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This paper explores the impact of chemical reaction and thermal radiation on time-dependent hydromagnetic thin-film flow of a
second-grade fluid across an inclined flat plate embedded in a porous medium. The thermal radiation based on the Rosseland
approximation is incorporated in the energy equation. Uniform applied magnetic field and first-order homogenous chemical
reaction are included in the momentum and concentration equations, respectively. The novel mathematical flow model is
constructed by using a set of partial differential equations (PDEs). The PDEs are then transformed into an equivalent set of
ordinary differential equations (ODEs) and solved by applying the Laplace transform method. However, the time domain
solutions are obtained by using the INVLAP subroutine of MATLAB. Physical parameters influencing thin-film velocity,
temperature, and concentration are illustrated graphically, while those affecting skin friction, heat, and mass transfer rates are
presented in a tabular form. It is found that thin-film velocity and temperature boost with increasing values of thermal
radiation, but thin-film velocity decreases with increasing values of chemical reaction and magnetic field. The current
investigation is to enhance heat and mass transfer in the design of mechanical systems involving the thin film flow of second-
grade fluids over an inclined flat plate after applying thermal radiation and chemical reaction.

1. Introduction

The class of fluid dynamics dealing with the interaction
between electrically conducting fluids (such as saltwater,
electrolytes, or molten metals) and magnetic field is known
as magnetohydrodynamics (MHD). This discipline studies
the interaction of the electromagnetism and fluid dynamics.
MHD finds several applications in engineering and sciences
such as astrophysics, geophysics, sensors, MHD power gen-
eration, and magnetic drug targeting. Obvious verifications
and some applications are precisely discussed in the interest-
ing books of Roberts [1] and Davidson and Belova [2]. An
analytical study of MHD flow due to a linearly accelerating
and oscillating slanted plate under the influences of thermal
radiation and homogenous first-order chemical reaction is
investigated in a closed form by Endalew and Nayak [3]

and Endalew et al. [4]. Particularly, they have performed to
investigate the effects of an inclined magnetic field, thermal
radiation, and chemical reaction on time-dependent MHD
flow due to inclined plate through a porous medium.
McWhirter et al. [5] carried out experimental results on
magnetohydrodynamics flows in a porous medium.

Second-grade fluids are a subclasses of non-Newtonian
fluids in which the velocity field has a second order deriva-
tive in stress strain tensor relationship. Particularly, these
fluids can be determined based on the truncation order of
tensor, viz. Rivlin-Ericksen tensors in describing the Cauchy
stress tensor. When the order truncation of Rivlin-Ericksen
tensors becomes two, these fluids can be known as second-
grade fluids. A comparative study on Newtonian and non-
Newtonian base fluids is discussed by Hakeem et al. [6]. A
wide range of applications of non-Newtonian fluids are gas
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storage reservoirs, petroleum drilling, glaciology, the flow
of cardiovascular, and undertaking the uniformity of mate-
rials in complex multiphase products such as paints, inks,
and ceramic pastes. By keeping all of these significances in
mind, several scholars are devoted to the investigation of
second-grade fluids in different physical configurations.
Among those researchers, Sarkar et al. [7] and Endalew
et al. [8] studied the manner of MHD flow of second-
grade fluid in a microchannel filled with a porous mate-
rial. Additionally, Hayat et al. [9] and Bilal et al. [10] per-
formed investigations on a second-grade fluid in various
geometrical configurations.

Most of the aforementioned studies did not consider the
mechanism of thin-film flow, which is the most important
concern of the present study. Here, mathematical models
are given for thin film flows on an inclined flat plate embed-
ded in a porous medium with effects of heat and mass trans-
fer. However, a thin film can be defined as a material layer
having a thickness ranging from a fraction of a nanometer
to several micrometers. The flow of fragile films whose height
is substantially smaller than their length is referred to as thin-
film flow (see Gul et al. [11]). As stated above, the size of the
thin film is typically in the range of microns or less. There-
fore, thin-film flows have applications in microchip creation,
chemistry, biology, and numerous fields. Some of their appli-
cations in those areas are condensers, evaporators, thin-film
reactors, distillation columns, improving fire resistance, and
others. The prospects of geophysical and environmental
engineering have been related to debris flows, lava, and mud-
slides (see Endalew and Sarkar [12]). The actual use of thin-
film layers arises due to their tiny thickness, which helps in
enhancing heat and mass transfer per unit volume.

Moreover, many researchers worldwide have been mak-
ing considerable efforts since the past decades to investigate
the flow of natural convection through porous media due to
its various engineering and scientific applications. Some of
these applications are heat exchangers in high heat flux,
thermal energy storage, air conditioning systems, electronic
equipment, sensible heat storage, and filtration process. So
far, free or natural convection of heat and mass transfer
through porous media have been investigated by several
well-known researchers. Prasad et al. [13] studied the behav-
ior of natural convection within a permeable medium. The
model for mass and heat transfer using partial differential
equations within a porous medium has been explored by
Endalew and Sarkar [14]. In this research work, they have
investigated important aspects of heat and mass transfer
effects on MHD flow past through a porous medium.
Recently, an analytical study of heat and mass transfer effects
on a transient Casson fluid flow across an inclined plate is
examined by Endalew [15].

Nowadays, the study of MHD convective flow problems
with thermal radiation and chemical reactions has become
more important in industrial technology. Thus, understand-
ing the concept of thermal radiation and chemical reaction is
the main focus of this area of work. MHD convective flow
with thermal radiation and chemical reaction effects is stud-
ied by Endalew and Sarkar [16]. In this study, they conducted
an analytical study of thermal radiation, and chemical reac-

tion effect on natural convective MHD flow within porous
medium. An important study on thermal radiation in non-
linear form is investigated by Saranya et al. [17] and Abdul
Hakeem et al. [18]. As mentioned in this study, the consider-
ation of nonlinear form thermal radiation utilizes to present
the more general form of radiation phenomenon, and we
have generated the linear form of thermal radiation in this
research to investigate its effect in the considered geometrical
aspect. Time-dependent convective MHD flow and heat
transfer of viscous fluid through a porous surface are investi-
gated by Alshehri et al. [19]. Radiation effect on MHD
boundary layer flow with heat and mass transfer across a
porous medium is discussed by Reddy et al. [20]. Moreover,
Hayat et al. [21] explored the effects of a chemical reaction
and thermal radiation on hydromagnetic convective flow
through a curved stretching sheet.

As per our careful review of abovementioned studies, we
believe that no investigation has been conducted on hydro-
magnetic thin-film flow of second-grade fluid over a tilted
flat plate embedded through a porous medium with com-
bined effects of mass and heat transfer including the influ-
ences of thermal radiation and first order homogeneous
chemical reaction. Hence, the primary purpose of this study
is to investigate the effects of thermal radiation, applied
magnetic field, inclination angle of the plate, and chemical
reaction on a transient MHD thin-film flow of a second-
grade fluid past a porous medium across a tilted plate. Linear
partial differential equations are used to express the govern-
ing equations. These equations are transformed into ordi-
nary differential equations and solved by using the Laplace
transform method. The numerical inversion is then per-
formed using the INVLAP subroutine of MATLAB to
obtain solutions in the time domain. Emerging parameters
affecting the behaviors of thin film velocity, temperature,
concentration, shearing stress, heat, and mass transfer rates
are displayed graphically as well as in a tabular form. The
investigation of MHD thin film flow of second grade fluid
across an inclined plate along with thermal radiation can
play a great role in manufacturing engineering procedures
such as solar energy modernization, production of electric
power, wire and fiber coating, paper production, and other
geological problems. Moreover, thin film flow can be engi-
neered to control the amount of light reflected or transmit-
ted at a surface for given wavelength.

2. Basic Equations and Mathematical
Foundation of the Problem

As shown in Figure 1, electrically conducting and chemically
reacting MHD thin film flow of a second-grade fluid over an
inclined flat plate through a porous medium is considered in
this study. The thickness of the film denoted by δ on the
plate is assumed to be uniform. The plate makes angle θ with
the horizontal axis. Away from the plate, the temperature
and concentration are given by T∞′ and C∞′, respectively.
Gravity opposes the movement of the fluid and attempts to
force the film to flow across the plate. A transversally uni-
form magnetic field is also applied to the tilted plate. At a
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time t ′ > 0, the plate temperature and species concentration
are raised to Tw′ and Cw′ , respectively, which are thereafter
maintained. No-slip condition at y′ = 0 is considered for
the thin film velocity, followed by the attainment of uniform
velocity at a distance δ, which is appropriate according to the
thin film assumption established in Refs. [11, 12, 22, 23]. Fol-
lowing Refs. [11, 22, 23], the constitutive equation for the
incompressible second-grade fluid is given as

T = −PI + μA1 + α1A2 + α2A
2
1: ð1Þ

Here, the kinematic tensors denoted by A1 and A2 can be
expressed as follows:

A1 = ∇Vð ÞT+∇V ,

A2 =
dA1
dt

+ A1 ∇Vð ÞT + ∇Vð ÞA1,
ð2Þ

where d/dt is the material time derivative, V specifies the
velocity, and ∇ denotes the gradient operator.

The momentum and continuity equations for the incom-
pressible fluid can be expressed as

ρ
DV
Dt

= div Tð Þ + F + ρg,

div Vð Þ = 0:
ð3Þ

For the uniform magnetic field, the Lorentz force is given
by F = J × B = ð0, σB2

ou′ðy, tÞ, 0Þ. Here, J specifies the den-
sity of current and B denotes the total magnetic field.

The second-grade fluid provided in Equation (1) is com-
patible with thermodynamics; then, the material constants
should be restricted as follows (see Tan and Masuoka [22]
and Dunn and Fosdick [23]):

μ ≥ 0, α1 ≥ 0, α1 + α2 = 0: ð4Þ

Based on the above assumptions, equations governing
MHD thin film flow of a second grade fluid are modeled
as (see Refs. [11, 12, 22])

∂u′
∂t ′

= α1
ρ

∂3u′
∂y′2∂t ′

+ ν
∂2u′
∂y′2

+ g sin θ

� β T ′ − T∞′
� �

+ β ∗ C′ − C∞′
� �h i

−
νϕ′
K

+ σB2
o

ρ

 !
u′,

ð5Þ

ρCp
∂T ′
∂t ′

= κ
∂2T ′
∂y′2

−
∂qr
∂y′

, ð6Þ

∂C′
∂t ′

=D
∂2C′
∂y′2

− kr′ C′ − C∞′
� �

: ð7Þ

Equation (5) represents the momentum equation. This
equation is obtained from the physical principle of the con-
servation law of the momentum. The first and third terms
on the right-hand side of this equation show the impact of
the second-grade parameter and thermal and solutal buoy-
ancy forces including inclination angle of the plate, respec-
tively, while the fourth term indicates the effect of the
magnetic field along with porosity of the medium. The sec-
ond term in equation (6) shows the influences of thermal
radiation in the MHD thin film flow second-grade fluid.
Moreover, the second term in equation (7) presents the
impact of chemical reaction in the concentration of the
second-grade fluid.

The boundary and initial conditions are as follows:

(i) At t ′ = 0,

u′ 0, y′
� �

= 0, C′ 0, y′
� �

= C∞′ , T ′ 0, y′
� �

= T∞′ , for 0 ≤ y′ ≤ δ,

ð8Þ

(ii) At t ′ > 0,

u′ t ′, 0
� �

= 0, C′ t ′, 0
� �

= Cw′ , T ′ t ′, 0
� �

= Tw′ ,

∂u′ t ′, δ
� �
∂y′

= 0, C′ t ′, δ
� �

= C∞′ , T ′ t ′, δ
� �

= T∞′:
ð9Þ

The radiation heat flux is expressed based on Rosseland
approximation by assuming an optically thick fluid (see Sie-
gel [24] and Hussanan et al. [25]) and can be written as

qr = −
4ε∂T′4

c ∗ ∂y′
: ð10Þ

In the above equation, c ∗ and ε symbolize the absorp-
tion and Stefan-Boltzmann constants, respectively. The tem-
perature variation throughout the problem is assumed to be

very small. Therefore, the temperature T′4 will be described
as in terms of fluid temperature distribution in the system.

Applying the expansion of Taylor series in T ′4 about T∞′
and keeping away from its higher order, we have found the
following equation:

T′4 ≅ 4T′3∞T ′ − 3T∞′4: ð11Þ

By putting equations (10) and (11) into equation (6), the
temperature equation reduces as follows:

ρCp
∂T ′
∂t ′

= κ 1 + 16 εT′∞
3c ∗ κ

 !
∂2T ′
∂y′2

: ð12Þ
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Inserting the following dimensionless quantities into
equations (5) to (9):

y = y′
δ
, u = u′δ

ν
, t = t ′ν

δ2
, Sc = ν

D
, T = T ′ − T∞′

Tw′ − T∞′
, C = C′ − C∞′

Cw′ − C∞′
,

Gc =
gβ ∗ Cw′ − C∞′

� �
δ3

ν2
, Gr =

gβ Tw′ − T∞′
� �

δ3

ν2
, Pr =

μCp

κ
,

α = α1
ρδ2

,M = σB2
oδ

2

ρν
, R = 16εT∞′3

c ∗ κ
, kr =

δ2kr′
ν

, ϕ = δ2ϕ′
K

,

9>>>>>>>>>>=
>>>>>>>>>>;

ð13Þ

we obtain the dimensionless equations as

∂u
∂t

= ∂2u
∂y2

+ α
∂3u
∂y2∂t

− ϕ +Mð Þu + GrT + GcC½ � sin θ,

ð14Þ

∂T
∂t

= 1 + R
Pr

� �
∂2T
∂y2

, ð15Þ

∂C
∂t

= 1
Sc

∂2C
∂y2

− krC: ð16Þ

The nondimensional initial and boundary conditions are

t = 0 : u y, 0ð Þ = C y, 0ð Þ = T y, 0ð Þ = 0, for 0 ≤ y ≤ 1,
ð17aÞ

t > 0 :

u 0, tð Þ = 0, C 0, tð Þ = T 0, tð Þ = 1,
∂u 1, tð Þ

∂y
= C 1, tð Þ = T 1, tð Þ = 0:

8><
>: ð17bÞ

3. Solution Technique

Using the Laplace transform technique, the governing par-
tial differential equations (14), (15) and (16) along with their
boundary conditions (17b) are reduced into an equivalent
set of ordinary differential equations by applying initial con-
ditions (17a). Hence, the transformed ordinary differential
equations (ODEs) are obtained as

d2~u y, sð Þ
dy2

− ζ~u y, sð Þ + η~T y, sð Þ + ψ~C y, sð Þ
h i

= 0,

d2~T y, sð Þ
dy2

− sPe~T y, sð Þ = 0,

d2~C y, sð Þ
dy2

− sSc + Sckr½ �~C y, sð Þ = 0,

ð18Þ

where ζ = ðs + ϕ +MÞ/ð1 + αsÞ, η = −Gr sin θ/ð1 + αsÞ, ψ =
−Gc sin θ/ð1 + αsÞ, Pe = Pr/ð1 + RÞ.

Moreover, the transformed boundary conditions of the
flow model are given as

~u y, sð Þ = 0, ~T y, sð Þ = 1
s
, ~C y, sð Þ = 1

s
at y = 0,

d~u y, sð Þ
dy

= 0, ~T y, sð Þ = 0, ~C y, sð Þ = 0 at y = 1:
ð19Þ

From the above equations, the transformed velocity,
temperature, and concentration fields in Laplace domain
are denoted by ~uðy, sÞ, ~Tðy, sÞ and ~Cðy, sÞ, respectively.

Then, the solutions for velocity, temperature, and con-
centration can be provided as

~u y, sð Þ = c1e
−y

ffiffi
ζ

p
+ c2e

y
ffiffi
ζ

p
+ c3 sinh

ffiffiffiffiffiffiffi
sPe

p
1 − yð Þ

+ c4 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
1 − yð Þ,

ð20Þ

~T y, sð Þ = sinh
ffiffiffiffiffiffiffi
sPe

p
1 − yð Þ

sð Þ sinh
ffiffiffiffiffiffiffi
sPe

p , ð21Þ

~C y, sð Þ = sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
1 − yð Þ

sð Þ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p : ð22Þ

The coefficients are defined as follows:

c1 =
−η

2s sPe − ζð Þ cosh
ffiffiffi
ζ

p
ffiffiffiffiffiffiffi
sPe

p
ffiffiffi
ζ

p
sinh

ffiffiffiffiffiffiffi
sPe

p + e
ffiffi
ζ

p
" #

−
ψ

2s sSc + Sckr − ζð Þ cosh
ffiffiffi
ζ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
ffiffiffi
ζ

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p + e
ffiffi
ζ

p" #
,

c2 =
η

2s sPe − ζð Þ cosh
ffiffiffi
ζ

p
ffiffiffiffiffiffiffi
sPe

p
ffiffiffi
ζ

p
sinh

ffiffiffiffiffiffiffi
sPe

p − e−
ffiffi
ζ

p" #

+ ψ

2s sSc + Sckr − ζð Þ cosh
ffiffiffi
ζ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
ffiffiffi
ζ

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p − e−
ffiffi
ζ

p" #
,

c3 =
η

s sPe − ζð Þ sinh
ffiffiffiffiffiffiffi
sPe

p , c4 =
ψ

s sSc + Sckr − ζð Þ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p :

ð23Þ

However, it is difficult to invert equations (20)–(22) to
achieve the desired solutions to the original problems in
order to obtain the velocity, temperature, and concentration
in the time domain. To avoid this difficulty, we employed
INVLAP subroutine of MATLAB [26], which is proposed
by De Hoog et al. [27]. Mainly, it is proposed based on accel-
erating the convergence of Fourier series obtained from the
inversion integral using the trapezoidal rule. The function
INVLAP offers a simple, effective and convincingly accurate
way to achieve the results. It solves even fractional problems
and invert functions containing irrational, rational, and
transcendental expressions with high accuracy and low com-
putational errors.
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4. Skin Friction and Heat and Mass
Transfer Rates

Physical interests including skin friction, mass transfer rate,
and heat transfer rate play a vital role in the study of viscous
fluid dynamics. They are derived from solutions of velocity,
temperature, and concentration as clearly stated below.

4.1. Skin Friction. It is an important dimensionless physical
quantity in boundary layer flows and can be computed by
putting y = 0 in equation (20). Then, it can be written as

τ0 =
∂�u y, sð Þ

∂y

����
y=0

=
ffiffiffi
ζ

p
−c1 + c2ð Þ − c3

ffiffiffiffiffiffiffi
sPe

p
cosh

ffiffiffiffiffiffiffi
sPe

p

− c4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
: ð24Þ

4.2. Heat Transfer Rate. The amount of heat that could be
transferred per unit time in some materials is known as
heat transfer rate or Nusselt number. This physical entity
can be computed at the end of the surfaces or walls
(y = 0 and y = 1). Its solution is obtained from equation
(21) and expressed as follows.

Nu0 =
∂~T y, sð Þ

∂y

�����
y=0

= −
ffiffiffiffiffiffiffi
sPe

p
cosh

ffiffiffiffiffiffiffi
sPe

p

sð Þ sinh ffiffiffiffiffiffi
sPe

p ,

Nu1 =
∂~T y, sð Þ

∂y

�����
y=1

= −
ffiffiffiffiffiffiffi
sPe

p

sð Þ sinh
ffiffiffiffiffiffiffi
sPe

p :

ð25Þ

�in flim
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g
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Figure 1: Schematic diagram of the thin film flow.
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4.3. Mass Transfer Rate. The mass transfer rate, often known
as the Sherwood number, is a dimensionless quantity that
investigates the mass transfer rate at y = 0 and y = 1. Its solu-
tion is computed from equation (22) and written as

Sh0 =
∂~C y, sð Þ

∂y

�����
y=0

= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
sð Þ sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p ,

Sh1 =
∂~C y, sð Þ

∂y

�����
y=1

= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p
sð Þ sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSc + Sckr

p :

ð26Þ

The time domain solutions for skin friction, heat, and
mass transfer rates are obtained by using INVLAP-routine of
MATLAB as well.

The present result has been authenticated with previ-
ously published articles of Ali and Awais [28]. The compar-
ison technique has been done by extracting points
corresponding to the parameter values ϕ = α = t = 0:1 in
Figure 2 of Ali and Awais [28]. Then, avoiding the energy
and concentration equation along with their boundary con-
ditions and making M = 0, we obtained an excellent confir-
mation of the results as shown in Figure 3.

5. Results and Discussion

For the purpose of discussion, the influences of thermal radi-
ation and chemical reaction on an unsteady hydromagnetic
thin film flow of a second-grade fluid past through a tilted
porous plate have been carried out. Graphical representation
of emerging physical parameters affecting the behaviors of
thin-film velocity, temperature, and concentration has been
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demonstrated in Figures 3–19. Furthermore, the surface
shearing stress, temperature gradient, and concentration
gradient at the surface are recorded in a tabular form as indi-
cated in Tables 1 and 2. We have taken arbitrary positive
values for all physical parameters to examine their impacts
on thin-film flow behaviors. Therefore, such values are
assigned as Sc = 0:6, Pr = 0:71, α = 0:1, kr =M = ϕ = R = 1,
θ = π/3, Gr = 5 = Gc, and t = 0:1. Or else, it should be
mentioned.

From the boundary conditions given in (17b), fluid
velocity at y = 0 is zero and its value at y = 1 becomes any
constant number for increasing values of time. Furthermore,
at y = 0 temperature and concentration become one and
their values at y = 1 are zero for any time. Therefore, the
boundary conditions of the governing equations are satisfied
as indicated in Figures 3–5. In addition, the influences of

time variations along with thin-film velocity field, tempera-
ture, and concentration gradients are illustrated in
Figures 3–5. Here, all fluid behaviors such as velocity, tem-
perature, and concentration amplify upon augmentation of
time.

Most significantly, our emphasis on unsteady to steady
analysis is clearly illustrated by these figures. Therefore, the
result of velocity changes or becomes unsteady at t = 0:1,
0:15, 0:2, 0:25: However, it reaches steady state at t = 1:5:
Moreover, both fluid temperature and concentration
become unsteady state at t = 0:05, 0:07, 0:09, 0:11 and attain
steady state at t = 0:3.

Physically speaking, thermal Grashof and solutal Gra-
shof numbers are dimensionless quantities that describe
the free or natural convection mechanisms in a flow system.
Arbitrary positive values are chosen for these quantities to
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Figure 13: Thin film velocity profiles for various R.
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Figure 12: Thin film velocity profiles for various Kr.
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Figure 10: Thin film velocity profiles for various α.
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Figure 11: Thin film velocity profiles for various M.

7Journal of Applied Mathematics



illustrate fluid flow characteristics. The assumptions of pos-
itive values for these physical quantities tell us the second-
grade fluid is heated or the skewed plate is cooled. That
means heat flows away from the inclined plate into the
boundary region of the system. Therefore, the fluid motion
is caused by the gravity-driven force viz. buoyancy force.
Owing to this, the thin film velocity boosts with increasing
values of both Grashof numbers, as publicized in Figures 6
and 7.

A porosity is a measure of the empty space in the
medium. Furthermore, it is a volume fraction of the vacant
space over the total volume. Physically speaking, a high
porosity in the permeable medium causes the enlargement
of the thin film thickness or the permeability reduction at
the edge of the medium. This is due to its inverse propor-

tionality to the permeability of the medium. In this line, an
increment of porosity causes the reduction in the thin-film
flow, as indicated in Figure 8. Additionally, as the porosity
parameter increases, the medium’s void or empty space
increases and that leads to the declaration of the thin film
flow.

The numerical variations of the inclination angle of the
plate that ranges from π/6 to π/2 are indicated in Figure 9.
From the physics concept, one certainly can understand that
as the plate closes to the normal axis, the thin film flow will
be accelerating, and then, it is a fact that its velocity
increases.

The influence of a second-grade entity on time-
dependent thin-film velocity is captured in Figure 10. It is
evident to say that the thin film velocity decelerates with
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Figure 17: Temperature profiles for various R.
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Figure 16: Temperature profiles for various Pr.
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Figure 14: Thin film velocity profiles for various Pr.
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the increment of the second-grade parameter of the fluid.
This is due to the existence of a viscous force that dominates
the flow in the system. Therefore, an increase of the second
grade parameter yields an extra thin film thickness by its
nature. Therefore, the reduction of thin-film flow as pointed
out in Figure 10 is caused by the increment of the second-
grade parameter.

This investigation deals with MHD thin film flow due to
the inclined plate with uniform thin film thickness through
porous medium. As we have tried to mention in the intro-
duction section, MHD plays a significant role in the applica-
tion of various fields. As it can be noted, the magnetic field
which is directly related to the viscous force viz. Lorentz
force influences the thin film flow in its regime. This means,
as the magnetic field strength boosts in the flow system, the
thin film flow of second grade fluid reduces. Therefore, as

the estimation values of the magnetic field enlarge, then, thin
film velocity declines, as shown in Figure 11.

The effects of chemical reaction on thin-film velocity and
concentration fields are illustrated in Figures 12 and 18. Both
figures show that as chemical reaction increases, thin-film
velocity and concentration field decrease. In addition,
Figure 13 shows that the thin-film velocity rises with an
increment of thermal radiation. Furthermore, Figure 17
depicts the influence of the thermal radiation on the temper-
ature distribution, and it can be seen that as thermal radia-
tion grows, the temperature field increases as well.

From the physical point of view, Prandtl number is the
ratio of frictional/viscous force to the thermal diffusion.
Likewise, Schmidt number is the ratio of frictional/viscous
force to the mass diffusion. Therefore, Prandtl and Schmidt
numbers are directly proportional to viscous force and have
opposite relationships with the thermal and mass diffusions,
respectively. It is worth noting that viscous forces, by their
very nature, constantly oppose fluid motion. Due to the
reciprocal relationships with heat and mass diffusions, fluid
temperature and concentration diminish with increase of
Prandtl number and Schmidt numbers as shown in
Figures 16 and 19.

Thin-film velocity decreases with larger Prandtl and
Schmidt numbers estimations, as shown in Figures 14
and 15.

Finally, we can conclude that the fluid velocity, temper-
ature, and concentration field diminish with the augmenta-
tion of both Prandtl and Schmidt numbers.

Table 1: Values of skin friction for different physical entities.

Sc R kr M Pr Gr Gc α ϕ θ t τ0
0.6 0.6372

0.7 0.5811

1 1.1256

2 1.1336

1 1.1256

2 1.1036

1 1.1256

2 1.1505

0.71 0.6372

1 0.6323

5 0.9036

6 0.9702

5 3.1860

6 3.7566

0.1 3.1860

0.2 1.4827

1 3.2493

2 3.3211

π/3 1.1256

π/2 1.2997

0.1 1.1256

0.2 2.9684
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Figure 18: Concentration profiles for various Kr.
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Figure 19: Concentration profiles for various Sc.
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The impacts of several emerging physical factors on local
skin friction are explored in Table 1. Skin friction increases
as physical parameters such as thermal radiation, magnetic
field, thermal and solutal Grashof numbers, porosity, plate
inclination angle, second grade parameter, and time
increase, but now it lowers as Prandtl number, Schmidt
number, and chemical reaction expand.

Table 2 shows the influences of different parameters on
heat and mass transfer rates at y = 0 and y = 1. Thus, at
y = 0, the magnitude of Nusselt number increases with
the increase of Prandtl number and diminishes with the
increase of thermal radiation and time. However, the oppo-
site effect is confirmed at . That is, at y = 1, the magnitude
of Nusselt number increases as thermal radiation and time
increase and decrease with the increase of Prandtl number.
This table explores also the effects of Schmidt number, chem-
ical reaction parameter, and time on Sherwood number.
Here, as chemical reaction increases, the magnitude of Sher-
wood number increases at y = 0 and decreases at y = 1. How-
ever, when Schmidt number increases, the Sherwood number
in magnitude increases at and decreases at y = 1, whereas as
time increases, the magnitude of Sherwood number
decreases at y = 0 and increases at y = 1.

6. Conclusion

In this research work, the influence of thermal radiation and
chemical reaction on the time-dependent hydromagnetic
thin-film flow of a second grade fluid over an inclined plate
within a porous medium has been scrutinized. The govern-
ing differential equations are solved by applying Laplace
transform methods, and their numerical inversions are car-
ried out by using INVLAP subroutine of MATLAB. The cur-
rent result has been compared with existing article and an
excellent conformation is obtained. The important findings
are noted as follows:

(i) Velocity field increases with the increase of the ther-
mal and solutal Grashof numbers. When thermal
and solutal Grashof numbers increase, the buoyant
force dominates the thin film flow in the provided
region. Due to this, the increase of fluid velocity is

captured upon larger thermal and solutal Grashof
numbers

(ii) With the increase of magnetic field, second grade
parameter, and porosity, the fluid velocity dimin-
ishes. When magnetic strength becomes high, the
Lorentz force which resists the fluid flow dominates
the flow system. Therefore, high magnetic strength
leads to resist the fluid motion. An increase of
second-grade parameter causes the dominant vis-
cous force in the flow region. This viscous force
causes reduction on the fluid velocity. Moreover,
porosity of the medium is inversely proportional
to the permeability. This physical interpretation
causes the reduction in the thin film velocity

(iii) Temperature and thermal boundary layer thickness
decrease with the increase of Prandtl number. Phys-
ically speaking, it is legitimate in light of the Prandtl
number which is inversely proportional to the ther-
mal diffusion. Thus, this fact leads to reduction on
fluid temperature and its boundary layer thickness

(iv) Temperature and thickness of the thermal boundary
layer increase with the increase of thermal radiation.
It is obvious that thermal radiation is function of
temperature by its physical nature. Therefore, ther-
mal radiation increases both temperature and its
boundary layer thickness enhances

(v) Concentration and solutal boundary layer thickness
diminish with the augmentation of Schmidt number
and chemical reaction parameters. Schmidt number
is inversely proportional to the mass diffusion by its
physical elucidation. Therefore, concentration
diminish upon Schmidt number increases. Addi-
tionally, chemical reaction is the process of chang-
ing the form substances to another form. Due to
this, as conversion process rate increases, the con-
centration of the fluid becomes less

Nomenclature

u′: Dimensional velocity (m/s)
g: Gravitational acceleration (m/s2)
K : Permeability of medium (m2)
Bo: Applied magnetic field (T = kg/As2)
Cp: Specific heat capacity (J/kgK)
T ′: Dimensional fluid temperature (K)
C′: Dimensional fluid concentration (Kmol/m3)
D: Molecular diffusivity (m2/s)
qr : Radiative heat flux (W/m2)
kr′: Chemical reaction (1/s)
t ′: Dimensional time (s)
u: Nondimensional velocity
M: Magnetic field
R: Thermal radiation
Gc: Solutal Grashof number
Gr: Thermal Grashof number

Table 2: Values of Nusselt and Sherwood numbers for different
physical entities.

R Pr kr Sc t −Nu0 −Nu1 −Sh0 −Sh1
1 1.1241 0.8760

2 1.0309 0.9691

0.71 1.1241 0.8760

1 1.2786 0.7229

1 1.5242 0.5798

2 1.6553 0.5452

0.6 1.5242 0.5798

0.7 1.6420 0.4859

0.1 1.1241 0.8760 1.5242 0.5798

0.2 1.0077 0.9923 1.2499 0.8491
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Sc: Schmidt number
I: Identity tensor
P: Hydrostatic pressure
T : Dimensionless temperature
C: Dimensionless concentration
t: Dimensionless time
Pr: Prandtl number
kr : Dimensionless chemical reaction
Nu0: Nusselt numbers at y = 0
Nu1: Nusselt numbers at y = 1
Sh0: Sherwood numbers at y = 0
Sh1: Sherwood numbers at y = 1.

Greek symbols

ν: Kinematic viscosity (m2/s)
σ: Electrical conductivity (S/m = s3A2/kgm3)
κ: Thermal conductivity (W/mK)
ϕ: Porosity of the medium
ρ: Density of the fluid (kg/m3)
β: Volumetric heat expansion (1/K)
β ∗: Volumetric mass expansion (m3/kg)
μ: Dynamic viscosity (kg/ms)
α1, α2: Moduli of normal stress
δ: Thickness of thin film (m)
α: Second-grade parameter
τ0: Skin friction at y = 0.
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