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The main objective of this study is to propose a method of analysing the volatility of a seemingly random walk time series with
correlated errors without transforming the series as performed traditionally. The proposed method involves the computation of
moving volatilities based on sliding and cumulative data matrices. Our method rests on the assumption that the number of
subperiods for which the series is available is the same for all periods and on the assumption that the series observations in
each subperiod for all the periods under consideration are a random sample from a particular distribution. The method was
successfully implemented on a simulated dataset. A paired sample t-test, Wilcoxon signed rank test, repeated measures
(ANOVA), and Friedman tests were used to compare the volatilities of the traditional method and the proposed method under
both sliding and cumulative data matrices. It was found that the differences among the average volatilities of the traditional
method and sliding and cumulative matrix methods were insignificant for the simulated series that follow the random walk
theorem. The implementation of the method on exchange rates for Canada, China, South Africa, and Switzerland resulted in
adjudging South Africa to have the highest fluctuating exchange rates and hence the most unstable economy.

1. Introduction

A random walk is a statistical phenomenon where a variable
follows no discernible trend and moves seemingly at ran-
dom. This phenomenon was originally attributed to stock
market prices. According to Fama [1], in an efficient stock
market, prices should follow a random walk process, where
future price changes are random and consequently unpre-
dictable. Phanrattinon et al. [2] posited that for an efficient
market, investors may make investments based on short-
term movements and not by applying the technical method,
which is based on historical data.

Random walk hypothesis research has been done on
many stock markets across the world for both developed
and emerging economies. These include markets in Asia
[2–5], Middle East [6–8], Eastern Europe [9], Africa [10,
11], South America [11, 12], etc. The results of these
researches are mixed. For example, Phanrattinon et al. [2]

found that the stock index returns of China, Indonesia,
Korea, and Thailand follow random walk theory while those
of Australia, Hong Kong, and Singapore do not. Also, Hoque
et al. [13] found the markets of Taiwan and Korea to be inef-
ficient while those of Hong Kong, Indonesia, Malaysia, Phil-
ippines, and Singapore were found to be efficient. Though
the theory of random walk was originally associated with
market returns, many other time series data also exhibit
the random walk characteristics.

Charles and Darné [14] conclude that macroeconomic
aggregates like exchange rate, gross domestic product, and
gross national product data are better modelled as random
walk processes rather than stationarity trends. The assump-
tions of random walk theory postulate that each random
variable that obeys a random walk property has the same
probability and is independent of every other random vari-
able. Most time series that seem to exhibit random walk vio-
late some or all the assumptions above; this leads to the
transformation of such series by researchers.
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There is a great deal of literature on series transforma-
tion, Salles et al. [15] reviewed the nonstationary methods
of time series transformation. Nachane and Clavel [16] also
explored several methods of statistical analysis on nonsta-
tionary time series. Rahimi et al. [17] also explored a semisu-
pervised regression algorithm that learned to transform one
time series into another time series. Other researchers such
as Tommaso and Helmut [18] questioned the effectiveness
of series transformation. However, series transformation just
like any other form of transformation leads to loss of infor-
mation, bias estimates, and complex interpretation of results
[19, 20].

There is little or no study to the best of our knowledge
that focuses on finding a way to use a seemingly random
walk time series data when the error terms are serially corre-
lated other than the conventional way of series transforma-
tion. The aim of this research is to propose a novel method
for estimating the volatility of serially correlated errors with-
out transforming the data.

The rest of the paper is organised as follows: Section 2
presents the methods and materials which consist of the the-
oretical framework. This section also provides details of the-

orems and corollaries upon which the proposed method is
based. Specification of the proposed method and results of
the implementation of the proposed method on simulated
data are also presented. Section 3 presents the results of
the implementation of the proposed method on empirical
data. Finally, Section 4 provides discussions and conclusions
emanating from the results, and recommendation for future
research direction is also presented.

2. Materials and Methods

This section of the paper involves theoretical framework,
model specification, and results of the implementation of
the proposed method on simulated data.

2.1. Theoretical Framework. In this subsection, the theorem
and some corollaries which form the basis of the methodol-
ogy for monitoring volatility of a series (e.g., returns) are
presented.

Theorem 1. Suppose X = ðX1, X2,⋯, XmÞ is a random vector
of m components with covariance matrix Σ = ðσijÞm×m: Then,
the standard error σXsum

of the sum Xsum =∑m
i=1Xi of the com-

ponents of X is given by

σXsum
= 〠

m

i=1
σi

2 + 2〠
i≠j
σij

" #1/2

, ð1Þ

where σii = σi
2, i = 1, 2,⋯,m:

Proof. Write Xsum =∑m
i=1Xi = aTX, where a is a column vec-

tor of m components each of which is unity (one).
Then, VarðXsumÞ = VarðaTXÞ = aTΣa = ½∑m

i=1σi
2 + 2∑i≠j

σij�, acknowledging a quadratic form of the symmetric
matrix Σ with respect to a.

Hence, the required result σXsum
= ½∑m

i=1σi
2 + 2∑i≠jσij�1/2.

Corollary 2. If the components of X are identically distrib-
uted with CovðXi, XjÞ = υ, i ≠ j, and VarðXiÞ = σ2, i = 1, 2,
⋯,m, then

σXsum
= mσ2 +m m − 1ð Þυ� �1/2

: ð2Þ

Proof. The proof is trivial by substituting σi
2 = σ2 for i = 1,

2,⋯,m and σij = υ for all i ≠ j in Equation (1).

Corollary 3. If the components of X are independent but not
identically distributed, then

σXsum
= 〠

m

i=1
σi

2

" #1/2

: ð3Þ

Proof. Again, the proof is trivial by substituting σij = 0 for all
i ≠ j in Equation (1).

R Codes
RW <- function(N, x0, mu, variance) {

z<-cumsum(rnorm(n=N, mean=0,
sd=sqrt(variance)))

t<-1:N
x<-x0+t∗mu+z
return(x)

}
P<-RW(4801,2,0,0.004)

Q<-c(rep(NA,4800))
for (i in 1:4800){
Q[i]<- P[i+1]-P[i]

}
M<-matrix(c(rep(NA,4800)), nrow =240, ncol =20)
for (i in 1:240) {

A<-1+(20∗(i-1))
B<-20∗i
M[i,]<- Q[A:B]

}

##### For sliding data matrix ####
D<-c(rep(NA,227))
W<-c(rep(NA,227))
for (i in 1:227) {

ma<-M[(i):(12+i),]
as.matrix(ma)
cc<-matrix(c(rep(NA,400)),nrow =20, ncol =20)
cc<-cov(ma)
D[i]<-sqrt(sum(diag(cc)))
vvvvvW[i]<-sqrt(20)∗sd(ma[12+i,])

}

t.test(D,W,paired=TRUE,conf.level=0.95)
##### For cumulative data matrix, ma becomes #####
ma<-M[(1):(12+i),]

Pseudocode 1: R codes for simulated data.
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Corollary 4. If the components of X are i.i.d. (independent
and identically distributed), then

σXsum
=

ffiffiffiffi
m

p
σ: ð4Þ

Proof. The proof is clear by substituting υ = 0, in Equation
(2).

2.2. Model Specification. The paper assumes that the number
of subperiods (e.g., days, months, or quarters) for which the
time series is observed is the same for all periods (e.g.,
months and years) for this proposed methodology. Further-
more, the observations of the series at a particular period for
all the years under consideration are assumed to be a ran-
dom sample from a particular distribution. It is also assumed
that all distributions may be independent or not. Thus, by
letting Xij represent the observed value of the series at period
jðj = 1, 2,⋯, gÞ in year iði = 1, 2,⋯, nÞ with g and n repre-
senting the number of periods (days/months) in a month
(year) and number of months (years) under consideration,

respectively, we have a data matrix M given as

M = X1,X2,⋯,Xg

� �
, ð5Þ

where for each j = 1, 2,⋯, g, X j = ½Xnj, Xn−1j,⋯, X1j�T is
considered a sample from a given distribution.

From matrix M, the paper suggests the construction of
two kinds of subdata matrices, the moving data matrices
and the cumulative data matrices. The first kind is n − l + 1
moving (sliding) data matrices of length l denoted by Mk
and given as

Mk = Xk1,Xk2, ⋯ ,Xkg

� �
, k = 0, 1,⋯, n − l, ð6Þ

where Xkj=ðXl+k,j, Xl+k−1,j,⋯, X1+k,jÞT , j = 1, 2,⋯, g.
The second kind is also n − l + 1 cumulative data matri-

ces of length k denoted by Mk
∗ given as

Mk
∗ = Xk1

∗,Xk2
∗,⋯,Xkg

∗
� �

, k = l, l + 1,⋯, n, ð7Þ

where Xkj
∗ = ðXkj, Xk−1j,⋯, X1jÞT , j = 1, 2,⋯, g.

Suppose Skðk = 0, 1,⋯, n − lÞ is the unbiased estimate of
the covariance matrix, based on Mk of the random vector
X = ðX1, X2,⋯, XgÞT , where X j ðj = 1, 2,⋯, gÞ have the
same distribution as the population from which the series
for the ith period in all the years under consideration. Then,
based on the theorem, the paper proposes an l length mov-
ing volatility of the series to be defined as

σk =
1
g
aTSka

	 
1/2
, k = 0, 1, 2,⋯, n − l, ð8Þ

Table 1: Descriptive statistics and paired sample tests of the traditional and proposed methods.

Method N Min. Max. Mean Std. Dev.
Paired t-test

Wilcoxon signed
rank test

t-test df p value V-Stat p value

Sliding

~σk 227 0.2464 0.3087 0.2814 0.0128

g1/2eσl+k 227 0.1765 0.4094 0.2802 0.0419 1.1097 226 0.2683 13713 0.4349

Cumulative

σ̆k
∗ 227 0.2748 0.2863 0.2811 0.0025

g1/2σk
∗

227 0.1765 0.4094 0.2802 0.0419 1.2441 226 0.2148 13685 0.4517

Source: simulated data.

Table 2: Friedman and ANOVA tests for the comparison of volatilities for the three methods.

Method Min. Max. Mean Std. Dev.
Friedman test Repeated measures ANOVA

Chi square df p value F-stat (df1, df2) p value

Traditional method 0.1765 0.4094 0.2802 0.0419

0.677 2 0.713Sliding method 0.2464 0.3087 0.2814 0.0128 0.147 (1.13, 256.3) 0.734

Cumulative method 0.2748 0.2863 0.2811 0.0025

Source: authors’ simulated data.
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Figure 1: The box plots for the volatilities obtained from the three
methods.
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where a is a column vector of order g with each component
equal to one.

Alternatively, if Sk
∗ðk = l, l + 1,⋯, nÞ is the unbiased

estimate of the covariance matrix based on Mk
∗ of the ran-

dom vector X defined previously, then the proposed cumu-
lative volatility of the series is given by

σk
∗ = 1

g
aTSk∗a

	 
1/2
, k = l, l + 1,⋯, n, ð9Þ

where a is as defined previously.
Based on the matrices Mk and Mk

∗, the bootstrap confi-
dence intervals can be constructed for σk and σk

∗,
respectively.

The pair points ðk, σkÞ, k = 0, 1, 2,⋯, n − l, or ðk, σk
∗Þ, k

= l, l + 1,⋯, n, may be plotted to display the moving volatil-
ity or the cumulative volatility to appreciate a pictorial view
of the data.

If Xij’s are investment returns, then moving standardized
rates (based on sliding and cumulative data matrices) can be
computed, respectively, as follows:

qk =
�Xk − Rk

σk
, k = 0, 1, 2,⋯, n − l, ð10Þ

where �Xk = 1/g∑g
j=1Xi+kj and

qk
∗ =

�Xk
∗ − Rk

σk
∗ , k = l, l + 1,⋯, n, ð11Þ

where �Xk
∗ = 1/g∑g

j=1Xkj with Rk being the low-risk return
for years l + k and k, respectively, for Equations (10) and
(11). Bootstrap confidence intervals of qk and qk

∗ may also
be constructed for each k under the two situations. The stan-
dardized rates so specified are the same as the Sharpe ratio
under certain distributional and dependency conditions.
The use of these rates were not considered in this study.

Equations (8) to (11) are with reference to a time series
Xt , which is governed by the model:

Xt = μ + εt , t = 1, 2,⋯: ð12Þ

On the other hand, if the series Xt is governed by the
model

Xt = Xt−1 + εt , t = 1, 2,⋯, ð13Þ

then Equations (8) to (11), respectively, become

σk = aTSka
� �1/2, k = 0, 1, 2,⋯, n − l,

σk
∗ = aTSk∗a

� �1/2, k = l, l + 1,⋯, n,

qk =
ffiffiffi
g

p �Xk − Rk

� �
σk

, k = 0, 1, 2,⋯, n − l,

qk
∗ =

ffiffiffi
g

p �Xk
∗ − Rk

� �
σk

∗ , k = l, l + 1,⋯, n,

ð14Þ

where all the symbols as previously defined but the data
matrices M,Mk, and Mk

∗ consist of the first differences of
the series Xt .

2.3. Simulation. Let us define ~σl+k ðk = 0, 1, 2,⋯, n − lÞ to be
the standard deviation of the series Xl+k,1, Xl+k,2,⋯, X1+k,g
(which in this case are the consecutive differences in a ran-
dom walk) in year l + k and ~σk to be the square root of the
sum of the diagonal elements of the covariance matrix Sk
in Equation (8) based on the sliding matrix Mk of the con-
secutive differences of a random walk series. For a random
walk series with independent and identically distributed
errors, an insignificant paired sample t-test of the pairs ð
g1/2eσl+k, ~σkÞ,k = 0, 1, 2,⋯, n − l, will lead to the proposed
method as a step in the right direction. Another advantage
of the proposed method is that there is a possibility for the
estimation of the covariances among the error terms in situ-
ations of dependent random errors in a random walk series.
This saves the trouble of transforming a random walk series
with dependent errors before analysis. Similar test results
based on the pairs ðg1/2σk

∗, σ̆k∗Þ, k = l, l + 1,⋯, n, also sup-
port the same position, where σk

∗
denotes the standard devi-

ation of the series Xk,1, Xk,2,⋯, Xk,g in year k and σ̆k
∗

denotes the square root of the sum of the diagonal elements
of the covariance matrix Sk∗ in Equation (9) based on the

Table 3: Descriptive statistics of exchange rates and growth rates by country.

Country Mean Median Maximum Minimum

China
Exch. rate 1.2345 1.2456 1.6128 0.9168

Growth rate -0.0018 0.0000 3.8070 -5.0716

S. Africa
Exch. rate 7.1947 6.8780 8.2800 6.0402

Growth rate -0.0036 0.0000 1.8161 -2.0187

Canada
Exch. rate 9.6675 8.2824 19.0400 5.6150

Growth rate 0.0186 0.0000 8.4341 -9.1567

Switzerland
Exch. rate 1.1442 1.0270 1.8250 0.7296

Growth rate -0.0108 0.0000 8.8907 -13.0223

Source: FRED, 2000-2020.
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Figure 2: Time series plots of exchange rates by country. Source: FRED, 2000-2020.
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cumulative matrix Mk
∗ of consecutive differences of a ran-

dom walk series.
In view of the above premise, a sample of 4800 random

walk error series was simulated which resulted in a data
matrix of order 240 by 20 observations, based on the
assumption that the series covers 240 years (n) each of 20
periods (g) with l = 13. The paired sample t-test was then
carried out to investigate whether the volatilities of the ran-
dom walk series for the sliding and cumulative matrices Mk
and Mk

∗, respectively, are the same or not. The R codes for
the computations are attached as Pseudocode 1.

Table 1 presents descriptive statistics and the paired
sample t-test (parametric) and Wilcoxon signed rank test
(nonparametric) of the traditional and proposed methods.
It is observed from Table 1 that the annual volatilities based
on the existing (traditional) method ranges from 0.1765 to
0.4094 with a standard deviation of 0.0419. However, the
annual volatilities based on the proposed method for the
sliding and cumulative data matrices range from 0.2464 to
0.3087 and 0.2748 to 0.2863, respectively, with correspond-

ing standard deviations of 0.0128 and 0.0025, respectively.
The average volatility for the three approaches is approxi-
mately 0.28 (0.28 to two decimal places). This is an indica-
tion that the volatilities based on the existing method and
the proposed method under sliding and cumulative data
matrices are approximately the same on average. The paired
sample t-tests and the Wilcoxon signed rank tests compared
the annual volatilities based on the existing and proposed
method using the sliding and cumulative matrices. The two
tests recorded p values greater than a significance probability
of 0.05. This implies that, on average, the annual volatilities
based on the existing and the proposed methods are equal
and indicate that the proposed method is a step in the right
direction.

The study continued to investigate whether there is a sig-
nificant difference among the average volatilities when the
three methods are considered in a single test: repeated mea-
sures ANOVA test (parametric) and Freidman test (non-
parametric). Table 2 displays the results for the two tests
comparing the average volatilities of the three methods of
calculating the volatilities: traditional, sliding matrix, and
cumulative matrix methods. Both tests produced p values
greater than any significance probability (p = 0:713 and p =
0:734). This implies that there is no significant difference
among the averages of volatilities of the three methods at
any significance level. Hence, the Friedman and ANOVA
tests confirmed the results obtained from the paired sample
t-test and Wilcoxon test.

Figure 1 shows the pictorial display of the distribution of
the volatilities for the three computational methods, namely,
traditional, sliding matrix, and cumulative matrix. It is
observed that the mean volatilities are approximately the
same for all the three methods. It is observed that the tradi-
tional computation method showed slightly higher volatil-
ities than the proposed methods: sliding and cumulative
matrices.

It can be inferred from the results that the estimates of
volatility by the proposed method are approximately equal
on average and are similar to those of the existing method
(traditional), irrespective of the type of data matrix (sliding
or cumulative) considered. The findings from Table 1 sup-
port our position that for a series Xt , governed by the model

Xt = Xt−1 + εt , t = 1, 2, 3,⋯, ð15Þ

where the error terms εt are not independent, one can use
either Equation (12) or (13) on the first difference of the data
to estimate the volatility of the series without transforming
the series to satisfy the conditions of random walk. However,
the results of serial correlation analysis for the first difference
may determine whether the covariance matrices Sk and Sk∗
of Equations (8) and (9) should be diagonal or not. Here,
the data matrix M consists of the first difference of the series
Xt .

Secondly, a series Xt , governed by the model

Xt = µ + εt , t = 1, 2, 3,⋯, ð16Þ

where μ is a constant and εt is the error term, may be

Table 4: ADF test for the random walk property of the series.

Country t-statistic p value

China -1.3736 0.5968

Canada -1.522 0.5226

South Africa -0.6196 0.8639

Switzerland -1.653 0.4553

Source: FRED, 2000-2020.

Table 5: Statistical test for serial correlation.

Country Variable Test stat. p value

China
Exch. rate 4.6536 0.0001

Growth rate 4.6025 0.0001

South Africa
Exch. rate 0.0668 0.9467

Growth rate -0.3950 0.6929

Canada
Exch. rate 0.6204 0.5350

Growth rate 0.7883 0.4305

Switzerland
Exch. rate 2.1649 0.0304

Growth rate 1.9332 0.0532

Source: FRED, 2000-2020.

Table 6: Descriptive statistics for moving volatilities.

Country Variable Mean Maximum Minimum

China
Exch. rate 0.0361 0.1134 0.0001

Growth rate 0.5346 1.7222 0.0015

South Africa
Exch. rate 0.4448 0.8512 0.1947

Growth rate 4.5139 7.6505 2.6889

Canada
Exch. rate 0.0278 0.0600 0.0153

Growth rate 2.2702 5.0495 1.2232

Switzerland
Exch. rate 0.0299 0.0603 0.0119

Growth rate 2.6173 5.4387 1.3242

Source: FRED, 2000-2020.
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mutually independent or not. One may use Equation (8) or
(9) for the series Xt to estimate the volatilities. However,
the results of serial correlation analysis of the series Xt
may also determine whether the covariance matrices Sk
and Sk∗ of Equations (8) and (9) should be diagonal or
not, where the data matrix M, in this case, consists of the
series Xt .

3. Results from Empirical Data

To apply the proposed method to an empirical situation,
data on exchange rates were obtained from the Federal

Reserve Economic Data (FRED) for China, South Africa,
Canada, and Switzerland. These data consist of daily
exchange dollar rates of each country spanning the years
2000 to 2020. The logarithmic growth rates were computed
over the period for each country. Descriptive statistics for
the exchange and growth rates of each country are presented
in Table 3.

It is observed from Table 3 that for the period under
investigation, Canada has the highest mean exchange rate
of 9.67 and a median of 8.28 with rates ranging from 5.12
to 19.04. South Africa follows with an average rate of 7.19
and a median of 6.88, while the exchange rates range from
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Figure 4: Trend analysis plots of the moving volatilities in exchange rate by country. Source: FRED, 2000-2020.
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6.04 to 8.28. Furthermore, Switzerland recorded an average
rate of 1.14 and a median rate of 1.0, and the rates generally
range from 0.73 to 1.83. Finally, the China exchange rate
recorded an average rate of 1.23 and a median rate of 1.25
while the minimum and the maximum rates are 0.92 and
1.61, respectively. These show that Canada was saddled with
high exchange rates over the period and recorded a rate as
high as 19.04 in at least one of the months while China
recorded the least exchange rates.

However, in the case of growth rates of the exchange
rates, it was observed that Switzerland recorded the highest
average reduction (-0.0108) in the exchange rate, followed
by South Africa (-0.0036), then China (-0.0018). In addition,
Canada recorded an average increase of 0.0186 in exchange
rates and has the worst performance over the period despite
recording a maximum reduction rate above 9 percent.

The line plots were obtained for the exchange rates and
the growth rates for each country to investigate the method
that best described the data. Figure 2 presents the pictorial
view of the exchange rates over the period under study while
Figure 3 presents time series plots of the growth rates.

It is apparent from Figure 2 that the exchange rate time
series plots for all the four countries seemingly exhibited the
random walk property, and hence, the first differences of the
series were computed. However, an augmented Dickey-
Fuller test for random walk property of the series for the four
countries is presented in Table 4. It is observed from Table 4
that the ADF test for all the four country series produced p
values greater than any significance probability (p > 0:05).
Therefore, it is concluded that the series for the four coun-
tries considered obeys the random walk theory as observed
pictorially in Figure 2.

The presence of serial correlation for each country
exchange rate was tested to determine whether to use only
the diagonal elements of the moving covariance matrices
or not, as stated in Equation (12). However, from Figure 3,
the time series plots of the growth rates depicted stationary
behaviour. So, the serial correlation analysis was performed
on the growth rates to investigate dependency among the
errors. The results of the tests for serial correlation in the
exchange rates and growth rates are presented in Table 5.

The results of Table 5 show that the tests for the presence
of serial correlation in the difference of exchange rates for
China and Switzerland are significant at a 5 percent signifi-
cance level. This indicates a dependence among error terms
because the corresponding p values are less than 0.05
(p < 0:001 and p = 0:0304, respectively). The growth rates
for China also recorded a significant presence of serial corre-
lation at a 5 percent significance level with a p value less than
0.001. Hence, for these three series, all the elements in the
estimates of the moving covariance matrices were used in
computing the moving volatilities according to Equation
(12). However, the growth rates for Switzerland and the first
difference in exchange rates and growth rates for South
Africa and Canada recorded insignificant presences of serial
correlation, hence leading to the use of only the diagonal ele-
ments of the estimated moving covariance matrices in com-
puting the moving volatilities. Table 6 shows descriptive
statistics for 240 moving volatilities (monthly moving vola-

tilities from January 2000 to December 2020) for exchange
rates and growth rates for all the countries under study.
Figures 4 and 5 display the plots of the moving exchange
rates and growth rate volatilities, respectively.

It is revealed from Table 6 that the average volatility for
China over the period was 0.0361 with an average growth
rate of 0.5346. Though China recorded the second-highest
average volatility, it is observed to produce the smallest aver-
age growth rate among the four countries considered. South
Africa recorded the highest average volatility (0.4448) and
average growth rate of 4.5139 over the period of the study.
Canada and Switzerland recorded approximately the same
average volatility but have a slight difference in their average
growth rates over the study period. The maximum volatility
was recorded by South Africa (0.8512) and was followed by
China (0.1134). However, the minimum volatility was
recorded by China (0.0001). Furthermore, the maximum
growth rate was recorded by South Africa (7.6505) and was
followed by Switzerland (5.4387).

The trend behaviour of the volatilities of the exchange
rates for the four selected countries, China, South Africa,
Switzerland, and Canada, is presented in Figure 4. It is
observed from Figure 4 that the volatility trend plot for
South Africa was very volatile with much higher volatilities
compared to the other three countries considered. It was
revealed over the study period that the volatility for South
Africa peaked at three different times, namely, the last quar-
ter of 2002, the last quarter of 2009, and the last quarter of
2016. However, the other three countries show approxi-
mately the same pattern and have less volatile moving vola-
tilities for exchange rates over the study period. China is
observed to produce a little higher trend of volatility between
the third quarter of 2013 and the third quarter of 2020.
However, Switzerland and Canada showed approximately
the same trend of volatility over the study period.

The trend analysis plots of the volatility growth rates for
the four countries are displayed in Figure 5. The line graphs
show that there are very high fluctuations over the entire
study period and South Africa has higher growth rates than
Switzerland, Canada, and China. It is interesting to note that
South Africa, Switzerland, and Canada recorded maximum
growth rates between May 2008 and September 2009. South
Africa was observed to be more volatile, followed by Switzer-
land and then Canada in terms of growth rates over the
period. China was observed to produce more stable and less
growth rates over the entire period of the study. It is
observed that as China’s growth rates showed a progressive
increase from 2013, Switzerland and Canada showed declin-
ing growth rates from 2016 to 2020.

4. Discussions and Conclusions

As indicated early on, the paper sought to develop a method
of analysing the volatility of a seemingly random walk time
series with correlated errors without transforming the series
as done traditionally. We showed how to arrange a random
walk series into a data matrix based on the assumption that
the number of subperiods for which the series is available is
the same for all periods. Secondly, the series observations in
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each subperiod for all the periods under consideration is a
random sample from a particular distribution. This led to
the computation of moving volatilities based on sliding
and cumulative data matrices. The method was successfully
implemented on a simulated dataset. The paired sample t
-test and the Friedman test were used to compare the volatil-
ities of the traditional method and the proposed method
under both sliding and cumulative data matrices. The tradi-
tional method was insignificantly different for the simulated
series that follows the random walk theorem. The proposed
method was also discussed for a seemingly stationary series.

The proposed method was also used to compute moving
volatilities of exchange rates and their growth rates for Can-
ada, China, South Africa, and Switzerland. The paper used
exchange rates because fluctuations in them have been found
by several researchers across the world to have a significant
relationship with key macroeconomic variables. According
to Besnik et al. [21], exchange rate stability led to macroeco-
nomic stability. Others have established a positive relation-
ship between exchange rates and inflation [22–24],
exchange rates, and international prices [25]. Similar rela-
tionships have been established globally including the UK
[26, 27], Sweden [26], Denmark, and Canada [26]. These
go to buttress the point that a less volatile (more stable)
exchange rate results in a more stable economy.

Based on the empirical data and the discussions in the
previous paragraph, South Africa has a less stable economy
as compared to the other countries since South Africa
recorded highly fluctuating volatilities in exchange rates.
Similar results are portrayed by the volatilities of exchange
rates and growth rates with China having an edge over the
rest.

5. Future Research

In view of this paper, recommendation is made on the appli-
cation of the proposed method (including computation of
the specified standardized rate) to other macroeconomic
variables such as investment returns to compare stability
and performance of stock markets across the world.
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The exchange rate data used to support the findings of
this study have been deposited in the Federal Reserve Eco-
nomic Data (FRED) repository (https://fred.stlouisfed.org/
searchresults?st=exchange+rates).
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