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The precision of the traditional satellite remote sensing image denoising model cannot deal well with some precise production
scenes. To solve this problem, this research proposes an improved remote sensing image processing model, in which the dual
tree complex wavelet transform (DTCWT) method is used to conduct multiscale decomposition of the impact, and the fourth-
order differential equation is used to denoise the decomposed complex high-frequency subband information, and then the
denoised subbands are reconstructed into the denoised image. Through these two advanced signal-processing methods, the
quality of reconstructed signals is improved and the noise content of various types is greatly reduced. The experimental results
show that the normalized root mean square error of the denoising model designed in this study after training convergence is
0.02. When the noise variance is 0.030, the structure similarity, peak signal to noise ratio, and normalized signal to noise ratio
are 0.74, 25.3, and 0.76, respectively, which are better than all other comparison models. The experimental data prove that the
satellite remote sensing image data denoising model designed in this study has better denoising performance, and has certain
application potential in high-precision satellite remote sensing image big data processing.

1. Introduction

With the formation of BeiDou satellite system and the
expansion of commercial application, the era of big data in
satellite industry based on satellite facility services is
approaching. In this context, remote sensing images, as the
basis of satellite big data industry, have attracted more and
more attention to image quality. Therefore, the requirements
of current civil scenes for remote sensing information
extraction technology are also increasing [1]. However,
remote sensing images will be interfered by various noises
in remote sensing imaging, image transmission, and storage,
resulting in the inability to accurately extract and use the
features of ground objects in some images, which is not con-
ducive to the commercial value mining of satellite remote
sensing images [2, 3]. It can be seen that improving the
denoising effect of remote sensing image data can increase
the purity and readability of satellite remote sensing image
data, thus making the subsequent application and processing

easier, which has certain commercial value and research
necessity. In 1983, Grant used multiscale functions to build
the theoretical basis of multiwavelet methods, which greatly
improved the degree of freedom of wavelet denoising
methods [4]. In 1995, Sweldens improved the multiwavelet
filtering algorithm. In this algorithm, the original signal is
divided into odd and even parts, and filtered according to
the classification of odd and even samples [5]. In 2000, Le
Pennec and Mallat segmented the image according to Ban-
delet theory, making the wavelet filtering algorithm more
effective [6]. In 2005, combined with the integer lattice the-
ory, an image description method was designed to separate
images at multiple scales and in multiple directions to
achieve the optimal image block processing operation [7].
On the basis of previous research, this time, we creatively
combined the DTCWT method with the fourth-order partial
derivative equation to build a remote sensing image data
denoising model. In the model, DTCWT is used to split
the remote sensing image into complex low-frequency
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subbands that contain almost no noise and complex high-
frequency subbands that contain a lot of noise, and then par-
tial differential is used to denoise the real part and imaginary
part of the latter. Second-order difference method is used to
solve the fourth-order partial differential iterative equation,
so as to improve the denoising performance of the model
on the premise of ensuring that the original image informa-
tion is retained to the maximum extent. This is also the main
academic contribution of this study.

This paper is divided into four parts. The first part is to
compare and sort out the development history of domestic
satellite remote sensing image denoising methods. The sec-
ond part is to build remote sensing noise model and remote
sensing image big data denoising model combining DTCWT
and fourth-order partial differential equation. The third part
is to design and carry out experiments to verify the denois-
ing performance of the designed denoising method and
other comparison methods for remote sensing images. The
fourth part is to analyze the experimental results, and sum-
marize the advantages and disadvantages of the denoising
methods designed in this study and the improvement
direction.

2. Related Works

University professors at home and abroad and front-line
technical experts in the industry have carried out a lot of
research to optimize the processing accuracy of satellite
remote sensing images and the performance of image
denoising algorithms. Lenin et al. proposed an automatic
classification algorithm for handholding based on EMG sig-
nals based on advanced wavelet transform. In this algorithm,
symlet wavelet is used to denoise the EMG signal on the sub-
ject’s body, and then the dimension is reduced. In addition,
lifting wavelet transform and DTCWT are used to extract
the important attributes of the signal, and neural networks,
support vector machine, and other algorithms are used to
construct multiple classifiers. The calculation results of the
test data set show that the improved algorithm can effec-
tively optimize the recognition performance of the system
for EMG signals [8]. Wang et al. believed that early detection
and treatment of breast cancer can reduce the mortality of
breast cancer, but the existing microcalcification feature
extraction methods can only successfully extract features
under certain specific conditions, and cannot accurately
express all the information of the target region. Therefore,
the research team proposed a data feature extraction algo-
rithm based on DTCWT and texture information. After test-
ing, it is found that the algorithm designed in this study can
achieve better results in mammogram image denoising than
the traditional algorithm, and its robustness is also superior
[9]. He et al. designed a state recognition method of zinc
rapid roughing process based on dual-tree complex wavelet
transform, and the test found that this improved algorithm
could improve the state recognition accuracy of zinc rapid
roughing process [10]. Goyal and Meenpal proposed a kin-
ship recognition algorithm for similar full-face images based
on improved DTCWT. By analyzing the simulation data, it
is found that the method designed in this study has certain

application value in all kinship data sets. Specifically, the
average kinship accuracy of this algorithm on two com-
monly used face data sets is 95.85% and 95.30%, respec-
tively [11].

Raissi and Karniadakis proposed a partial differential
equation-based algorithm that can learn from small data,
in which a hidden physical model is introduced, which is
essentially an efficient data learning machine capable of
exploiting time-dependent and nonlinear partial differential.
Equations represent the laws of physics and can extract pat-
terns from experimentally generated high-dimensional data.
The method can be applied to problems such as learning of
partial differential equations, system identification, or data-
driven. The framework of the algorithm relies on a Gaussian
process, which enables the algorithm to strike a balance
between model complexity and data fitting. By using the
algorithm to solve a variety of canonical problems across
multiple scientific fields, the proposed method is found to
be effective, and the method can operate under complex
computing conditions without requiring large amounts of
data to support training [12]. Wu and Xu proposed a
single-solvent property identification model based on sim-
plex networks and partial differential equations, and used
the data of the two-dimensional third harmonic problem
to study the performance of the model, image recognition
accuracy [13]. Mcdonald et al. discussed the time-
dependent partial differential equation problem and pro-
posed a block loop-preprocessing algorithm for the data pro-
cessing system with block Toeplitz structure. The algorithm
obtains symmetric data by reordering the variables, and can
strictly establish the convergence boundary of the problem,
thus ensuring that the number of iterations of all systems
has no correlation with the time variables. The algorithm is
verified by public data sets. It is found that the algorithm
can significantly improve the data cleaning efficiency of the
data processing system with block Toeplitz structure [14].
Feng et al. found that data filtering and other technologies
are generally used in the industry to obtain high spatial qual-
ity images. The precision of remote sensing image obtained
by super-resolution method cannot meet the application
well. In order to solve this problem, a high spatial quality
remote sensing image reconstruction algorithm based on
fusion generation countermeasure network is designed.
The algorithm improves the image quality by integrating
the denoising and super-resolution methods into a comput-
ing model. Then, tests were carried out using a variety of
data sets, and the results showed that the algorithm has cer-
tain application value in acquiring remote sensing images
[15]. Ma et al. found that the current commonly used
denoising methods have not reached sufficient robustness
in practice because they ignore the inherent structure of
remote sensing images or underestimate the difficulty of
processing environmental noise to a certain extent. There-
fore, a new denoising algorithm is proposed in this study,
which uses the robust noise and inherent characteristics of
the image to establish an image-processing model. The per-
formance test of this algorithm shows that the algorithm
designed in this study has certain advantages compared with
the most advanced methods [16].
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To sum up, in order to improve the image denoising effi-
ciency and denoising performance, experts and scholars at
home and abroad have used DTCWT method and partial
differential equation to build a variety of denoising algo-
rithms. However, it is difficult to smooth the noise in the
depression area by using partial differential equation only.
The advantage of this method is the overall denoising of
the image. At the same time, the advantage of DTCWT
method is that it can focus the high-frequency detail compo-
nents in all directions of the image and has good time-
frequency localization characteristics. Therefore, this study
attempts to combine the two to build a new satellite remote
sensing image data-denoising algorithm, hoping to improve
the denoising ability of the algorithm.

3. Design of a Big Data Denoising Model for
Remote Sensing Images Based on DTCWT
and Fourth-Order Partial
Differential Equations

3.1. Remote Sensing Image Noise Model and Discrete Wavelet
Transform Design. In this study, the noise model affected by
remote sensing was first designed, and the advantages and
disadvantages of discrete wavelet transform were analyzed
to prepare for the later proposed remote sensing image big
data-denoising model combining DTCWT and partial dif-
ferential equations. Since the working state of the sensor is
affected by several environmental factors and system com-
ponents, the remote sensing effect may be polluted by some
noise in the process of transmission and acquisition. Assum-
ing that the noise-free grayscale image is the noise f ðx, yÞ in
nðx, yÞ the graph, and the noise-containing image is gðx, yÞ,
the multiplicative noise form of the noise-containing image
can be expressed as gðx, yÞ = f ðx, yÞ½1 + nðx, yÞ� [17–19].
The noise in the image is composed of Gaussian noise and
salt and pepper noise. The former is mainly caused by the
electronic circuit noise caused by factors such as high tem-
perature and low illumination in the environment, and the
probability density function obeys a normal distribution
[20]. The latter is caused by improper equipment operation,
and the probability density function of noise is shown pðqÞ
in the following:

p qð Þ =
Pc, z = c,

Pd , z = d,

0, else:

8>><
>>: ð1Þ

In Equation (1), pðqÞ and b, respectively, represent the
noise point, q represents the pixel gray value in the image,
and pðqÞ represents the probability of occurrence, and satisfy
0 ≤ Pc ≤ 1, b, and pðqÞ, respectively, 0 ≤ Pd ≤ 1. Therefore, d
> cd the pixel point with the gray value at that time can be
regarded as a bright noise point, or “salt noise,” and the pixel
point d ≤ c with the gray value at that time is considered c as
a “pepper noise” or a dark noise point.

This research needs to apply wavelet transform to two-
dimensional image processing. The input signal in this task

is two-dimensional discrete signal. Therefore, the wavelet
decomposition and reconstruction transformation method
for discrete two-dimensional image data is designed in the
following. If the function Φðt1, t2Þ ∈ L2ðR2Þ meets the condi-
tions

Ð Ð +∞
−∞Φðt1, t2Þdt1t2 = 0, Φðt1, t2Þ is called the generat-

ing function of the two-dimensional wavelet, and the
function can be expanded and translated to obtain a small
fundamental wave group, such as

Φa,b1,b2 t1, t2ð Þ = 1
a
Φ

t1 − b1
a

, t2 − b2
a

� �
, a > 0 ; b1, b2 ∈ R:

ð2Þ

In Equation (2), a, b1, and b2 represent the scale factor
and the translation factor in two different directions, respec-
tively. At that time, xðt1, t2Þ ∈ L2ðR2Þxðt1, t2Þ the two-
dimensional wavelet transform of the signal can be expressed
as follows:

WTx a, b1, b2ð Þ = 1
a

ð+∞
−∞

ð+∞
−∞

x t1, t2ð ÞΦ t1 − b1
a

,
t2 − b2

a

� �
dt1dt2:

ð3Þ

The discretization of the a = aj0 parameters a, t1, and the
three values are, respectively t2, b1 = aj0k1τ0, b2 = aj0k2τ1,
where τ1 and τ2 are the system parameters of the auxiliary
transformation, and f ðt1, t2Þ the discrete wavelet change for-
mula of the two-dimensional function can be obtained by
combining Equation (3), see the following equation:

WTf a0, τ0, τ1ð Þ = a−j/20 ∬f t1, t2ð ÞΦ
Á a−j0 t1 − k1τ0, a

−j
0 t2 − k2τ1

� �
dt1dt2:

ð4Þ

Therefore, it can be seen that the essence of the two-
dimensional wavelet transform is to attach importance to the
one-dimensional signal in each row and column of the image,
and use low-pass and high-pass filtering on them, respectively.
To sum up, the calculation flow of the two-dimensional dis-
crete wavelet decomposition is shown in Figure 1.

As shown in Figure 1, the two-dimensional discrete
wavelet decomposition algorithm first decomposes the
image x into two subbands h0ðxÞ, h1ðxÞ, according to the
dimension, and then each component y is divided into two
subbands h0ðyÞ and h1ðyÞ. According to the dimension, “∗”
represents the interval sampling step, then the image will
eventually be decomposed into 4 subbands LL, LH, HL,
and HH. The subband reconstruction method after 2D dis-
crete wavelet decomposition is shown in Figure 2.

“#” in Figure 2 represents the reverse operation of sam-
pling at intervals. As shown in Figure 2, the subband recon-
struction process after 2D discrete wavelet decomposition is
generally consistent with the decomposition process. In this
process, the horizontal high-frequency subband, the vertical
high-frequency subband, the low-frequency subband, and
the diagonal high-frequency subband will finally be synthe-
sized into the original image after denoising.
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3.2. Denoising Model Design Combining DTCWT and Partial
Differential Equation. Due to the various application limita-
tions of discrete wavelet change, for example, this method is
highly sensitive to translation operations, and can transform
in less directions, so it cannot achieve complete data recon-
struction [21]. Therefore, in order to overcome the above
shortcomings, some scholars proposed the DTCWT
method, which not only has good time-frequency analysis
ability of data signals but also has translation invariance,
supports complete reconstruction, and has more decomposi-
tion directions [22, 23]. The DTCWT method adopts the
structure of binary tree to decompose the image, and uses
two filters to generate sampling delay in the first layer of
decomposition, so that it can offset the lost sampling infor-
mation in the second layer [24]. The one-dimensional and
two-dimensional DTCWT reconstruction process in the
DTCWT method are, respectively, designed as follows, for
the subsequent construction of the denoising algorithm.
The wavelet odd function in the DTCWT method is defined
in complex form, as shown in the following:

Φ tð Þ =Φr tð Þ + jΦi tð Þ: ð5Þ

In Equation (5), ΦrðtÞ and ΦiðtÞ represent the real func-
tion, which, respectively, constitutes the real part and imag-
inary part of the complex wavelet. For any arbitrary
f ðtÞ ∈ L2ðRÞ, DTCWT can be expressed as h f ,Φci = h f ,Φhi
+ h f ,Φgi, correspondingly exists dcðj, nÞ = dhðj, nÞ + jdgðg,
nÞ, where j represents the resolution, dhðj, nÞ and dgðg, nÞ
are the real and imaginary parts of the complex wavelet
transform coefficients, respectively, and dcðj, nÞ as the mag-
nitude and phase of Equation (7) expression.

dc j, nð Þj j = dn j, nð Þ½ �2 + dg j, nð ÞÂ Ã2� �1/2
, ð6Þ

∠dc j, nð Þ = arctan
dh j, nð Þ
dg j, nð Þ

 !
: ð7Þ

The one-dimensional DTCWT method is shown in
Figure 3. In Figure 3, g0ðnÞ and g1ðnÞ, respectively, repre-
sent the conjugate integral filter pair, h0ðnÞ and h1ðnÞ,
respectively, represent the conjugate quadrature filter pair.
As shown in Figure 3, the data is first transformed into a
complex wavelet form, and then the real part and the imag-
inary part of the complex wavelet are separated. Then two
sets of filters are used to generate the real and imaginary
transform coefficients, respectively. In addition, after each
layer is decomposed, six high-frequency information com-
ponents and one low-frequency information component in
different directions can be obtained [25].

Figure 4 shows the reconstruction process of the
DTCWT method. The reconstruction process is also carried
out in the form of two trees. One tree is used to construct the
real and imaginary number structures of the object. The final
output of the reconstruction step is the average value of the
real and imaginary part signals.

The two-dimensional DTCWT is generally similar to the
one-dimensional DTCWT as described. The one-dimensional
data can be converted into a two-dimensional data by using
the wavelet tensor product. The conversion process is designed
in the following. For ΦðtÞ =ΦrðtÞ + jΦiðtÞ, the data two-
dimensional dual-tree complex wavelet can be expressed as
follows:

Φ x, yð Þ =Φh xð ÞΦh yð Þ −Φg yð Þ2
+ j Φg xð ÞΦh yð Þ +Φh xð ÞΦg yð ÞÂ Ã

:
ð8Þ

Observing Equation (8), it can be seen that the real part of
the two-dimensional data is composed of the difference
between two two-dimensional separable wavelets. In the same
way, all the two-dimensional data expressions of the informa-
tion can be obtained, and the real parts of these complex wave-
lets can be 1/

ffiffiffi
2

p
planned and processed to obtain six two-

dimensional real wavelets. Dimensional real wavelet, so far,
the calculation method of two-dimensional data coefficients
with six directions is completed.

In the following, another method for constructing the
final denoising model, namely the fourth-order partial dif-
ferential denoising model, will be described. Since the
second-order partial differential denoising model will be cal-
culated towards the segmented plane, there will be a “stair-
case” effect. The fourth-order partial differential denoising
model approximates the original image by a segmented
slope, which can better solve the mentioned problems. The
energy functional calculation method of this model is shown
in the following:

E uð Þ =
ð
Ω

f ∇2u
�� ��À Á

dΩ: ð9Þ
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Figure 1: Flow chart of 2D discrete wavelet decomposition
calculation.
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Figure 2: Reconstruction flow chart of 2D discrete wavelet
decomposition subband.

4 Journal of Applied Mathematics



Equation (9) ∇2 represents the Laplacian operator, which
∇2 represents the smoothness of the image, which f ′ð:Þ > 0
is ∇2 a monotonically increasing function, so there is a
minimum ∇2, which can make EðuÞ the minimum value,
and the EðuÞ minimum is the process of image smoothing,
EðuÞ the Euler-Lagrange equation. The form is shown in
the following:

∂2

∂x2
f ′ ∇2u
��À Á

uxxj
� �

+
∂2

∂y2
f ′ ∇2u
��À Á

uyy
��� �

= 0: ð10Þ

Combining Equations (9) and (10), Equation (11) can
be further derived as

∇2 f ′ ∇2u
�� ��À Á ∇2u

∇2u
�� ��

" #
= 0: ð11Þ

Because of the diffusion function, gðxÞ = f ′ðxÞ/x.

∇2 g ∇2u
�� ��À Á

∇2u
Â Ã

= 0: ð12Þ

Using the gradient descent method to solve Equation
(12) and introducing the time t variable, the gradient
descent flow can be expressed using the following equa-
tion:

∂u x, y, tð Þ
∂t

= div g ∇2u
�� ��À Á

∇2u
À Á

: ð13Þ

So far, the improved denoising model has been
designed, which can effectively reduce the step effect
caused by the filtering process of the second-order partial
differential equation, and retain the texture information
of the image.

3.3. Improve the Design of the Big Data Denoising Model for
Remote Sensing Images. Since the edges of objects and most
of the noise in the remote sensing image big data are distrib-
uted in the high-frequency subbands, it is difficult to smooth
the noise in the concave area simply by using partial differ-
ential equations. At the same time, the advantage of
DTCWT method is that it can focus the high-frequency
detail components in all directions of the image, and has
good time-frequency localization characteristics. Therefore,
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Figure 3: Schematic diagram of the decomposition process of the one-dimensional DTCWT method.
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this study proposes a large data-denoising model for remote
sensing images that combines the DTCWT method with the
fourth-order partial differential equation dual tree complex
wavelet transform (FD-DTCWT). The core part of the FD-
DTCWT denoising model includes multiscale image data
decomposition and partial differential equation data filtering
based on the FD-DTCWT method, which are designed in
detail.

In the FD-DTCWT denoising model, the Q-shift filter
bank is used to perform one-dimensional DTCWT decom-
position on the noisy remote sensing image, and six and
one high-frequency and low-frequency data sets are
obtained, respectively. The former contains a large amount
of image noise and edge information. The specific one-
dimensional DTCWT decomposition process of remote
sensing image big data has been shown in the previous con-
tent, and will not be described here.

The solution of partial differential equations is generally
carried out by the finite difference method. The main calcu-
lation steps of the finite difference method are to discretize
the time area and the space area, and use the difference cal-
culated according to the pixel gray value to approximately
replace the derivative of each grid point. According to the
derived iterative formula, select the appropriate number of
iterations to solve the approximate solution of the partial
differential equation. Specifically, the iterative solution equa-
tion described by Equation (13) is first discretized, and the
second-order difference ∇2uji,j = calculation of the image
gray value at the center point is shown in the following:

∇2u i,j
�� = kxxð Þi,j + kyy

À Á
i,j: ð14Þ

The ðkxxÞi,j calculation method is shown in the following:

uxxð Þi,j =
ki+1,j + ki−1,j − 2ki,j

m2 : ð15Þ

In Equation (15), m represents the space step size of dis-
cretization, select a diffusion function gðj∇ujÞ, and its
second-order difference form is shown in the following:

∇2gk+1i,j =
jki+1,j + jki−1,j + jki,j−1 + jki,j+1 + 4jki,j
� �

m2 : ð16Þ

Therefore, the iterative formula after discretizing Equa-
tion (13) is shown in the following:

uk+1 = uk − Δt ∇2g ∇2uk
��� ���� �

∇2uk
� �

: ð17Þ

In Equation (17), Δt represents the time step of discreti-
zation. Combining the mentioned contents, a remote sens-
ing image big data-denoising model can be designed and
obtained by combining the DTCWT method and partial dif-
ferential. The algorithm flow is shown in Figure 5.

As shown in Figure 5, after the model inputs image big
data, it is necessary to first determine the iteration discrete
time step, space step, and iteration number. Step 2 uses Q-
shift filter to decompose DTCWT into real part and imagi-
nary part. Step 3 uses the decomposed high-frequency sub-
band to perform gray level second-order difference
calculation or denoise the decomposed subband to obtain
∇2uji,j. Step 4 selects the diffusion function and gradient

Including noise
impact data

DTCWT
decomposition

Complex low
frequency subband

Complex high
frequency subband

Real part Imaginary part

Denoising of fourth order
partial differential equation

Set diffusion function
and gradient threshold

Second order difference
of calculated data

Solving equation by
gradient descent method

Second order difference
for calculating diffusion

function
Real part after

denoising
Imaginary part
after denoising

High frequency subband
after denoising

Reconstructed image
after denoising

Figure 5: Flow chart of FD-DTCWT remote sensing image big data denoising model.
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threshold K . Then, use Equation (16) to calculate the
second-order difference of the diffusion function, and then
use Equation (17) to iterate to the set number of times to
obtain the denoised high-frequency wavelet coefficient YH′
. Finally, use the denoised complex high-frequency subband,
complex low-frequency subband components, and complex
low-frequency subband to perform dual tree complex wave-
let reconstruction, and output the denoised remote sensing
big data image.

4. Comparative Experimental Analysis of Model
Denoising Performance

Now, start the experiment to test the noise removal ability of
the model. In this study, research team members selected a
number of satellite remote sensing image data with clear
images, good quality, and some real noise obtained from rel-
evant national public utilities as the experimental data set.
The image in the data set is taken by the civil meteorological
satellite, the shooting equipment is an optical camera, and
the pixel specification of the image is 1024 × 1024 pixels.
The data set is divided into test set and training set accord-
ing to 3 : 7, and the division method is random selection.
The selected satellite images contain information about
roads, buildings, farmland, roads, factories, and other
objects, which are representative. Combined with the hard-

ware specification, a remote sensing image big data-
denoising model is built on the software-programming plat-
form of Python 3.0 programming language, and the model is
run in an environment with a CPU of i7-8700, a memory
size of 8GB, and an operating system of Windows 10. In
the experiment, Python language package is used to add dif-
ferent noise variances to the image, and the pure anisotropy
(PA) model commonly used in the industry. The denoising
model of discrete wavelet transform combined with fourth-
order partial differential equation (FD-DWT) is used as the
contrast model, and parallel experiments are conducted with
the FD-DTCW model designed in this study. In the experi-
ment, the signal-to-noise ratio, calculation time, peak signal-
to-noise ratio, structural similarity, and root mean square
error were selected as evaluation indicators. In order to
reduce the difficulty of statistics, some indicators need to
be normalized. In addition to root mean square error, their
values and indicators are displayed by taking the average
value of each test set sample. When the noise variance is
0.03, the original image and a case satellite remote sensing
image processed by each method are shown in Figure 6.

It can be seen from Figure 6 that there is a lot of noise in
the original image, and the image noise after denoising by
PA, literature [26] method, FD-DWT, and FD-DTCW
methods has been improved to varying degrees. Among
which, the image noise points after processing by FD-
DTCW method have been significantly reduced, and the

Original image

(a)

PA Denoised Image

(b)

Image after DWT de-noising 

(c)

Image after DTCW de-noising 

(d)

Image after literature (20)
method de-noising 

(e)

Figure 6: Example of satellite remote sensing image processing.
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denoising effect is the most significant. Next, analyze the
change of root mean square error of each model on the
training data set, as shown in Figure 7.

In Figure 7, the horizontal axis is used to describe the
number of iterations, and the vertical axis is used to describe
the root mean square error value after normalization. Differ-
ent colors represent different remote sensing big data
denoising models. It can be seen from Figure 6 that with
the increase of model training rounds, the normalized root
mean square error values of each model on the test set show
a change rule that decreases significantly at first, and then
tends to be stable. When the number of iterations exceeds
100, the root mean square errors of the three models con-
verge. At this time, the normalized root mean square errors

of FD-DWT model, PA model, FD-DTCW model, and liter-
ature [26] model are 0.05, 0.09, 0.02, and 0.10, respectively.
The normalized root mean square error of the FD-DTCW
model designed in this study is the smallest, which shows
that the image data after denoising and reconstruction has
the least information loss, and the original image informa-
tion retained is the most. Next, we will start to analyze the
performance of each denoising model after training on the
remote sensing image big data test set. See Figure 8 for the
statistical results of the signal-to-noise ratio. Note that the
performance of the advanced method in Figure 7, the litera-
ture [26] model, is the worst. To simplify the experimental
process, this method will not be considered in the subse-
quent analysis.
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Figure 7: Variation of the root mean square error of each model during the training process.
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Figure 8: Changes in the signal-to-noise ratio of each model on the test set.
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The horizontal axis in Figure 8 describes the noise vari-
ance set in Python environment, and the vertical axis repre-
sents the normalized signal-to-noise ratio of the calculated
results of the trained model on the test set. Note that the
horizontal axis is set in the form of uneven distribution in
order to show the change law of the graph as clearly as pos-
sible. It can be seen from Figure 8 that with the increase of
noise variance, the output normalized signal-to-noise ratio
of each model on the test set shows an accelerated down-
ward trend, that is, the denoising effect is gradually worse.
This is because the larger the noise variance, the more seri-
ous the noise interference of the representative image, and
the denoising effect of the model will be correspondingly
weakened. However, when the noise variance is fixed, the
FD-DTCW model designed in this study has the best
denoising effect, followed by the FD-DWTmodel. For exam-
ple, when the noise variance is 0.030, the normalized signal-
to-noise ratios of FD-DWT model, PA model, and FD-
DTCW model are 0.63, 0.55, and 0.76, respectively. This is
because in each subband decomposed by the DTCWT
method, the method designed in this study only denoises
the complex high-frequency subband containing a lot of
noise, which avoids unnecessary information loss to a
greater extent. Next, the performance of each model is ana-
lyzed from the perspective of peak signal-to-noise ratio. See
Figure 9 for the statistical results.

The horizontal axis in Figure 9 describes the noise vari-
ance set in Python environment, and the vertical axis is used
to describe the normalized signal-to-noise ratio of the calcu-
lated results of the trained model on the test set. Note that
the horizontal axis is set in the form of uneven distribution
in order to show the change law of the graph as clearly as
possible. It can be seen from Figure 9 that when the noise
variance parameter increases continuously, the output nor-
malized signal-to-noise ratio of each model on the test set
shows an accelerated downward trend, that is, the denoising
effect becomes worse. This is because the larger the noise

variance, the more serious the noise interference of the rep-
resentative image, and the denoising effect of the model will
be weakened accordingly. However, when the noise variance
is fixed, the FD-DTCW model designed in this study has the
best denoising effect, followed by the FD-DWT model. For
example, when the noise variance is 0.030, the normalized
signal-to-noise ratios of FD-DWT model, PA model, and
FD-DTCW model are 0.63, 0.55, and 0.76, respectively.
Next, the performance of each model is analyzed from the
perspective of peak signal-to-noise ratio. See Figure 10 for
the statistical results.

The vertical axis in Figure 10 represents the structural
similarity of the test set images. Looking at Figure 10, the
slope of the structural similarity curve output by each
denoising model is always less than 0, and it first decreases
and then increases, and tends to stable, the inflection point
of the curve is roughly in the range of noise variance
0.020~0.040 with the increase of noise variance. It shows
that with the increase of noise severity, the reconstructed
image after denoising of each model is less similar to the
source image and loses more information. However, when
the noise method is the same, the FD-DTCW model retains
the most original image information. For example, when the
noise variance is around 0.030, the structural similarity of
the FD-DWT model, the PA model, and the FD-DTCW
model is 0.64, 0.57, and 0.74, respectively. Then, compare
the figure of Merit (FOM) of each denoising model, as
shown in Figure 11.

It can be seen from Figure 11 that with the increase of
noise variance, the FOM value change of the test set image
processed by each denoising method is generally consistent
with Figure 10. Because of the increase of noise severity,
the edge information quality of the image will inevitably
decline as a whole, leading to the decline of the correspond-
ing index FOM value. When the noise variance is 0.030, the
FOM of FD-DWT model, PA model, and FD-DTCW model
are 0.79, 0.76, and 0.84, respectively. Finally, compare the
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Figure 9: The variation of peak signal-to-noise ratio of each model on the test set.
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data processing efficiency of each denoising model, and cal-
culate the model calculation time consumption under differ-
ent processing samples, as shown in Figure 11. Finally,
compare the data processing efficiency of each denoising
model, and calculate the model calculation time consump-
tion under different processing samples, as shown in
Figure 12.

Note that in order to ensure the accuracy of the experi-
mental results, each experimental method is repeated for
10 times, and the results are displayed using the mean and
standard deviation of the calculation time. F difference sig-
nificance test was conducted for the time consuming data
of group sample size calculation, and the significance was
set as 0.05. It can be seen from Figure 12 that under various
sample sizes, the calculation time of PA model is the least,

followed by FD-DWT model, and the calculation time of
FD-DTCWmodel is the longest, with a significant difference
from that of the previous two algorithms. It shows that the
method proposed in this study is slightly higher in computa-
tional complexity than its method. But on the whole, the cal-
culation time of the latter is still small, which can meet the
application requirements. In addition, the larger the noise
variance is, the longer the calculation time of each method
is. In the common noise variance range of 0.01~0.05, there
is an order of magnitude difference between the time of pro-
cessing the same number of samples with the same method
and the time of processing 0.03 noise variance. In order to
further verify the effectiveness of the methods proposed in
this study, FAIR1M, a large satellite remote sensing image data
set published by the Chinese government, containing more
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Figure 11: FOM changes of each model on the test set.
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Figure 10: Changes in the structural similarity of each model on the test set.
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than one million target details, was selected, and the project
was deployed and run on the big data analysis software plat-
form Spark. Figure 13 was obtained through analysis.

The horizontal axis, vertical axis, and data line styles in
Figure 13 are consistent with those in Figure 8. It can be seen
from Figure 12 that with the increase of noise variance, the
output normalized signal-to-noise ratio of each model on
the test set still shows a downward trend. However, the

signal-to-noise ratio of the image processed by FD-DTCW
method is obviously higher than that of other methods.
Moreover, when the noise variance is the same, FD-DTCW
model has the best denoising effect, followed by FD-DWT
model. For example, when the noise variance is 0.030, the
normalized signal-to-noise ratios of FD-DWT model, PA
model, and FD-DTCW model are 0.62, 0.47, and 0.75,
respectively.
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Figure 13: Signal to noise ratio change of each model on FAIR1M test set.
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5. Conclusion

Due to the unstable working state of the sensor and
improper equipment operation, there is often some noise
in satellite remote sensing images, which will affect the use
of subsequent images. Therefore, this research combined
the fourth-order partial differential equation and the
DTCWT method to design an improved satellite remote
sensing big data image-denoising model. The experimental
results of denoising based on real satellite remote sensing
data show that the normalized signal-to-noise ratios of FD-
DWT model, PA model, and the denoising model FD-
DTCW designed in this study are 0.63, 0.55, and 0.76, the
peak signal-to-noise ratios were 24.0, 22.8, and 25.3, and
the structural similarity was 0.64, 0.57, and 0.74, respec-
tively. At the same time, when the number of calculated
samples is 100,000, the calculation time of FD-DWT model,
PA model, and FD-DTCW model is 670 ± 77, 649 ± 62, and
694 ± 30, respectively. Although the design model of this
research takes the most time, the difference from the com-
parison model is smaller. The experimental data proves that
the denoising model of satellite remote sensing big data
image designed in this study has better denoising perfor-
mance than the common denoising model, but the calcula-
tion speed is slightly slow, which is also the main
limitation of the method designed in this study. The future
work direction is to reduce the overall complexity of the
algorithm to shorten the image denoising time on the pre-
mise of continuously improving the denoising performance
of the method.
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