function of distin-
guishing image texture. However, since the operator
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Figure 1: Schematic diagram of how the median denoising algorithm works.
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Figure 2: Flow chart of the Kalman denoising algorithm.
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Figure 3: Flow chart of noise detection based denoising algorithm.

4 Journal of Applied Mathematics



calculates the signal data arranged along two axes, respec-
tively, the algorithm can only take into account the local
information of the image only. To further improve the
texture noise differentiation ability of the algorithm, the
interval gradient operator is now improved and the circular
gradient operator is designed. With I representing the input
image, the formula of circular gradient calculation is shown
in the following:

u pð Þ = gr Rp

À Á
− gl Lp

À Á
, ð6Þ

where Lp and Rp represent a circular window located to the
left and right of the pixel p, with p as the center and k as
the radius. And gl and gr are the Gaussian-weighted mean
values in the left and right windows, respectively.

By using Equation (6), we can calculate the values of the
circular gradient of the image in the direction of x, y, ux, and
uy However, in the actual application scenario, the structure
direction in the image is mostly uncertain, so we cannot use
a fixed and common structure direction, and this research
continues to improve the method of determining the struc-
ture direction in the image. The method of finding the main
direction of the image structure is chosen, and an attempt is
made to calculate the circular gradient under the main direc-
tion to achieve the goal of increasing the Gaussian and
weighted mean difference between the two sides of the
structure. The improved directional circular gradient ν is
calculated according to the following:

ν pð Þ = gr ϕ Rp

À ÁÀ Á
− gl ϕ Lp

À ÁÀ Á
, ð7Þ

where ϕðLpÞ and ϕðRpÞ are the left arc and right arc windows
after rotation, respectively, and the rotation angle αp is
obtained by the inverse tangent of the directional gradient
of y and x dimensions. The rotation angle is also the main
direction of the structure of the pixel p. Using αp, we can
calculate the directional gradient of the circular arcs in y
and dimensions x, νy, and νx and finally calculate the root
mean square value of νy and νx to get the directional circular
arc gradient magnitude of the image ν.

Then the texture noise filtering algorithm in the texture
smoothing suppression processing method is designed, in
order to get the image data with strong gradient texture
suppression characteristics, the gradient value of the image
needs to be attenuated based on the normalized directional
circular gradient magnitude value, and the processing
method is shown as

Gp = νp ⋅ ∇Ip, ð8Þ

where ∇Ip is the input image gradient of pixel p, Gp is the
gradient value of pixel p, and νp is the directional circular
gradient amplitude of pixel p after normalization process.
The attenuated gradients are then used to reconstruct the
partially filtered image and output a texture suppressed
image that has a texture pixel gradient value lower than
the structural pixel gradient. The process of reconstructing
the image is done specifically by minimizing the objective
function EðJÞ, as shown.

min
J
E Jð Þ =min

J
〠 J − Ið Þ2 + η ∇J −Gð Þ2: ð9Þ

At this point, the image reconstruction problem is trans-
formed into a function optimization problem, and η is the
weight coefficient of the control gradient. Equation (9) can
be mapped into the frequency domain by the fast Fourier
transform, thus speeding up the solution process.

J = F−1
F Ið Þ + η F ∂xð ÞF Gxð Þ + F ∂y

À Á
F Gy

À Á� �

F 1ð Þ + η F ∂xð ÞF ∂xð Þ + F ∂y
À Á

F ∂y
À Á� �

0
@

1
A: ð10Þ

In Equation (10), F−1 and Fð Þ are the discrete Fourier
inverse transform operator and the complex conjugate oper-
ator, respectively, and Fð1Þ is the δ function after the
discrete Fourier transform. Considering that the gradient
of the structural pixels of the image will be attenuated by
the texture gradient suppression operation, the gradient
minimization method with gradient boosting effect is chosen
to filter the reconstructed image. The purpose of the gradient
minimization process is to control the maximum number of
gradient changes in the output image. Let S be the output of
the filtering algorithm, and the gradient of the processed
output image is described using the symbol ∇S, then there
exists ∇Sp = ½∂xSp ∂ySp�T , and the objective function of gradi-
ent minimization can be expressed by

Texture filter output

Start

End

Input image data

Calculate the improved
semicircle gradient value of the

current pixel

Gradient attenuation
processing for pixels

Image reconstruction by
post attenuation gradient

Is the current
pixel the last one to

be processed?

Texture
smoothing

suppression

Y

N

Figure 4: Flow of filtering algorithm combining texture smoothing
suppression and circular gradient.
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min
S

S − Jj j2 + λ ∇Sj j0: ð11Þ

In Equation (11), jS − Jj2 is used to ensure that the input
and output image structures are roughly the same, j⋅j0 repre-
sents the 0th parity, j∇Sj0 is the smoothing item, and λ
represents the smoothing factor, the larger the value, the
smoother the image. After introducing the auxiliary vari-
ables β, γ, and λ, Equation (11) can be rewritten as

min
S,δ

S − Jj j2 + β ∇S − γj j2 + λ γj j0: ð12Þ

In Equation (12), β is used to control the optimization
speed of the objective function in terms of the similarity
between the auxiliary variable γ and the corresponding
gradient ∇S. Equation (12) can be solved by using the alter-
nating variable decomposition method, which requires
fixing S first in order to find the auxiliary variable γ, as
calculated in the following:

min ∇S − γj j2 + λ

β
γj j0: ð13Þ

Decompose Equation (13) into a set of univariate func-
tions in space, and each δi can be approximated by replacing
it according to the following:

γi =
0, ∇Si <

ffiffiffiffiffiffiffi
λ/β

p
,

∇Si, ∇Si ≥
ffiffiffiffiffiffiffi
λ/β

p
:

(
ð14Þ

Then, fix γ and then solve for the gradient S.

min
S,δ

S − Jj j2 + β ∇S − γj j2: ð15Þ

Equation (15) can be minimized by the gradient descent
method, and in this solution process, the output image S will
be close to γ. From the calculation process of the gradient
minimization method, it can be seen that the structures with
small gradients in the image will also be smoothly sup-
pressed as the algorithm runs, while the strong gradient
textures cannot be effectively suppressed. Therefore, when
texture noise should be processed, the processing map where
the texture is suppressed should be obtained, and then the
gradient minimization filtering process should be performed
on this data. In summary, the computational flow of the
dynamic underwater multiframe video image local feature
filtering model designed in this study is shown in Figure 5.

4. Performance Verification of Video Local
Multicategory Noise-Integrated
Filtering Method

In order to verify the filtering performance of this research
design’s video local multicategory noise-integrated filtering
method, noise removal experiments were carried out. The
data set in the test was obtained from 247 groups of 80
frames of dynamic video shot at different locations underwa-

ter in continuous time, but the shooting position of each
group in the video did not move, and each group of video
contained a dynamic video with various noises and a video
without noise, and the noise in the image was mainly artifi-
cially added Gaussian white noise and texture noise brought
by the internal liquid flow, both in addition to the noise ele-
ment, other image information are identical. In the experi-
ments, the median denoising algorithm and the Kalman
denoising algorithm are used as control algorithms, and the
algorithm logic is programmed in Python. In order to more
accurately evaluate the effect of denoising filtering and image
restoration of each algorithm, five objective indicators,
namely, correlation coefficient, mutual information, peak
signal-to-noise ratio, information entropy, and computation
time were chosen to evaluate the denoising effect or opera-
tion efficiency of the model. After finishing the simulation
experiments, the correlation coefficient indexes of each algo-
rithm were first statistically analyzed, as shown in Figure 6.

As shown in Figure 6, the horizontal axis represents the
number of iterations of each algorithm, and the vertical axis
represents the normalized correlation coefficient of the
results of each algorithm run. As we can see in Figure 6,
the normalized correlation coefficients of each algorithm
show a trend of first growth and then convergence as the
number of iterations increases. However, the simplest
median filtering algorithm almost completes convergence
when the number of iterations is around 30, and the conver-
gence speed is the fastest. The normalized correlation coeffi-
cients of the median denoising algorithm, Kalman denoising
algorithm, and the integrated filtering and denoising algo-
rithm designed in this study are 0.861, 0.896, and 0.950,
respectively, which show that the image processed by the
integrated filtering and denoising algorithm designed in this
study has the highest correlation with the source image and
retains the most information of the source image. The
mutual information metrics of each algorithm are then
counted and shown in Figure 7.

The vertical axis in Figure 7 represents the normalized
mutual information amount, and observation of Figure 7
shows that with the increase of the number of iterations,
the change trend of the normalized mutual information
amount and the final size ranking of each algorithm are
consistent with the conclusion of Figure 6. After the conver-
gence of each algorithm, the normalized mutual information
amount of the integrated filtering and denoising algorithm
designed in this study has the largest value of 0.935, which
again proves that the dynamic video image processed by this
algorithm retains the most information of the source image.
Next, the statistical results of the peak signal-to-noise ratio
data for each algorithm are analyzed and shown in Figure 8.

The vertical axis in Figure 8 represents the normalized
peak signal-to-noise ratio. Analysis of Figure 8 shows that
the normalized peak signal-to-noise ratio of each algorithm
fluctuates more when the number of algorithm iterations is
small, and there is no significant pattern in the fluctuation
direction. With the growth of the number of iterations, the
normalized peak signal-to-noise ratio of each algorithm
tends to be stable. When the number of iterations is 100,
the normalized peak S/N ratios of the median denoising
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algorithm, Kalman denoising algorithm, and the integrated
filtering and denoising algorithm designed in this study are
0.816, 0.797, and 0.718, respectively, which shows that the
integrated filtering and denoising algorithm designed in this
study has the best image denoising recovery effect and the
least image distortion. The statistical results of the informa-
tion entropy data of each algorithm are then analyzed and
shown in Figure 9.

The left vertical axis in Figure 9 represents the normal-
ized information entropy data, and the dots in the figure
are labeled with the highest normalized information entropy

values that have occurred in the training process of each
algorithm. As we can see in Figure 9, with the increase of
the number of iterations, the normalized information
entropy of each algorithm shows a trend of first growth
and then convergence. The normalized information entropy
values of the median denoising algorithm, Kalman denoising
algorithm, and the integrated filtering and denoising algo-
rithm designed in this study are 0.848, 0.894, and 0.933,
respectively. The peak signal-to-noise ratio of has high
consistency. Finally, the computational time consumed by
each group of algorithms to process different numbers of
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Figure 5: Calculation flow of local feature filtering model for dynamic underwater multiframe video images.
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dynamic videos after the performance convergence is
counted, which is shown in Table 1.

As can be seen in Table 1, the computation time of the
integrated filtering algorithm is the longest when processing
three different numbers of samples, followed by the Kalman
denoising algorithm and the median denoising algorithm
has the shortest computation time overall. Specifically, when

the number of samples processed is 200, the average compu-
tation time of the median denoising algorithm, Kalman
denoising algorithm and the integrated filtering, and denois-
ing algorithm designed in this study are 1283ms, 1519ms,
and 1737ms, respectively, and the computation standard
deviation of the three algorithms are 432ms, 451ms, and
683ms, respectively. This study designs the integrated
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Figure 7: Statistical results of mutual information quantity of each filtering algorithm.
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Figure 8: Statistical results of peak signal-to-noise ratio of each filtering algorithm.
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filtering algorithm to divide the noise into texture noise and
nontexture noise, and then designs a set of algorithms sepa-
rately and combines the two sets of algorithms to perform
integrated denoising of images, which leads to a significant
increase in computational complexity so it has the highest
computational time consumption when processing the same
number of samples.

5. Conclusion

To address the problem of local feature filtering reconstruc-
tion of dynamic multiframe video sequence images taken
underwater, this study was aimed at designing a comprehen-
sive denoising filtering algorithm fused with noise detection
and underwater texture detection, and the designed algorithm
is used with the comparison algorithm to process a copy of
dynamic video image noise taken underwater. The experi-

mental results show that the normalized correlation coeffi-
cients and the mutual information quantity values of each
filtering algorithm increase with the number of iterations
and then converge. 0.826, 0.887, and 0.935, which shows that
the filtering algorithm designed in this study can retain more
information structure of the source image under the condi-
tion of image denoising. When the number of iterations is
100, the normalized peak signal-to-noise ratio and informa-
tion entropy of the median denoising algorithm, Kalman
denoising algorithm, and integrated filter denoising
algorithm are 0.718, 0.797, and 0.816, and 0.848, 0.894, and
0.933, respectively, indicating that the designed filtering algo-
rithm has the highest overall image quality after denoising.
However, due to the limitations of research conditions, no
more different kinds of underwater dynamic video images
can be collected, especially video images with particularly
serious noise or poor light conditions to verify the algorithm
performance, which is also the scope of future research.
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Figure 9: Statistical results of information entropy of each filtering algorithm.

Table 1: Comparison of computational time consumption of each filtering algorithm.

Filtering algorithm
Number of samples/
group processed

Minimum elapsed
time/ms

Maximum elapsed
time/ms

Average elapsed
time/ms

Standard
deviation/ms

Integrated filtering and
denoising algorithm

10 84 153 114 38

50 344 748 563 196

200 1189 2449 1737 683

Median denoising algorithm

10 27 51 42 12

50 156 335 216 117

200 746 1608 1283 432

Kalman denoising algorithm

10 57 127 91 45

50 253 520 394 160

200 892 1961 1519 451
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