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We propose a method of defining absorbing boundary conditions for use in finite element modeling of mechanoacoustic systems.
The finite element model of an elastic body is expanded by a water domain, bounded by an axisymmetric surface, to which
boundary conditions are applied. The boundary conditions are formed using the method of equivalent sources, so the integral
relations for the pressure and its gradient are derived. The method retains its validity for the modeling of radiation in the low-
frequency range, as it provides not only the absorption of outgoing waves but also the modeling of the added mass of vibrating
elastic bodies.

1. Introduction

Numerical modeling of wave processes by means of the
finite element method (FEM) inevitably requires dealing
with the boundaries of the computational domain. The ques-
tion is quite general and arises not only in underwater
acoustics simulations but also, for example, when modeling
electromagnetic waves. The so-called absorbing boundary
conditions (BCs) should ensure the absorption of waves that
come out of the computational domain and correct simula-
tion of the near field. In the case of underwater acoustics,
which will be discussed in this paper, that means that BC
should be capable to simulate an added mass of liquid
formed by the volume of water outside the computational
domain. In other words, a search is made for such BC that
would act similarly to the Sommerfeld condition but lead
to a smaller error at finite distances from the sound source.

A literature review helps one to identify several compet-
ing approaches [1]. The first one to be mentioned is such a
BC that is derived from the Helmholtz equation with certain
approximations. Namely, they relate the pressure and its
derivatives along the border to the normal derivative of the

pressure. An example of BC, used in commercial software,
is [2], and some overview of known methods is given in
[3]. The applicability of such BC is limited either by the wave
incidence angles or by other parameters. However, the
mathematical expressions that define the BC turn out to be
relatively simple, so they can be easily generalized to the time
domain or applied in those problems which require more
complicated research than a harmonic analysis [4].

The next approach is PML (perfectly matched layer),
which consists of creating an “exotic” medium layer around
the edges of the model [5]. This layer provides an increased
absorption coefficient for propagating waves and a sufficient
attenuation of the near field due to a complex transforma-
tion of coordinates, so the waves do not reach the new
boundaries of the computational domain. In terms of the
development of PML algorithms, topical issues are dealing
with arbitrary shape boundaries [6], the accuracy of near-
field modeling [7], and application in layered and dispersive
media [8, 9].

Next follows the integral (i.e., nonlocal or global) BCs,
that is, when one mathematical expression can relate the
pressure values in far-away nodes. Acoustic infinite elements
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[10] are used in some cases. Their formulation differs from
the above-mentioned BCs in several key respects. The outer
region is subdivided into elements, each of which has a
“base” on the surface of the finite element model. The
weighted residual method is applied, similar to the conven-
tional finite element method. The degrees of freedom corre-
sponding to the interpolation functions in the infinite
direction are added to the overall matrix of the system.

Mathematically, BCs for radiation in the finite element
model are governed by expressing the normal derivative of
the pressure ∂p/∂n at the boundary of the region through
the values of pressure p at the nodes of this boundary (except
for PML, that is, a layer by itself). For boundaries of a regular
shape, one can use the outgoing wave expansion to explicitly
derive the so-called Dirichlet-to-Neumann (DtN) operator
[11]. This operator transforms the vector of p values at all
border nodes into a vector of ∂p/∂n values at the same
nodes.

For an arbitrary shape of the boundary, the relationship
between ∂p/∂n and p can be found by means of the bound-
ary element method (BEM), that is, by numerically solving
the Helmholtz integral equation [12, 13]. BEM is an inde-
pendent and actively used [14] method for solving the prob-
lems of radiation and sound scattering, but the types of
scattering bodies under consideration are limited to abso-
lutely rigid and absolutely soft bodies and those bodies that
can be described in terms of local impedance, for example,
strongly absorbing bodies. As for radiation problems, BEM
allows to calculate the field of panels with a given vibration
velocity on the surfaces of such bodies. Modeling of elastic
bodies is achieved by jointly solving the system of equations
formed by the FEM and BEM [15], and in this case, the BEM
mesh directly coincides with the surface mesh of the elastic
body modeled by the FEM. This leads, firstly, to a long
BEM computation time for the matrix coefficients connect-
ing in pairs all nodes on the model surface, and secondly,
it is expressed in further computational difficulties when
operating with a large fully populated matrix. Recall that
the FEM matrix is usually sparse, and the BEM matrix is
dense. Some researchers try to optimize operations with
matrices consisting of sparse and filled parts, starting from
a proper rearrangement of columns and rows [11] and end-
ing with iterative procedures based on the fast multipole
method [14, 16].

A number of papers compare the performance of various
methods for specifying absorbing BC [3, 17, 18]. In particu-
lar, according to [17], BC given by the BEM provides the
best convergence in terms of the fastest rate of error reduc-
tion when refining the mesh. However, in general, which
type of BC is preferable depends on the particular applica-
tion. The result in performance may be different, depending
on the implementation of the rest part of the software, such
as the formation of a finite element model and its matrix,
subsequent matrix operations, postprocessing, etc.

The algorithm for generating absorbing BC, proposed in
this article, is based on the idea of the combined use of FEM-
and BEM-like approaches. The problem of sound radiation
and scattering by elastic bodies in water is studied. The dif-
ference from the known BEM implementations is the usage

of the equivalent source method [13, 19–21] instead of cal-
culating singular surface integrals. An original optimization
of the BEM matrix with its presentation in the Toeplitz form
is also proposed. Finite element models suitable for applying
the algorithm are prepared in a special way. The region of
the external medium, modeled by the BEM, is not directly
connected to the complex contact surface of the liquid and
the body. The object under study is expanded with a water
domain, i.e., finite elements that simulate a certain volume
of the water medium, so that the shape of the resulting outer
boundary is a rotating body of revolution, e.g., a cylinder
with end caps. The axisymmetric geometry of the outer
region contributes to a significantly faster formation of the
BC matrix in comparison with the general BEM. This extra
water domain allows the evanescent waves to decay, so the
mesh on the outer boundary is coarse, and its step is deter-
mined by the length of the acoustic wave, not by the flexural
waves in the body. However, at the same time, the extra
water domain is not too large in order not to greatly increase
the dimension of the system. Elongated bodies are usually
investigated in underwater acoustics, and it is convenient
to expand them up to a cylinder (compare, for example, if
the task is to inscribe an elongated body into a ball; this will
lead to the addition of a large number of extra degrees of
freedom to the model).

2. Methods

Finite element modeling of the studied harmonic vibroa-
coustic processes is performed in the space of two variables,
namely, the displacement field u, which oscillates with a
cyclic frequency ω, and the displacement potential θ, which
describes the fluid medium dynamics. One should note that
usually, acoustic waves in water are described by a pressure
field p, while finite element modeling is carried out. Here,
we exploit the displacement potential that is related to pres-
sure as θ = p/ðρω2Þ in the case of harmonic process. This
change of variables helps to make some of the further
expressions symmetric. Thus, the studied problem of finding
a response to give force b can be described in a discrete form
by a system of linear equations with symmetric matrix ele-
ments, which is similar to the one presented by the authors
in [4, 22]:

KS½ � 0
0 0

" #
− ω2 MS½ � MFSI½ �

MFSI½ �T − MF½ �

" #
− ω4 0 0

0 GF½ �

" #
− i ⋅

0 0
0 Z½ �

" # !
u

θ

( )
=

b

0

( )
,

ð1Þ

where Ks andMs are the matrices of stiffness and mass of the
deformable solid body, MF and GF are the matrices describ-
ing the transfer and compression of a fluid, and MFSI and Z
are the matrices determining the boundary conditions of no
fluid loss at the fluid-structure contact surface and nonre-
flection of acoustic waves from the boundaries of the com-
putational domain, respectively. Algorithms for the
formation of matrix components Ks, Ms, MF , and GF can
be found in the classical papers [23, 24]. A procedure for effi-
cient formation of the matrix MFSI, which establishes the
relationship between u and θ, can be found in [22].
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The matrix ½Z� is frequency-dependent and has nonzero
elements only for nodes at the outer boundary of the compu-
tational domain. It defines the connection between the value
of the θ potential and its derivative θn with respect to the
normal to the boundary of the computational domain. This
paper is just dedicated to the method of calculation of this
matrix. Formally, this matrix can be obtained by differentiat-
ing the following function with respect to the values of the
generalized degrees of freedom:

δW = ρω2
ð
S

∂Θ
∂n

δΘdS, ð2Þ

where ρ is the fluid density, ω is the angular frequency, S is
the fluid boundary, Θ is the displacement potential (as a
continuous distribution), and n is the outer normal to S.
The quantity δW determines the energy flux increment
through S at a given increment of the values of the general-
ized degrees of freedom.

A link between ∂Θ/∂n and Θ is an essential point in der-
ivation of BC. Assume that the whole domain inside S is
filled with water medium of the same kind as outside. It is
known [13, 19–21] that an arbitrary distribution of pressure
(or the potential) on the surface S can be very closely
approximated by placing in some way the sources of variable
mass q (i.e., monopole acoustic sources) inside S (see
Figure 1). As soon as the equivalent sources, creating the
required field on the boundary, are determined, the value
of the normal derivative will be determined in a straightfor-
ward way.

At this point, we must require that the mesh on the
boundary S is structured (regular). It must coincide with
itself when rotated by some angle Δφ. So it should have M/
2 = 2π/Δφ elements along the circle (see figures below and
mind that the notation M/2 is used due to so-called finite
elements of the second order; i.e., there is one intermediate
point on each edge). The nodes of these elements are going
to be organized in K rings, and there will be two poles, one
node per each pole. To ensure that the matrix is conditioned,
the number of degrees of freedom, provided by equivalent
sources, should be the same as the number of degrees in
the nodes of boundary S. A group of equivalent sources is
a scaled copy of the boundary mesh nodes. According to
this, equivalent sources are defined as continuous coaxial
rings (Figure 1) with numbers k = 1::K in a short distance
away from the surface S (proper offset was found using addi-
tional numerical experiments). Herein, it is important to
specify M options for the distribution of q along the angular
coordinate φ for each k location option. That is, each ring as
a sound source is modulated with a series of eimφ functions
with m = −M/2::ðM/2 − 1Þ, and each term of the series is
treated as a unique degree of freedom. So the volumetric
velocity is expressed in the form qk

ðmÞ = ak
ðmÞeimφ, where

ak
ðmÞ is the amplitude of the mth harmonic of the kth ring

source.
Matrix ½Z� is substituted in (1) so that it is multiplied by

unknown variables, which are the values of the θi potential
in the ith nodes of the FEM. Before we derive the matrix ½

Z� in that form, a supplementary problem is going to be con-
sidered. Let us derive expression for δW as if ak

ðmÞ were the
unknown variables in the problem. Later, we will derive a
transform from the values θi in FEM nodes to the ampli-
tudes of sources ak

ðmÞ. Consider the fundamental solution
of the Helmholtz equation in the form

Θ = 1
4π〠

k,m
a mð Þ
k eimφrk′

ð2π
0

e−imφ′ei ω/cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2+rk′

2−2rrk′ cos φ′+ z−zk′ð Þ2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 + rk′
2 − 2rrk′ cos φ′ + z − zk′

� �2r dφ′,

ð3Þ

where zk′ is the longitudinal coordinate of the ring source
location. Denote a distance Rk as

Rk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + rk′

2 − 2rrk′ cos φ′ + z − zk′
� �2r

: ð4Þ

Expression (2) can be reduced to the matrix form

δW = ρω2 δa lð Þ
p

n oT
G½ � a mð Þ

k

n o
, ð5Þ

where the elements of the matrix ½G� are determined by the
expression

G m,lð Þ
k,p = 1

16π2

ð
S
rk′rp′ei m+lð Þφ

ð2π
0

e−imφ′ei ω/cð ÞRk

Rk
dφ′

⋅
∂
∂n

ð2π
0

e−ilφ′ei ω/cð ÞRp

Rp
dφ′dS:

ð6Þ

Recall that the submerged structure that is supposed to
be studied can have an arbiter shape, and it is going to be
expanded by water elements to make an axisymmetric outer
boundary S that we derive the BC for. Due to these facts, the
integration with respect to S in Equation (2) can be reduced
to integration with respect to the generatrix L of the axisym-
metric FEM boundary. Then, the elements of the matrix ½G�
with allowance for the azimuthal angle orthogonality can be
determined as follows:

S

z

r
r′

zk

k

Figure 1: The geometry of the fluid boundary and equivalent
sources.
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G m,lð Þ
k,p = G mð Þ

k,p ,
0, m ≠ −l,

(
ð7Þ

where Gk,p
ðmÞ is equal to

G mð Þ
k,p = 1

8π

ð
L
r ⋅ rk′ ⋅ rp′ ⋅

ð2π
0

ei ω/cð ÞRk−mφ′ð Þ
Rk

dφ′

⋅
ð2π
0

i
ω

c
−

1
Rp

 !
ei ω/cð ÞRp+mφ′ð Þ

Rp

∂Rp

∂n
dφ′dL:

ð8Þ

Note that both integrals contain symmetric functions of
φ at e−imφ′. So, one may compute only m ≥ 0 cases.

In theory, according to Green’s second formula, thematrix
GðmÞ

k,p itself should be complex symmetric (not Hermitian) in
terms of swap k and p indices. It is essential to obtain this
property in the result of the numerical calculation routine, car-
ried out according to (8). For this purpose, the Gauss-Lobatto
quadrature is applied and the integration is performed with an
adaptive mesh step. Integral (8) is replaced with a finite sum
over line elements that coincide with the edges of the FEM ele-
ments in the first iteration. Then, each line element is reduced
to a small size until the difference in the values of the integral
over the surface element before and after the next reduction
exceeds the specified permissible error.

Expression (5) relates the flux increment of acoustic
energy transmitted through the surface S from equivalent
acoustic sources. To use this expression in FEM calculations,
it is necessary to pass from the generalized degrees of free-
dom a (the amplitudes of ring sources) to the degrees of
freedom θ (the potential values at the nodes of the FE mesh
at the boundary S). In this case, it is expedient to perform
this transformation not directly, but in two stages, in the first
of which the generalized degrees of freedom can be
expressed in terms of the values of the Fourier image of
the potential θ at the generatrix points of the surface S.
Namely, if we apply the Fourier transform in the azimuthal
coordinate φ to expression (3) for fixed coordinates of the
generatrix points rp and zp, we can obtain in matrix form

θ
mð Þ
p

n o
= T mð Þ
h i

a mð Þ
k

n o
, ð9Þ

where the elements of the matrix ½TðmÞ� are equal to

T mð Þ
p,k = rk′

2

ð2π
0

e−imφ′e
i ω/cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p+r ′

2
k−2rprk′ cos φ′+ zp−zk′ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p + r′2k − 2rprk′ cos φ′ + zp − zk′

� �2r dφ′:

ð10Þ

The key point is the possibility for us to compute the

inverse matrix ½TðmÞ�−1. The authors did not perform a strict

mathematical proof of the convergence of this method in the
problem being solved. Instead, wide experience in the prac-
tical use of the equivalent source method was taken into
account, and the accuracy in model problems with a known
solution was explored. Experience has shown that there are
the following requirements for using the equivalent source
technique in this geometry of the problem: the displacement
of ring sources deep from the surface S should be from a
quarter to a half of the step of the FE mesh on the surface
S.

Thus, in view of (9), the above functional reduces to the
following form:

δW = ρω2〠
m

fδθ mð Þ
� �T

T mð Þ
h i−T

G mð Þ
h i

T mð Þ
h i−1 eθ mð Þ

� �
:

ð11Þ

Passing from the Fourier transform to the original, the
potential values in their final form can, instead of (11), be
written as

δW = ρω2 δθf gT〠
m

N mð Þ
h iT

T mð Þ
h i−T

G mð Þ
h i

T mð Þ
h i−1

N mð Þ
h i

θf g,

ð12Þ

where the elements of the matrix of coupling between the
mth harmonic of the Fourier image and the original ½NðmÞ�
are determined by the relationship

N mð Þ
j,p =〠

s

ðφ+s
φ−s

Ψj,p,se
−imφdφ, ð13Þ

where j is the degree of freedom corresponding to the ring
cross section p of the surface S; φs

+ and φs
- are the angular

coordinates s of the integration sector, which are determined
by the FEM mesh; and Ψ is the shape function representing
the interpolation of the pressure field between neighboring
nodes of the ring cross section p in the angle sector s. In this
case, according to whether the ring cross section lies in the
plane of the FE angular nodes or passes in the plane of only
the middle nodes (as in Figure 2), the shape functions com-
bine the potential of either three or eight nodes, respectively.
Namely, in the first case (for the ring cross section passing
through nodes 1, 4, and 8 in Figure 2),

Ψ1 = −
η

2 1 − ηð Þ,

Ψ4 =
η

2 1 + ηð Þ,

Ψ8,s = 1 − η2,
Ψ2 =Ψ3 =Ψ5 =Ψ6 =Ψ7 = 0,

ð14Þ
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and for the second case (for the ring cross section passing
through nodes 5 and 7 in Figure 2),

Ψ1 =Ψ2 =Ψ3 =Ψ4 = −
1
4 1 − η2
� �

,

Ψ6 =Ψ8 =
1
2 1 − η2
� �

,

Ψ5 =
1
2 1 − ηð Þ,

Ψ7 =
1
2 1 + ηð Þ,

ð15Þ

where η is a parametric coordinate that within the limits of
each sector of angles from φs

− доφs
+ varies from η = −1 for

φs
− to η = 1 for φs

+.
If we replace the variables in Equation (13),

φ = Δφ

2 η + φ0
s , ð16Þ

where

φ0
s =

φ+
s + φ−

s

2 , Δφ = φ+
s − φ−

s , ð17Þ

then Equation (13) will be reduced to the form

N mð Þ
j,p = Δφ

2 〠
s

e−imφ0
s

ð1
−1
Ψj,p,se

−imΔφη/2dη: ð18Þ

The final analysis matrix of the environment ½Z� can be
obtained by differentiating expression (12) by the vector of
increments of the degree of freedom {δθ} and will represent
a multiplier before the vector {θ}.

Z½ � = ρω2〠
m

N mð Þ
h iT

T mð Þ
h i−T

G mð Þ
h i

T mð Þ
h i−1

N mð Þ
h i

: ð19Þ

It is crucial that the matrix (19) is determined by a com-
plex frequency dependence in accordance with expressions
(8) and (10), which precludes identifying it as a matrix of
mass loss or stiffness of a mechanical system. Therefore, this

matrix is further called the frequency-dependent impedance
matrix of the acoustic environment or the impedance matrix
for short.

Once again, the impedance matrix by its origin relates
the potential (pressure) on the boundary S with the weighted
normal derivative of the potential (of the pressure) so that
we are able to compute (2), knowing only Θ:

δW = δθf gT Z½ � θf g: ð20Þ

One may note that since we defined ½TðmÞ�−1 that con-
verts the field into the equivalent sources’ amplitudes and
we are able to compute the gradient of the field, produced
by the equivalent sources, it is possible to derive ½Z� in a sim-
pler way [25]. However, the procedure, described in this
paper, is more preferable due to the fact that the matrix ½Z�
numericaly computed only in this way turns out to be very
close to the symmetric matrix. It was declared above that
the symmetry of ½Z� is a property of physical processes that
lie behind the mathematics, but an inefficient algorithm
may contain such series of floating point operations that
turns the result unsymmetrical.

The next remarkable property of matrix ½Z� is its
Toeplitz-like structure that can be explained in the following
way. Consider that the whole model is rotated by Δφ around
the cylinder axis. Boundary nodes are going to take places of
other nodes; i.e., in the case of proper numbering, a node j
goes to the position of a node j+Ngroup, if it is not a too large
number, and otherwise, the node number is shifted in a cir-
cular way. That is true except for two nodes, which are
located right on the rotational axis. An element of ½Z�,
denoted as Zjk, defines a reaction of external homogeneous
medium that appears in the jth node, when a load is applied
in the kth node. The reaction must be the same in cases like
Zjk = Zj+Ngroup,k+Ngroup. This leads to the following structure
of the whole matrix:

Z½ � =

D½ � A½ � A½ � A½ � ⋯ A½ �
A½ �T B1½ � B2½ � B3½ � ⋯ B2½ �T

A½ �T B2½ �T B1½ � B2½ � ⋯ B3½ �T

A½ �T B3½ �T B2½ � B1½ � B4½ �T

⋯ ⋯ ⋯

2666666664

3777777775
, ð21Þ

where ½B1�, ½B2�, … are the matrix blocks of Ngroup ×Ngroup

size; ½A� is a matrix block of 2 ×Ngroup size (the number of
rows goes first); and ½D� is 2 × 2 size.

Authors’ software implementation of the described
method functions so that it saves the computed matrices
on a hard drive, before it is used in the FEM subprogram.
This turns out to be a practical approach when the FEM
model is adjusted, but its border remains the same. The
above-noted Toeplitz-like structure of ½Z� allows to store
only the set of unique blocks: ½A�, ½B1�, ½B2�,…, and ½D�. This
speeds up input-output operations and saves the disk space.
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Figure 2: Layout of the boundary condition formation model.
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3. Results and Discussion

3.1. Numerical Validation. As a verification of the above
method for calculating the impedance matrix ½Z�, we assume
that there is a certain test acoustic source inside S. In
Figure 3, we show the result of the test calculation of the pro-
jection of the pressure gradient of the test source field on the
outer normal to the cylindrical surface ð∂P/∂n). Markers
(dots and crosses) are obtained by the given numerical algo-
rithm. That is, first, we compute the pressure filed, produced
by the test source at the positions of nodes laying on the sur-
face S. And second, we treat the set of these pressure values
as a vector and multiply them by the matrix ½Z�. Lines are
obtained using a reference analytical equation; i.e., we do
the straightforward computation of the normal projection
of the pressure gradient in those points. The markers and
lines coincide that prove the high precision of the discrete
computation routine.

Two lines on each plot show the real and imaginary
parts. The algorithm has been tested using the following
model: mesh step 0.01m, cylinder diameter 1.6m, and
length 14m; the test source was a monopole at the cylinder
axis (Figures 3(a) and 3(b)) and a quadrupole source
(Figures 3(c) and 3(d)). The frequency was 500Hz
(Figures 3(a) and 3(c)) and 1500Hz (Figures 3(b) and 3(d)).

The development of this type of boundary conditions is a
part of the general line for the development of the super-

element technique for harmonic problems of noise emission
[25], which is a kind of a domain decomposition technique.
Within the framework of such a statement, it is possible to
represent the computational domain containing the emitting
body as a set of conjugate finite element models, so-called
super-elements, and the environment outside the computa-
tional domain as a separate “boundary” super-element, whose
matrix ½Z� is calculated according to the above algorithm.

The validity of this approach can be demonstrated by the
example of a simple system consisting of a super-element of
a cylindrical volume of the medium, which is simulated by
finite elements (Figure 4(a)) and a “boundary” super-
element. The cylinder sizes correspond to the above bound-
ary and are as follows: the diameter is 1.6m and the length is
14m. Figures 4(b) and 4(c) show the results of calculating
the field of a point source placed in a cylindrical volume.

3.2. Postprocessing. Additional calculations are used to deter-
mine the field characteristics at any other points of the envi-
ronment. To find the complex amplitude of the potential
field and the respective sound pressure at an arbitrary point
r′ outside S, the Helmholtz-Kirchhoff integral is employed
in the calculations:

θ r′
� �

=
ð
S
θ rð Þ ∂g∂n r′, r

� �
+ ∂θ rð Þ

∂n
g r′, r
� �	 


dS, ð22Þ
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Figure 3: The result of testing the impedance matrix in the model problem. The diagrams show the projection of the pressure gradient of
the test source field on the outer normal to the cylindrical surface: real and imaginary parts (see the text for explanations).
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where

g r′, r
� �

= 1
4π

e−i ω/cð Þ r ′−rj j
r′ − r
�� �� , ð23Þ

is Green’s function of free space. The quantity θðrÞ is the
result of calculating the near field in terms of FEM, while
its normal derivative is computed using ½Z� again. After the
comparison of (2) and (20), one can follow the same rule
and write outð

S

∂θ rð Þ
∂n

g r′, r
� �

≈ Z½ � g r′, r j
� �n o

: ð24Þ

An infinitely distant point should be considered as r′ to
find the radiation pattern. Its radius vector can conveniently
be expressed via a unit directing vector e′ and the module

r′ :r′ = r′e′. Under the conditions ωr′ > >c and r′ > >r,
Green’s function can be replaced by an approximate expres-
sion:

g r′, r
� �

= 1
4π

e−i ω/cð Þre′

r′
: ð25Þ

Figure 5 shows an example of calculation of the radiation
pattern. The model again consists of a cylindrical volume of
water enclosed within a boundary that simulates the pres-
ence of the same acoustic medium in the outer region
(Figure 5(a)). Test sources, namely, a dipole or a quadrupole,
are placed inside this volume. First of all, the pressure field
inside the cylindrical volume was calculated (Figures 5(b)
and 5(c)). Then, the radiation pattern in the far-field region
was calculated (Figures 5(d) and 5(e)). The calculation result
complies with the theoretical model of the chosen source.
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Figure 4: The result of calculations based on a model consisting of the SE of the cylindrical volume of the medium, the modeled FE (a), and
the boundary super-element. The point source is located in the medium. The pressure modulus in dB at the points on the cylinder axis (b)
and the instantaneous pressure value in the YZ plane (c) are shown. The frequency is 500Hz and the mesh step is 0.1m; cylindrical volume
dimensions: diameter 1.6m and length 14m.
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3.3. Estimation of Computation Time. Finally, we provide the
results of computation time measurement according to the
mesh size. For testing, we use models consisting of a cylinder,
made of a “finite element water” and a “boundary” super-ele-
ment, which in fact is a set of BC coefficients, governed by the
impedance matrix ½Z� computed by the described method.
Recall that the boundary mesh contains approximately KM
nodes, i.e., K nodes in line and M nodes along the circle, and
“approximately” has been written due to second-order ele-
ments. Corresponding finite element models were meshed in
a similar way. First, we measured tZ , which is a time to com-
pute ½Z� (see Table 1). A set of the model has been chosen to
do that, and the one used for another test above and depicted
on Figure 4(a) is no. 4 in the present list.

Tests have shown that the most time-consuming opera-

tion is computation of GðmÞ
k,p coefficients according to expres-

sion (8). And the most complicated part of it is integration

in the vicinity of the sources, i.e., when Rk or Rp are small
enough. Integration step is automatically refined in those
places. So the complexity of computation of the total integral
in (8) is OðKM + constÞ, and it appeared that in the tested

models, KM≪ const. The number of GðmÞ
k,p coefficients is
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Figure 5: Example of a test calculation. The frequency is 1000Hz, the cylinder length is 8m, and the diameter is 1.6m. (a) The calculation
model geometry: the green points are the nodes of the outer boundary S, and the red and blue points are the nodes where the sources can be
specified; (b) view of the pressure field of a dipole source in the cross section, in the near field: the real part is constructed, and the white
rectangle covers the source area; (c) view of the pressure field of a quadrupole source in the cross section, in the near field; (d) radiation
pattern of a dipole source, ∣P ∣ ; and (e) radiation pattern of a quadrupole source, ∣P ∣ .

Table 1: Estimation of computation time for impedance matrix ½Z�
, which defines BC coefficients in the model.

Model
no.

Nodes along,
K

Nodes around,
M

Computation time, tZ
(s)

1 34 16 3

2 70 36 14

3 80 48 23

4 140 72 94

5 200 120 370
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K2M, so the total complexity is OðK2MÞ. The time values,
given by Table 1, approximately match this function.

However, in the case of larger models, one may expect

that the computation of GðmÞ
k,p will take OðK3M2Þ. The other

computation-intensive operations, while computing ½Z�, are
the matrix inversion for each ½TðmÞ�−1 and matrix multiplica-

tions ½TðmÞ�−T ½GðmÞ�½TðmÞ�−1 (see equation (19)). So we have
to invert a dense K × K matrixM and multiply several dense
matrices of that size same amount of times. Each inversion
and each multiplication have a complexity of OðK3Þ, so total
complexity of (19) is estimated as OðK3MÞ.

Usually, a surface mesh is scaled with the decrease of an
acoustic wavelength as KM ~ λ−2. So theoretical computa-
tion complexity of the proposed algorithm for matrix ½Z�
might be between Oðλ−3Þ and Oðλ−5Þ. Hopefully, while deal-
ing with models, that could be studied on an “advanced table
computer”; without large computational servers, computa-
tion complexity Oðλ−3Þ is found.

Next, we studied the solution of the whole problem that
could be done in twoways. Both of them start with the following:

(i) Compute submatrices for each finite element for
time tl

(ii) Compute ½Z� for time tZ (see Table 1)

Then, the first way continues with the following:

(i) Assemble a total matrix, consisting of a sparse part
originated by the finite element model and a dense
part, originated by BC, namely, matrix ½Z� (negligible
time for assembly)

(ii) Factorize that sparse matrix with a sufficiently large
dense part and solve the system, the sparse solver is
used, and time is ti

The second way is as follows:

(i) Compute a Schur complement for the sparse finite
element matrix to obtain a dense matrix of a smaller
size, each column and row of this dense matrix cor-
responds to the nodes on the external boundary, the
sparse solver is used, and time is ts

(ii) Assemble a dense total matrix, consisting of the
Schur complement from finite elements and ½Z�
(negligible time for assembly)

(iii) Factorize that dense matrix and solve the system,
with time tg

The time for listed operations is given in Table 2. The
model numbers correspond to parameters, given in
Table 1. The Schur complement as an intermediate step
helps to reduce the duration of the last step; however, the
total computational time is approximately the same for both
ways, including or excluding the Schur step.

All tests were carried out with the use of the authors’
software on a computer with a 4-core 3.4GHz CPU (might
be automatically boosted up to 3.9GHz) and 32GB of
RAM. All the computation times are valid for an analysis
at a single frequency. For analysis in a frequency band, the
values of time should be multiplied by the number of
frequencies.

4. Concluding Remarks

We have presented a method to define the boundary condi-
tions of sound radiation in the problems of numerical
modeling of mechanoacoustic systems. The method does
not require significant computational resources and simu-
lates the acoustic processes with high accuracy for inhomo-
geneous elastic elongated bodies in a wide frequency range.
The method of super-element formulation is successfully
used in the acoustic design of marine facilities.

Data Availability

The data used to support the findings of this study is the
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problem with that, the numerical model is available from the
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4 5 44 143 9.6 35 144
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