Research Article

Barycentric Rational Collocation Method for Nonlinear Heat Conduction Equation

Jin Li

School of Science, Shandong Jianzhu University, Jinan 250101, China

Correspondence should be addressed to Jin Li; lijin@lsec.cc.ac.cn

Received 9 May 2022; Accepted 17 June 2022; Published 30 June 2022

Academic Editor: Saeid Abbasbandy

Copyright © 2022 Jin Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonlinear heat equation solved by the barycentric rational collocation method (BRCM) is presented. Direct linearization method and Newton linearization method are presented to transform the nonlinear heat conduction equation into linear equations. The matrix form of nonlinear heat conduction equation is also obtained. Several numerical examples are provided to valid our schemes.

1. Introduction

In this article, the nonlinear heat conduction equation is considered as

\[
\frac{\partial u(x,t)}{\partial t} = c(x,t,u) \frac{\partial^2 u(x,t)}{\partial x^2} + F(x,t,u, \frac{\partial u(x,t)}{\partial x}), \ a \leq x \leq b, \ t \geq 0,
\]

(1)

where \(F(x,t,u, (\partial u(x,t)/\partial x)) \) is the nonlinear term of \(u \) and \(u_x \), with initial condition

\[
u(x,0) = f(x), \ a \leq x \leq b,
\]

(2)

and the boundary condition

\[
u(a,t) = \varphi_1(t) \quad \nu(b,t) = \varphi_2(t), \ t \geq 0.
\]

(3)

Combining (1)–(3), we get nonlinear heat conduction equation.

The linear and nonlinear heat conduction equation is a second-order linear partial differential equation [1–6]. There are analytical and numerical methods to solve the linear/nonlinear heat conduction equation. For the numerical methods, there are the finite difference method, finite element method and boundary element method, the spectral method [7], etc.

The barycentric formula have been obtained by the Lagrange interpolation formula [8–10] and been used to solve Volterra equation and Volterra integro-differential equation [11–14]. Floater and Kai, Klein and Berrut [15–17] have proposed a rational interpolation scheme and get the equidistant node of the barycentric formula. In recent papers, references [18–25] have been extended the barycentric collocation methods to solve initial/boundary value problems and linear/nonlinear problems.

In this paper, the linear barycentric rational collocation method (LBRCM) for nonlinear heat conduction equation is presented. Direct linearization and Newton linearization are presented to transform the nonlinear heat conduction equation into linear equations. The matrix form of linearization scheme for nonlinear heat conduction equation is also obtained.

This paper is organized as follows: in Section 2, the linearization scheme for nonlinear heat conduction equation is given. Direct linearization and Newton linearization are constructed, and then the matrix form of LBRCM is also presented. At last, two numerical examples are listed to
illustrate our numerical scheme.

2. Linearization

Direct linearization and Newton linearization are presented to change the nonlinear heat conduction equation into linear equation. By choosing the equidistant nodes and Chebyshhev nodes as collocation point to solve the nonlinear heat conduction equation, the direct linearization scheme can be adopted as

\[
\frac{\partial u(x,t)}{\partial t} = c(x,t,u_0) \frac{\partial^2 u(x,t)}{\partial x^2} + F(x,t,u_0, \frac{\partial u(x,t)}{\partial x}),
\]

\[
\frac{\partial u_n(x,t)}{\partial t} = c(x,t,u_{n-1}) \frac{\partial^2 u_n(x,t)}{\partial x^2} + F(x,t,u_{n-1}, \frac{\partial u_n(x,t)}{\partial x}). \tag{4}
\]

Newton linearization scheme can be adopted as

\[
\frac{\partial u(x,t)}{\partial t} = c(x,t,u) \frac{\partial^2 u(x,t)}{\partial x^2} + F(x,t,u, \frac{\partial u(x,t)}{\partial x})(u-u_0) + \cdots,
\]

\[
\frac{\partial u(x,t)}{\partial t} = c(x,t,u) \frac{\partial^2 u(x,t)}{\partial x^2} + F(x,t,u, \frac{\partial u(x,t)}{\partial x})(u-u_0),
\]

and then we get the Newton linearization as

\[
\frac{\partial u(x,t)}{\partial t} = c(x,t,u) \frac{\partial^2 u(x,t)}{\partial x^2} + F(x,t,u, \frac{\partial u(x,t)}{\partial x})(u_u-u_0),
\]

\[
\frac{\partial u_n(x,t)}{\partial t} = c(x,t,u_{n-1}) \frac{\partial^2 u_n(x,t)}{\partial x^2} + F(x,t,u_{n-1}, \frac{\partial u_n(x,t)}{\partial x})(u_{n-1}-u_m). \tag{6}
\]

We partition the interval \([a,b]\) into \(a = x_0 < x_1 < \cdots < x_m = b, h = b - a/m \) and \([0,T]\) into \(0 = t_0 < t_1 < \cdots < t_h = T, \tau = T/n \) with \(\Omega = [a,b] \times [0,T]\) and \((x_i, t_j), i = 0, 1, 2, \cdots, m; j = 0, 1, 2, \cdots, n\). Then, we have

\[
r_{m,n}(x,t) = \sum_{i=0}^{m} \sum_{j=0}^{n} r_i(x)r_j(t)u_{i,j}, \tag{7}
\]

where \(u_{i,j} = u(x_i,t_j)\) and

\[
r_i(x) = \frac{\omega_i x - x_i}{\sum_{j=0}^{n} (\omega_j x_j - x_i)}, \quad r_j(t) = \frac{\omega_j t - t_j}{\sum_{m=0}^{n} (\omega_j t - t_j)}.
\]

\[
u_k = \sum_{i \in I_k} (-1)^l \prod_{j=1, j \neq k}^{d} \frac{1}{x_i - x_j},
\]

and \(I_k = \{i \in I: k - d \leq i \leq k\}, I = \{0, 1, \cdots, n - d\}\).

Taking equation (7) into equation (1), we can get the LBRCM as

\[
\sum_{i=0}^{m} \sum_{j=0}^{n} r_i(x)r_j(t)u_{i,j} = c \left(x, t, \sum_{i=0}^{m} \sum_{j=0}^{n} r_i(x)r_j(t)u_{i,j} \right) \sum_{i=0}^{m} \sum_{j=0}^{n} r_i''(x)r_j(t)u_{i,j} + F(x,t, \sum_{i=0}^{m} \sum_{j=0}^{n} r_i(x)r_j(t)u_{i,j} \right).
\]

(9)

3. Numerical Examples

In the following, two examples are given to valid our algorithm.

Example 1. Consider

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + e^{-u} + e^{-2u}, a < x < b; t \geq 0,
\]

with

\[
u(0,t) = \ln (t + 2), \quad u(1,t) = \ln (t + 3), \quad u(x,0) = \ln (x + 2), \tag{11}
\]

Its analysis solutions is

\[
u(x,t) = \ln (x + t + 2). \tag{12}
\]

Firstly, direct linearization of nonlinear heat conduction equation is given as

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + e^{-u} + e^{-2u}, a < x < b; t \geq 0,
\]

with its direct linearization scheme is

\[
\frac{\partial u_n}{\partial t} = \frac{\partial^2 u_n}{\partial x^2} + e^{-u_{n-1}} + e^{-2u_{n-1}}, n = 1, 2, \cdots, \tag{14}
\]

and its matrix form is

\[
\begin{bmatrix}
[D^{(0,1)}] - [D^{(2,0)}]
\end{bmatrix} u_n = e^{-u_{n-1}} + e^{-2u_{n-1}}, \quad n = 1, 2, \cdots, \tag{15}
\]

where

\[
D_{ij}^{(m)} = R_{ij}^{(m)}(x_i), \quad m = 1, 2, D_{ij}^{(0,1)} = R_{ij}^{(1)}(t_j), \tag{16}
\]

\[
D_{ij}^{(10)} = \begin{cases}
\frac{\omega_i}{\omega_j} & j \neq i, \\
\sum_{j \neq i} D_{ij}^{(10)}, & j = i
\end{cases}, \quad D_{ij}^{(20)} = \begin{cases}
2D_{ij}^{(10)} - \frac{1}{x_i - x_j}, & j \neq i, \\
-\sum_{j \neq i} D_{ij}^{(20)}, & j = i
\end{cases}. \tag{17}
\]
Figure 1: Analysis solutions of $u(x, t) = \ln (x + t + 2)$.

Figure 2: Errors of equidistant nodes for LBRCM with $m = n = 10, d_1 = d_2 = 7$.

Figure 3: Errors of Chebyshev nodes for LBRCM with $m = n = 10, d_1 = d_2 = 7$.
with its Newton linearization scheme that is

\[
\frac{\partial u_n}{\partial t} = -u_n - \frac{1}{\rho} \frac{\partial u}{\partial x} + e^{-u_{n-1}} + e^{2u_{n-1}}(u_n - u_{n-1}), \quad n = 1, 2, \ldots, \tag{20}
\]

and its matrix form is

\[
\begin{bmatrix}
D^{(0)}_i - D^{(2,0)} + \begin{pmatrix} e^{-u_{n-1}} + 2e^{-2u_{n-1}} \end{pmatrix}_n = e^{-u_{n-1}} + e^{-2u_{n-1}} \\
\end{bmatrix}
\]

where \(D^{(0,1)}\) and \(D^{(2,0)}\) are defined as (16).

In Figure 1, the analysis solution \(u(x, t) = \ln(x + t + 2)\) is presented. In the following Figures 2 and 3, errors of equidistant nodes and Chebyshev nodes for LBRCM with \(m = n = 10\), \(d_1 = d_2 = 7\) are given, respectively; from the figure, we know that the accuracy of Chebyshev nodes is higher than equidistant nodes.

In the following Figures 4 and 5, errors of equidistant nodes and Chebyshev nodes for BLCM with \(m = n = 10\) are given, respectively; from the figure, we know that the accuracy of Chebyshev nodes is also higher than equidistant nodes.

In Tables 1 and 2, the errors of direct linearization scheme by LBRCM with equidistant nodes for \(x\) and \(t\) are presented.

In Tables 3 and 4, the errors of the LBRCM with Chebyshev nodes for \(x\) and \(t\) are presented.

From the table above, we know that the accuracy of Newton linearization scheme is higher than direct linearization scheme.

Example 2. Consider

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \frac{1}{\rho} \frac{\partial^2 u}{\partial x^2} - \frac{u}{\rho} \frac{\partial u}{\partial x} + f(x, t), \quad a < x < b; t > 0, \\
\end{align*}
\]

with the condition

\[
f(x, t) = \sin(6\pi x)(36\pi^2 \cos(t) - \sin(t) + 6\pi \cos(6\pi x) \cos^2(t)),
\]

\[
u(x, 0) = \sin(6\pi x), \quad u(0, t) = 0.
\]

Its analysis solutions is

\[
u(x, t) = \cos(t) \sin(6\pi x).
\]

In this example, direct linearization scheme is presented

\[
\frac{\partial u}{\partial t} = \frac{1}{\rho} \frac{\partial^2 u}{\partial x^2} - \frac{u}{\rho} \frac{\partial u}{\partial x} + e^{-u_x} + e^{-2u_x}, \quad a < x < b; t > 0,
\]
Table 1: Errors of the LBRCM with $d_2 = 7$ at $t = 1$ for equidistant nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_1 = 1$</th>
<th>h^t</th>
<th>$d_2 = 2$</th>
<th>h^t</th>
<th>$d_1 = 3$</th>
<th>h^t</th>
<th>$d_1 = 4$</th>
<th>h^t</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>5.8782e-04</td>
<td>1.4718e-05</td>
<td>6.2224e-06</td>
<td>5.3762e-07</td>
<td>1.8139e-04</td>
<td>1.6963</td>
<td>1.9147e-06</td>
<td>2.9424</td>
</tr>
<tr>
<td>32, 32</td>
<td>5.4855e-05</td>
<td>1.7254</td>
<td>2.5010e-07</td>
<td>2.9365</td>
<td>2.3239e-08</td>
<td>3.9874</td>
<td>7.8080e-10</td>
<td>4.8102</td>
</tr>
<tr>
<td>64, 64</td>
<td>1.6239e-05</td>
<td>1.7561</td>
<td>3.2280e-08</td>
<td>2.9538</td>
<td>1.5064e-09</td>
<td>3.9474</td>
<td>8.2417e-11</td>
<td>3.2439</td>
</tr>
</tbody>
</table>

Table 2: Errors of the LBRCM with $d_1 = 7$ at $t = 1$ for equidistant nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_2 = 1$</th>
<th>r^u</th>
<th>$d_2 = 2$</th>
<th>r^u</th>
<th>$d_2 = 3$</th>
<th>r^u</th>
<th>$d_2 = 4$</th>
<th>r^u</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>9.5814e-04</td>
<td>1.7102e-05</td>
<td>5.4941e-06</td>
<td>3.4073e-07</td>
<td>5.2156e-04</td>
<td>0.8777</td>
<td>5.2640e-06</td>
<td>1.7000</td>
</tr>
<tr>
<td>32, 32</td>
<td>2.3682e-04</td>
<td>1.1390</td>
<td>1.3302e-06</td>
<td>2.0175</td>
<td>9.8320e-08</td>
<td>3.0417</td>
<td>2.2777e-09</td>
<td>3.8545</td>
</tr>
<tr>
<td>64, 64</td>
<td>9.5433e-05</td>
<td>1.3112</td>
<td>2.8040e-07</td>
<td>2.2132</td>
<td>1.0531e-08</td>
<td>3.2228</td>
<td>1.2354e-10</td>
<td>4.2045</td>
</tr>
</tbody>
</table>

Table 3: Errors of the LBRCM with $d_2 = 7$ at $t = 1$ for Chebyshev nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_1 = 1$</th>
<th>h^t</th>
<th>$d_2 = 2$</th>
<th>h^t</th>
<th>$d_1 = 3$</th>
<th>h^t</th>
<th>$d_1 = 4$</th>
<th>h^t</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>1.3712e-03</td>
<td>1.5290e-05</td>
<td>6.3486e-06</td>
<td>1.6112e-07</td>
<td>3.3177e-04</td>
<td>2.0477</td>
<td>1.2090e-06</td>
<td>3.6607</td>
</tr>
<tr>
<td>32, 32</td>
<td>7.7738e-05</td>
<td>2.0935</td>
<td>7.4116e-08</td>
<td>4.0279</td>
<td>2.5853e-09</td>
<td>5.0065</td>
<td>1.5222e-09</td>
<td>—</td>
</tr>
<tr>
<td>64, 64</td>
<td>8.4472e-05</td>
<td>4.3077e-06</td>
<td>—</td>
<td>5.6046e-06</td>
<td>—</td>
<td>2.0141e-06</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Errors of the LBRCM with $d_1 = 7$ at $t = 1$ for Chebyshev nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_2 = 1$</th>
<th>r^u</th>
<th>$d_2 = 2$</th>
<th>r^u</th>
<th>$d_2 = 3$</th>
<th>r^u</th>
<th>$d_2 = 4$</th>
<th>r^u</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>5.7527e-04</td>
<td>8.8997e-06</td>
<td>1.7666e-06</td>
<td>8.3203e-08</td>
<td>1.4898e-04</td>
<td>1.9492</td>
<td>1.2899e-06</td>
<td>2.7865</td>
</tr>
<tr>
<td>32, 32</td>
<td>3.5408e-05</td>
<td>2.0729</td>
<td>1.5959e-07</td>
<td>3.0148</td>
<td>9.1369e-09</td>
<td>4.0433</td>
<td>2.7123e-10</td>
<td>4.3420</td>
</tr>
<tr>
<td>64, 64</td>
<td>8.7961e-06</td>
<td>2.0091</td>
<td>2.9251e-08</td>
<td>2.4478</td>
<td>1.2933e-07</td>
<td>—</td>
<td>1.2630e-07</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 5: Errors of the LBRCM with $d_2 = 7$ at $t = 1$ for equidistant nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_1 = 1$</th>
<th>r^u</th>
<th>$d_2 = 2$</th>
<th>r^u</th>
<th>$d_1 = 3$</th>
<th>h^u</th>
<th>$d_1 = 4$</th>
<th>h^u</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>9.5814e-04</td>
<td>1.7102e-05</td>
<td>5.4941e-06</td>
<td>3.4073e-07</td>
<td>5.2156e-04</td>
<td>0.8777</td>
<td>5.2640e-06</td>
<td>1.7000</td>
</tr>
<tr>
<td>32, 32</td>
<td>2.3682e-04</td>
<td>1.1390</td>
<td>1.3302e-06</td>
<td>2.0175</td>
<td>9.8320e-08</td>
<td>3.0417</td>
<td>2.2777e-09</td>
<td>3.8545</td>
</tr>
<tr>
<td>64, 64</td>
<td>9.5433e-05</td>
<td>1.3112</td>
<td>2.8040e-07</td>
<td>2.2132</td>
<td>1.0531e-08</td>
<td>3.2228</td>
<td>1.2354e-10</td>
<td>4.2045</td>
</tr>
</tbody>
</table>

Table 6: Errors of the LBRCM with $d_1 = 7$ at $t = 1$ for equidistant nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_2 = 1$</th>
<th>r^u</th>
<th>$d_2 = 2$</th>
<th>r^u</th>
<th>$d_2 = 3$</th>
<th>r^u</th>
<th>$d_2 = 4$</th>
<th>r^u</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>5.8782e-04</td>
<td>1.4718e-05</td>
<td>6.2224e-06</td>
<td>5.3762e-07</td>
<td>1.8139e-04</td>
<td>1.6963</td>
<td>1.9147e-06</td>
<td>2.9424</td>
</tr>
<tr>
<td>32, 32</td>
<td>5.4855e-05</td>
<td>1.7254</td>
<td>2.5009e-07</td>
<td>2.9366</td>
<td>2.3236e-08</td>
<td>3.9877</td>
<td>7.7787e-10</td>
<td>4.8157</td>
</tr>
<tr>
<td>64, 64</td>
<td>1.6239e-05</td>
<td>1.7561</td>
<td>3.2275e-08</td>
<td>2.9540</td>
<td>1.4867e-09</td>
<td>3.9661</td>
<td>5.7909e-11</td>
<td>3.7477</td>
</tr>
</tbody>
</table>
Table 7: Errors of the LBRCM with $d_2 = 7$ at $t = 1$ for Chebyshev nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_1 = 1$</th>
<th>h^n</th>
<th>$d_1 = 2$</th>
<th>h^n</th>
<th>$d_1 = 3$</th>
<th>h^n</th>
<th>$d_1 = 4$</th>
<th>h^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>5.7527e-04</td>
<td>8.8997e-06</td>
<td>1.7666e-06</td>
<td>8.3204e-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16, 16</td>
<td>1.4898e-04</td>
<td>1.2899e-06</td>
<td>2.7865</td>
<td>1.5065e-07</td>
<td>3.5517</td>
<td>5.5041e-09</td>
<td>3.9181</td>
<td></td>
</tr>
<tr>
<td>32, 32</td>
<td>3.5408e-05</td>
<td>1.5957e-07</td>
<td>3.0150</td>
<td>8.8804e-09</td>
<td>4.0844</td>
<td>1.7617e-10</td>
<td>4.9654</td>
<td></td>
</tr>
<tr>
<td>64, 64</td>
<td>8.7936e-06</td>
<td>2.0096</td>
<td>2.4359e-08</td>
<td>2.7116</td>
<td>5.8007e-08</td>
<td>—</td>
<td>2.0160e-07</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 8: Errors of the LBRCM with $d_1 = 7$ at $t = 1$ for Chebyshev nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_2 = 1$</th>
<th>r^n</th>
<th>$d_2 = 2$</th>
<th>r^n</th>
<th>$d_2 = 3$</th>
<th>r^n</th>
<th>$d_2 = 4$</th>
<th>r^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>1.3717e-03</td>
<td>1.5290e-05</td>
<td>6.3486e-06</td>
<td>1.6112e-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32, 32</td>
<td>7.7738e-05</td>
<td>2.0935</td>
<td>7.4196e-08</td>
<td>4.0263</td>
<td>2.2857e-09</td>
<td>5.1842</td>
<td>4.6534e-10</td>
<td>2.8031</td>
</tr>
<tr>
<td>64, 64</td>
<td>8.1984e-05</td>
<td>—</td>
<td>5.4975e-07</td>
<td>—</td>
<td>7.8881e-06</td>
<td>—</td>
<td>9.1447e-07</td>
<td>—</td>
</tr>
</tbody>
</table>

Figure 5: Errors of Chebyshev nodes for BLCM with $m = n = 10$.

Figure 6: Analysis solutions of $u(x, t) = \cos(t) \sin(6\pi x)$.
Figure 7: Errors of equidistant nodes for LBRCM with $m = n = 31$, $d_1 = d_2 = 15$.

Table 9: Errors of the LBRCM with $d_2 = 7$ at $t = 1$ for equidistant nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_1 = 1$</th>
<th>h</th>
<th>$d_1 = 2$</th>
<th>h</th>
<th>$d_1 = 3$</th>
<th>h</th>
<th>$d_1 = 4$</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>5.0725e-01</td>
<td>1.6979e+00</td>
<td>7.4870e+00</td>
<td>5.0517e+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16, 16</td>
<td>3.8989e-02</td>
<td>3.7016e+00</td>
<td>3.6745e+00</td>
<td>1.0527e+01</td>
<td>6.1523e+00</td>
<td>3.6979e+00</td>
<td>10.417</td>
<td></td>
</tr>
<tr>
<td>32, 32</td>
<td>8.2371e-03</td>
<td>2.1413e-02</td>
<td>2.3244e-02</td>
<td>1.9625e-03</td>
<td>5.7452e-03</td>
<td>3.7448e-03</td>
<td>3.3027</td>
<td></td>
</tr>
<tr>
<td>64, 64</td>
<td>2.3338e-03</td>
<td>1.8194e-03</td>
<td>1.6289e-03</td>
<td>3.1168e-03</td>
<td>8.6259e-03</td>
<td>1.2120e-04</td>
<td>4.9495</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Errors of the LBRCM with $d_1 = 7$ at $t = 1$ for equidistant nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_2 = 2$</th>
<th>τ</th>
<th>$d_2 = 3$</th>
<th>τ</th>
<th>$d_2 = 4$</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>3.0358e+01</td>
<td>3.5336e+01</td>
<td>3.2379e+01</td>
<td>3.1088e+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16, 16</td>
<td>4.6120e-02</td>
<td>9.3625e+00</td>
<td>4.5581e-02</td>
<td>9.6066e+00</td>
<td>4.5403e-02</td>
<td>9.4781e+00</td>
</tr>
</tbody>
</table>

Table 11: Errors of the LBRCM with $d_1 = 7$ at $t = 1$ for Chebyshev nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_2 = 1$</th>
<th>h</th>
<th>$d_2 = 2$</th>
<th>h</th>
<th>$d_2 = 3$</th>
<th>h</th>
<th>$d_2 = 4$</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>3.8779e+00</td>
<td>3.7472e+00</td>
<td>3.6747e+00</td>
<td>3.6317e+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64, 64</td>
<td>1.3473e-05</td>
<td>1.3107e-05</td>
<td>4.5503e-08</td>
<td>7.3780e-08</td>
<td>4.4917e-09</td>
<td>10.787e-09</td>
<td>8.2779e-09</td>
<td>10.058</td>
</tr>
</tbody>
</table>

Table 12: Errors of the LBRCM with $d_1 = 7$ at $t = 1$ for Chebyshev nodes.

<table>
<thead>
<tr>
<th>m, n</th>
<th>$d_1 = 1$</th>
<th>τ</th>
<th>$d_1 = 2$</th>
<th>τ</th>
<th>$d_1 = 3$</th>
<th>τ</th>
<th>$d_1 = 4$</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 8</td>
<td>4.5490e+00</td>
<td>1.2136e+00</td>
<td>2.1145e+00</td>
<td>2.6899e+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16, 16</td>
<td>7.7786e-02</td>
<td>5.8699e-03</td>
<td>3.0474e-02</td>
<td>6.1313e-03</td>
<td>1.5449e-02</td>
<td>7.0967e-03</td>
<td>9.2472e-03</td>
<td>8.1843</td>
</tr>
<tr>
<td>32, 32</td>
<td>1.6150e-02</td>
<td>2.2679e-03</td>
<td>2.5803e-03</td>
<td>3.5620e-03</td>
<td>5.0884e-04</td>
<td>4.9241e-04</td>
<td>2.0372e-04</td>
<td>5.5043</td>
</tr>
<tr>
<td>64, 64</td>
<td>1.1859e-02</td>
<td>0.4456e-02</td>
<td>1.1541e-03</td>
<td>1.1607e-03</td>
<td>2.1401e-04</td>
<td>1.2495e-04</td>
<td>4.4209e-05</td>
<td>2.2042</td>
</tr>
</tbody>
</table>
with its direct linearization scheme is
\[
\frac{\partial u_n}{\partial t} = \frac{\partial^2 u_n}{\partial x^2} - u_{n-1} \frac{\partial u_n}{\partial x} + e^{u_n} + e^{u_{n-1}}, \quad n = 1, 2, \ldots,
\]
(26)
and its matrix form is
\[
\left[D^{(0,1)}_0 - \alpha D^{(2,0)}_2 + \text{diag}(u_{n-1})D^{(1,0)}_1\right] u_n = F, \quad n = 1, 2, \ldots,
\]
(27)
where \(D^{(0,1)}_0\) and \(D^{(2,0)}_2\) are defined as (16).

In Figure 6, the analysis solution \(u(x, t) = \cos(t) \sin(6\pi x)\) is presented. In the following Figures 7 and 8, errors of equidistant nodes and Chebyshev nodes for LBRCM with \(m = n = 31, d_1 = d_2 = 15\) are given, respectively; from the figure, we know that the accuracy of Chebyshev nodes is higher than equidistant nodes.

In Tables 9 and 10, the errors of direct linearization by LBRCM with equidistant nodes for \(x\) and \(t\) are presented.

In Tables 11 and 12, the errors of direct linearization by LBRCM with Chebyshev nodes for \(x\) and \(t\) are presented.

4. Concluding Remarks

The nonlinear heat conduction equation is solved by LBRCM with direct linearization scheme and Newton linearization scheme, different from the finite difference methods with the time variable computed separately, while the LBRCM can get the space variable and time variable simultaneously. The matrix form of LBRCM with direct linearization scheme and Newton linearization scheme is given from the corresponding scheme, and numerical results are given to validate our scheme. In the table, the convergence of LBRCM for equidistant nodes and Chebyshev nodes has been given, while the theorem analysis of direct linearization scheme and Newton linearization scheme is out of goal in this paper which will be given in the near future.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The author declares that he/she has no conflicts of interest.

Acknowledgments

The work of Jin Li was supported by Natural Science Foundation of Hebei Province (Grant No. A2019209533).

References

