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Nonlinear heat equation solved by the barycentric rational collocation method (BRCM) is presented. Direct linearization method
and Newton linearization method are presented to transform the nonlinear heat conduction equation into linear equations. The
matrix form of nonlinear heat conduction equation is also obtained. Several numerical examples are provided to valid our
schemes.

1. Introduction

In this article, the nonlinear heat conduction equation is
considered as

∂u x, tð Þ
∂t

= c x, t, uð Þ ∂
2u x, tð Þ
∂x2

+ F x, t, u, ∂u x, tð Þ
∂x

� �
, a ≤ x ≤ b, t ≥ 0,

ð1Þ

where Fðx, t, u, ð∂uðx, tÞ/∂xÞÞ is the nonlinear term of u
and ux , with initial condition

u x, 0ð Þ = f xð Þ, a ≤ x ≤ b, ð2Þ

and the boundary condition

u a, tð Þ = φ1 tð Þ u b, tð Þ = φ2 tð Þ, t ≥ 0: ð3Þ

Combining (1)–(3), we get nonlinear heat conduction
equation.

The linear and nonlinear heat conduction equation is a
second-order linear partial differential equation [1–6]. There
are analytical and numerical methods to solve the linear/
nonlinearheat conduction equation. For the numerical

methods, there are the finite difference method, finite ele-
ment method and boundary element method, the spectral
method [7], etc.

The barycentric formula have been obtained by the
Lagrange interpolation formula [8–10] and been used to
solve Volterra equation and Volterra integro-differential
equation [11–14]. Floater and Kai, Klein and Berrut
[15–17] have proposed a rational interpolation scheme and
get the equidistant node of the barycentric formula. In recent
papers, references [18–25] have been extended the bary-
centric collocation methods to solve initial/boudary value
problems and linear/nonlinear problems.

In this paper, the linear barycentric rational collocation
method (LBRCM) for nonlinear heat conduction equation
is presented. Direct linearization and Newton linearization
are presented to transform the nonlinear heat conduction
equation into linear equations. The matrix form of lineariza-
tion scheme for nonlinear heat conduction equation is also
obtained.

This paper is organized as follows: in Section 2, the line-
arization scheme for nonlinear heat conduction equation is
given. Direct linearization and Newton linearization are con-
structed, and then the matrix form of LBRCM is also pre-
sented. At last, two numerical examples are listed to
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illustrate our numerical scheme.

2. Linearization

Direct linearization and Newton linearization are presented
to change the nonlinear heat conduction equation into linear
equation. By choosing the equidistant nodes and Chebyshev
nodes as collocation point to solve the nonlinear heat con-
duction equation, the direct linearization scheme can be
adopted as

∂u x, tð Þ
∂t

= c x, t, u0ð Þ ∂
2u x, tð Þ
∂x2

+ F x, t, u0,
∂u0 x, tð Þ

∂x

� �
,

∂un x, tð Þ
∂t

= c x, t, un−1ð Þ ∂
2un x, tð Þ
∂x2

+ F x, t, un−1,
∂un−1 x, tð Þ

∂x

� �
:

ð4Þ

Newton linearization scheme can be adopted as

∂u x, tð Þ
∂t

= c x, t, uð Þ ∂
2u x, tð Þ
∂x2

+ F x, t, u0,
∂u0 x, tð Þ

∂x

� �
u − u0ð Þ+⋯,

ð5Þ

and then we get the Newton linearization as

∂u x, tð Þ
∂t

= c x, t, uð Þ ∂
2u x, tð Þ
∂x2

+ F x, t, u0,
∂u0 x, tð Þ

∂x

� �
u − u0ð Þ,

∂un x, tð Þ
∂t

= c x, t, un−1ð Þ ∂
2un x, tð Þ
∂x2

+ F x, t, un−1,
∂un−1 x, tð Þ

∂x

� �
un − un−1ð Þ:

ð6Þ

We partition the interval ½a, b� into a = x0 < x1 <⋯<xm
= b, h = b − a/m and ½0, T� into 0 = t0 < t1 <⋯<tn = T , τ =
T/n with Ω = ½a, b� × ½0, T� and ðxi, t jÞ, i = 0, 1, 2,⋯,m ; j =
0, 1, 2,⋯, n. Then, we have

rm,n x, tð Þ = 〠
m

i=0
〠
n

j=0
ri xð Þrj tð Þui,j, ð7Þ

where ui,j = uðxi, t jÞ and

ri xð Þ = wi/x − xi
∑n

j=0 wj/x − xj
� � , r j tð Þ = wj/t − t j

∑m
j=0 wj/t − t j
� � ,

wk = 〠
i∈Jk

−1ð Þi
Yi+d
j=i,j≠k

1
xk − xj

,
ð8Þ

and Jk = fi ∈ I ; k − d ≤ i ≤ kg, I = f0, 1,⋯,n − dg.

Taking equation (7) into equation (1), we can get the
LBRCM as

〠
m

i=0
〠
n

j=0
ri xð Þrj ′ tð Þui,j = c x, t, 〠

m

i=0
〠
n

j=0
ri xð Þr j tð Þui,j

 !
〠
m

i=0
〠
n

j=0
r′′i xð Þrj tð Þui,j

+ F x, t, 〠
m

i=0
〠
n

j=0
ri xð Þrj tð Þui, j, 〠

m

i=0
〠
n

j=0
ri′ xð Þr j tð Þui,j

 !
:

ð9Þ

3. Numerical Examples

In the following, two examples are given to valid our
algorithm.

Example 1. Consider

∂u
∂t

= ∂2u
∂x2

+ e−u + e−2u, a < x < b ; t ≥ 0, ð10Þ

with

u 0, tð Þ = ln t + 2ð Þ, u 1, tð Þ = ln t + 3ð Þ,
u x, 0ð Þ = ln x + 2ð Þ,

ð11Þ

Its analysis solutions is

u x, tð Þ = ln x + t + 2ð Þ: ð12Þ

Firstly, direct linearization of nonlinear heat conduction
equation is given as

∂u
∂t

= ∂2u
∂x2

+ e−u0 + e−2u0 , a < x < b ; t > 0, ð13Þ

with its direct linearization scheme is

∂un
∂t

= ∂2un
∂x2

+ e−un−1 + e−2un−1 , n = 1, 2,⋯, ð14Þ

and its matrix form is

D 0,1ð Þ −D 2,0ð Þ
h i

un = e−un−1 + e−2un−1 , n = 1, 2,⋯, ð15Þ

where

D m0ð Þ
ij = R mð Þ

i xj
� �

, m = 1, 2,D 01ð Þ
ij = R 1ð Þ

i t j
� �

, ð16Þ

D 10ð Þ
ij =

wi/wj

xj − xi
, j ≠ i,

−〠
i≠j
D 10ð Þ

ji , j = i,
 D 20ð Þ

ji =
2D 10ð Þ

ji D 10ð Þ
ji −

1
xj − xi

 !
, j ≠ i,

−〠
i≠ j
D 20ð Þ

ji , j = i,

8>>>><
>>>>:

8>>>><
>>>>:

ð17Þ
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Figure 1: Analysis solutions of uðx, tÞ = ln ðx + t + 2Þ.
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Figure 2: Errors of equidistant nodes for LBRCM with m = n = 10, d1 = d2 = 7.
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Figure 3: Errors of Chebyshev nodes for LBRCM with m = n = 10, d1 = d2 = 7.
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D 01ð Þ
ij =

wi/wj

t j − ti
, j ≠ i,

−〠
i≠j
D 01ð Þ

ji , j = i:

8>>><
>>>:

ð18Þ

In Figure 1, the analysis solution uðx, tÞ = ln ðx + t + 2Þ is
presented. In the following Figures 2 and 3, errors of equi-
distant nodes and Chebyshev nodes for LBRCM with m =
n = 10, d1 = d2 = 7 are given, respectively; from the figure,
we know that the accuracy of Chebyshev nodes is higher
than equidistant nodes.

In the following Figures 4 and 5, errors of equidistant
nodes and Chebyshev nodes for BLCM with m = n = 10 are
given, respectively; from the figure, we know that the accu-
racy of Chebyshev nodes is also higher than equidistant
nodes.

In Tables 1 and 2, the errors of direct linearization
scheme by LBRCM with equidistant nodes for x and t are
presented.

In Tables 3 and 4, the errors of the LBRCM with Cheby-
shev nodes for x and t are presented.

Secondly, Newton linearization of nonlinear heat con-
duction equation is given as

∂u
∂t

= ∂2u
∂x2

+ e−u0 + e−2u0
� �

u − u0ð Þ, a < x < b ; t ≥ 0, ð19Þ

with its Newton linearization scheme that is

∂un
∂t

= ∂2un
∂x2

+ e−un−1 + e−2un−1
� �

un − un−1ð Þ, n = 1, 2,⋯,

ð20Þ

and its matrix form is

D 0,1ð Þ −D 2,0ð Þ + diag e−un−1 + 2e−2un−1
� �h i

un = e−un−1 + e−2un−1

+ e−un−1 + 2e−2un−1
� �

∘ un−1, n = 1, 2,⋯,
ð21Þ

where Dð0,1Þ and Dð2,0Þ are defined as (16).
In Tables 5 and 6, the errors of Newton linearization

scheme by LBRCM with equidistant nodes for x and t are
presented.

In Tables 7 and 8, the errors of Newton linearization by
LBRCM with Chebyshev nodes for x and t are presented.

From the table above, we know that the accuracy of
Newton linearization scheme is higher than direct lineariza-
tion scheme.

Example 2. Consider

∂u
∂t

= α
∂2u
∂x2

− u
∂u
∂x

+ f x, tð Þ, a < x < b ; t > 0, ð22Þ

with the condition

f x, tð Þ = sin 6πxð Þ 36π2 cos tð Þ − sin tð Þ + 6π cos 6πxð Þ cos2 tð Þ� �
,

u x, 0ð Þ = sin 6πxð Þ, u 0, tð Þ = 0: ð23Þ

Its analysis solutions is

u x, tð Þ = cos tð Þ sin 6πxð Þ: ð24Þ

In this example, direct linearization scheme is presented

∂u
∂t

= ∂2u
∂x2

− u
∂u
∂x

+ e−u0 + e−2u0 , a < x < b ; t > 0, ð25Þ
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Figure 4: Errors of equidistant nodes for BLCM with m = n = 10.
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Table 1: Errors of the LBRCM with d2 = 7 at t = 1 for equidistant nodes.

m, n d1 = 1 hα d1 = 2 hα d1 = 3 hα d1 = 4 hα

8, 8 5.8782e-04 1.4718e-05 6.2224e-06 5.3762e-07

16, 16 1.8139e-04 1.6963 1.9147e-06 2.9424 3.6861e-07 4.0773 2.1906e-08 4.6172

32, 32 5.4855e-05 1.7254 2.5010e-07 2.9365 2.3239e-08 3.9874 7.8080e-10 4.8102

64, 64 1.6239e-05 1.7561 3.2280e-08 2.9538 1.5064e-09 3.9474 8.2417e-11 3.2439

Table 2: Errors of the LBRCM with d1 = 7 at t = 1 for equidistant nodes.

m, n d2 = 1 τα d2 = 2 τα d2 = 3 τα d2 = 4 τα

8, 8 9.5811e-04 1.7102e-05 5.4941e-06 3.4075e-07

16, 16 5.2156e-04 0.8774 5.2640e-06 1.7000 8.0961e-07 2.7626 3.2948e-08 3.3704

32, 32 2.3682e-04 1.1390 1.3002e-06 2.0175 9.8320e-08 3.0417 2.2777e-09 3.8545

64, 64 9.5433e-05 1.3112 2.8040e-07 2.2132 1.0531e-08 3.2228 1.2354e-10 4.2045

Table 3: Errors of the LBRCM with d2 = 7 at t = 1 for Chebyshev nodes.

m, n d1 = 1 hα d1 = 2 hα d1 = 3 hα d1 = 4 hα

8, 8 1.3717e-03 1.5290e-05 6.3486e-06 1.6112e-07

16, 16 3.3177e-04 2.0477 1.2090e-06 3.6607 8.3105e-08 6.2554 3.2477e-09 5.6326

32, 32 7.7738e-05 2.0935 7.4116e-08 4.0279 2.5853e-09 5.0065 1.5222e-09 —

64, 64 8.4472e-05 — 4.3077e-06 — 5.6046e-06 — 2.0141e-06 —

Table 4: Errors of the LBRCM with d1 = 7 at t = 1 for Chebyshev nodes.

m, n d2 = 1 τα d2 = 2 τα d2 = 3 τα d2 = 4 τα

8, 8 5.7527e-04 8.8997e-06 1.7666e-06 8.3203e-08

16, 16 1.4898e-04 1.9492 1.2899e-06 2.7865 1.5065e-07 3.5517 5.5006e-09 3.9190

32, 32 3.5408e-05 2.0729 1.5959e-07 3.0148 9.1369e-09 4.0433 2.7123e-10 4.3420

64, 64 8.7961e-06 2.0091 2.9251e-08 2.4478 1.2933e-07 — 1.2630e-07 —

Table 5: Errors of the LBRCM with d2 = 7 at t = 1 for equidistant nodes.

m, n d1 = 1 τα d1 = 2 hα d1 = 3 hα d1 = 4 hα

8, 8 9.5811e-04 1.7102e-05 5.4941e-06 3.4075e-07

16, 16 5.2156e-04 0.8774 5.2640e-06 1.7000 8.0961e-07 2.7626 3.2949e-08 3.3704

32, 32 2.3682e-04 1.1390 1.3002e-06 2.0175 9.8318e-08 3.0417 2.2716e-09 3.8584

64, 64 9.5433e-05 1.3112 2.8038e-07 2.2132 1.0422e-08 3.2378 1.8173e-10 3.6439

Table 6: Errors of the LBRCM with d1 = 7 at t = 1 for equidistant nodes.

m, n d2 = 1 τα d2 = 2 τα d2 = 3 τα d2 = 4 τα

8, 8 5.8782e-04 1.4718e-05 6.2224e-06 5.3762e-07

16, 16 1.8139e-04 1.6963 1.9147e-06 2.9424 3.6861e-07 4.0773 2.1906e-08 4.6172

32, 32 5.4855e-05 1.7254 2.5009e-07 2.9366 2.3236e-08 3.9877 7.7787e-10 4.8157

64, 64 1.6239e-05 1.7561 3.2275e-08 2.9540 1.4867e-09 3.9661 5.7909e-11 3.7477
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Table 7: Errors of the LBRCM with d2 = 7 at t = 1 for Chebyshev nodes.

m, n d1 = 1 hα d1 = 2 hα d1 = 3 hα d1 = 4 hα

8, 8 5.7527e-04 8.8997e-06 1.7666e-06 8.3204e-08

16, 16 1.4898e-04 1.9492 1.2899e-06 2.7865 1.5065e-07 3.5517 5.5041e-09 3.9181

32, 32 3.5408e-05 2.0729 1.5957e-07 3.0150 8.8804e-09 4.0844 1.7617e-10 4.9654

64, 64 8.7936e-06 2.0096 2.4359e-08 2.7116 5.8007e-08 — 2.0160e-07 —

Table 8: Errors of the LBRCM with d1 = 7 at t = 1 for Chebyshev nodes.

m, n d2 = 1 τα d2 = 2 τα d2 = 3 τα d2 = 4 τα

8, 8 1.3717e-03 1.5290e-05 6.3486e-06 1.6112e-07

16, 16 3.3177e-04 2.0477 1.2090e-06 3.6607 8.3105e-08 6.2554 3.2477e-09 5.6326

32, 32 7.7738e-05 2.0935 7.4196e-08 4.0263 2.2857e-09 5.1842 4.6534e-10 2.8031

64, 64 8.1984e-05 — 5.4975e-07 — 7.8881e-06 — 9.1447e-07 —

0

1

0

1
–3

–2

–1

0

1

2

x 10−12

xt

0.5

0.2
0.4

0.6
0.8

u c
–u

e

Figure 5: Errors of Chebyshev nodes for BLCM with m = n = 10.
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Figure 7: Errors of equidistant nodes for LBRCM with m = n = 31, d1 = d2 = 15.

Table 9: Errors of the LBRCM with d2 = 7 at t = 1 for equidistant nodes.

m, n d1 = 1 hα d1 = 2 hα d1 = 3 hα d1 = 4 hα

8, 8 5.0725e-01 1.6979e+00 7.4870e+00 5.0517e+01

16, 16 3.8989e-02 3.7016 1.3298e-01 3.6745 1.0527e-01 6.1523 3.6951e-02 10.417

32, 32 8.2371e-03 2.2428 1.4130e-02 3.2344 1.9625e-03 5.7452 3.7448e-03 3.3027

64, 64 2.3338e-03 1.8194 1.6289e-03 3.1168 4.9679e-06 8.6259 1.2120e-04 4.9495

Table 10: Errors of the LBRCM with d1 = 7 at t = 1 for equidistant nodes.

m, n d2 = 2 τα d2 = 3 τα d2 = 4 τα

8, 8 3.0358e+01 3.5536e+01 3.2379e+01 3.1088e+01

16, 16 4.6120e-02 9.3625 4.5581e-02 9.6066 4.5403e-02 9.4781 4.5327e-02 9.4218

32, 32 7.1933e-04 6.0026 7.0368e-04 6.0174 7.0268e-04 6.0138 7.0221e-04 6.0123

64, 64 2.0118e-05 5.1601 9.7053e-07 9.5019 9.6556e-07 9.5073 9.6539e-07 9.5066

Table 11: Errors of the LBRCM with d2 = 7 at t = 1 for Chebyshev nodes.

m, n d1 = 1 hα d1 = 2 hα d1 = 3 hα d1 = 4 hα

8, 8 3.8779e+00 3.7472e+00 3.6747e+00 3.6317e+00

16, 16 7.1754e-03 9.0780 7.0233e-03 9.0594 7.0547e-03 9.0248 6.9460e-03 9.0303

32, 32 3.3421e-05 7.7462 7.5693e-06 9.8578 7.9371e-06 9.7957 8.8251e-06 9.6203

64, 64 1.3473e-05 1.3107 4.5503e-08 7.3780 4.4917e-09 10.787 8.2779e-09 10.058

Table 12: Errors of the LBRCM with d1 = 7 at t = 1 for Chebyshev nodes.

m, n d2 = 1 τα d2 = 2 τα d2 = 3 τα d2 = 4 τα

8, 8 4.5490e+00 2.1362e+00 2.1145e+00 2.6899e+00

16, 16 7.7786e-02 5.8699 3.0474e-02 6.1313 1.5449e-02 7.0967 9.2472e-03 8.1843

32, 32 1.6150e-02 2.2679 2.5803e-03 3.5620 5.0884e-04 4.9241 2.0372e-04 5.5043

64, 64 1.1859e-02 0.4456 1.1541e-03 1.1607 2.1401e-04 1.2495 4.4209e-05 2.2042
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with its direct linearization scheme is

∂un
∂t

= ∂2un
∂x2

− un−1
∂un
∂x

+ e−un−1 + e−2un−1 , n = 1, 2,⋯, ð26Þ

and its matrix form is

D 0,1ð Þ − αD 2,0ð Þ + diag un−1ð ÞD 1,0ð Þ
h i

un = F, n = 1, 2,⋯,

ð27Þ

where Dð0,1Þ and Dð2,0Þ are defined as (16).

In Figure 6, the analysis solution uðx, tÞ = cos ðtÞ sin ð6
πxÞ is presented. In the following Figures 7 and 8, errors of
equidistant nodes and Chebyshev nodes for LBRCM with
m = n = 31, d1 = d2 = 15 are given, respectively; from the fig-
ure, we know that the accuracy of Chebyshev nodes is higher
than equidistant nodes.

In Tables 9 and 10, the errors of direct linearization by
LBRCM with equidistant nodes for x and t are presented.

In Tables 11 and 12, the errors of direct linearization by
LBRCM with Chebyshev nodes for x and t are presented.

4. Concluding Remarks

The nonlinear heat conduction equation is solved by
LBRCM with direct linearization scheme and Newton line-
arization scheme, different from the finite difference
methods with the time variable computed separately, while
the LBRCM can get the space variable and time variable
simultaneously. The matrix form of LBRCM with direct lin-
earization scheme and Newton linearization scheme is given
from the corresponding scheme, and numerical results are
given to valid our scheme. In the table, the convergence of
LBRCM for equidistant nodes and Chebyshev nodes has
been given, while the theorem analysis of direct linearization
scheme and Newton linearization scheme is out of goal in
this paper which will be given in the near future.
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