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The transient creeping motion of two rigid spheres oscillating in a boundless viscous fluid beneath the impact of the magnetic field
is investigated. There is no slippage associated with a Stokes flow on the two rigid spherical surfaces with different sizes and radii.
The solutions can be obtained using the boundary collocation scheme at low Reynolds numbers. The unsteady real and imaginary
drag coefficients are estimated on the hard spherical particles. These coefficients are computed in tables for various parameters and
illustrated graphically. The frequency parameter and Hartmann number also play a significant role in this study where the drag
coefficients decrease or increase by 100 percent after the value of κ = 5:0. Using available literature data, we tested the accuracy and
reliability of our results.

1. Introduction

There has been a lot of research into how the dynamics of
fluid techniques interact with oscillating particles. As a result
of these studies, wave packs experienced by offshore forms
can be estimated and ocean vehicle motion can be predicted
from a functional view. The relations between two rigid
spheres oscillating in a viscid flow along their linking axis
of symmetry are introduced in [1]. By using direct numerical
simulations [2], the periodic couplings of two hard spheres
that move uniformly side by side in a fluid stream are stud-
ied. On the other hand, an investigation of hard spheres
swimming into an oscillating fluid flow is investigated in
[3]. Therefore, [4] introduces interactions around oscillating
particles in a steady streaming flow. Further, the study of the
impact of adjoining boundaries upon rotationally oscillating
spheres in viscous fluids is presented experimentally and
theoretically in [5]. In a pendulous flow, two solid spheres
immersed in a viscid fluid move perpendicularly to the

direction of the flow, and a little separation distance between
them is presented by [6]. Therefore, Faltas and El-Sapa [7]
proposed a solution to the problem of a couple of spherical
objects swimming in a viscid liquid at a low Reynolds num-
ber by employing the collocation technique.

In cancer therapy, magnetohydrodynamics (MHD) plays
a significant role in magnetic drug targeting. There is a
model demonstrating a setup for examining the effects of
an external magnetic field containing a magnetic carrier sub-
stance that interacts with blood flow. In medication, MHD
liquid streams and fluctuations in different mathematical
shapes applicable to human body parts are fascinating and
essential exploration regions. Plumpton and Ferraro [8]
researched the influence of the homogenous magnetic field
upon the torsional fluctuations of a perpetual sphere. Also,
Stewartson [9] introduced symmetrically oscillating objects
at the infinite conductivity limit. In 1965, [10] investigated
the impacts of incompressible magnetic fields, Coriolis pow-
ers, and their communication on physical drag. In 2015,
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Barakat [11] presented an issue of the MHD soundness of an
oscillating liquid within sight of a longitudinal magnetic
field. This work settled utilizing a PC calculation that
decided the steady and unsteady zones under the changed
values of the acting magnetic field. Besides, Wentzell [12]
correspondingly contemplated the torsional motions of a
profoundly directing low viscosity of a drop enclosed in a
uniform magnetic field. Under the impact of the magnetic
field, there are many applications of MHD such as the soli-
tary waves propagation, and stability conditions of the cold
plasma are analyzed using the reductive perturbation
method by Adel et al. [13, 14] and also in nuclear reactors
and nanofluids in [15, 16].

Furthermore, the numerical explanations of the equa-
tions coupled between magnetic and velocity fields for a
completely created MHD move via an unplugged direct
channel of the rectangular area. Hence, Cai et al. [17]
assumed the combination strategy collocation with a plan
of a storm under the impact of a magnetic field. A careful
examination of MHD applications and mathematical dem-
onstrations in organic frameworks was directed by Rashidi
et al. [18]. Also, Dhivya et al. [19] used a Wrench Nicholson
plot and limited contrast plans for solving an issue of a char-
acteristic convective progression of an isochoric and syn-
thetically responsive viscid liquid about an oscillating
vertical chamber encased in a permeable structure. A com-
putational strategy for a thick incompressible magnetohy-
drodynamic stream in a pivoting channel under magnetic
field impacts was also determined by Li et al. [20]. The semi-
analytical method for the study of the translational move-
ment of two rigid spheres is considered by El-Sapa [21]
and El-Sapa and Faltas [22] to compute the mobility coeffi-
cients and set the circumstances on the spheres’ surfaces
mathematically utilizing the limit collocation technique. A
semianalytical model for analyzing rectilinear fluctuations
of a solid particle engaged in an incompressible micropolar
fluid specified by a rigid plane wall has been developed by
Yadav et al. [23]. In a plane wall, the particle oscillates recti-
linearly. Moreover, recently, El-Sapa and Alhejaili [24]
explored the influence of slippage length on the movement
of two inflexible spheres oscillating via a Stokes flow about

their axis of symmetry through the line linking their poles
and the global solutions constructed upon the superposition
of the actual solutions in the two spherical coordinate tech-
niques by a collocation procedure.

This work focuses on oscillating two rigid spheres mov-
ing inside a viscid liquid along the line joining their centers
at different velocities affected by a magnetic field. Semianaly-
tical solutions for the velocity fields are introduced. In addi-
tion, the hydrodynamic drag force coefficients of the real
and the imaginary parts for different frequencies, detach-
ment space, size ratio, Hartmann number, and speed pro-
portions are obtained and discussed. In general, the forces
decrease or increase gradually at the value of κ = 5:0. For
instance, the steady state with pure oscillations and no-slip
express is confirmed as convergent and accurate.

2. Magneto-Stokes Field Equations

Low Reynolds number assumptions are covered by the
general equations of the incompressible magnetoviscid
liquid [17, 22]:

∇:q! = 0, ð1Þ

∂q!

∂t
= −

1
ρ
∇p + ν∇2 q! + 1

ρ
F
!E

, ð2Þ

considering the velocity q!, density ρ, fluid pressure p,
kinematic viscosity of the fluid νð= μ/ρÞ, and dynamic

viscosity μ. Therefore, F
!E

is the outward magnetoforce
given as

F
!E

= −c−1B
!
∧ J
!
= −c−2σB

!
∧ q!∧B

!� �
: ð3Þ

Consequently, c is the light speed, B
!

is the vector of

the induced magnet, J
!

is the influx of density, μ0 is the

penetrability magnet, and H
!

is the field vector of the
magnet. Hence, by utilizing Lorentz’s power created by
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Figure 1: Magnetic field-induced rectilinear fluctuations of two hard spheres in viscid liquid.
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Figure 2: Time-dependent distribution of real friction force on a sphere a1 versus the frequency for different Hartmann numbers with h
/a1 + a2 = 1:5, a2/a1 = 1:0, and U2/U1 = 1:0.
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Figure 3: Time-dependent distribution of imaginary friction force on a sphere a1 versus the frequency for different Hartmann numbers with
h/a1 + a2 = 1:5, a2/a1 = 1:0, and U2/U1 = 1:0.
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[23] where the vector of magnetization is disregarded
except if the magnetic field is the areas of extreme
strength, speed of the liquid is not normal to the vector
of magnetic induction that maintains the stream axisym-
metric and creeping movements, so

q!∧B
!� �

∧B
!D E

= −
1
2B

2
0 q
!, ð4Þ

where B0 is a constant. Besides, we have equation (3)
that pursues

F
!E

= −σB2
0

c2
q! = −B2

0
ημ0

q! = −μa−2R2
H q!, ð5Þ

where η = c2/σμ0 is the parameter of diffusivity, σ is the
electroconductivity, and RH is the number of Hartmann.

3. The Mathematical Formulation

Further, it is assumed that the unbending molecule of radius
a oscillates axisymmetrically under the circumstances q!/U
= cos ωt e!z as r⟶∞ on the limit and impedes in an infi-
nite viscid liquid under the normal magnetic field. Thus, e!z

is the vector units parallel to the axis z, U is typically the
speed, and ω is the hesitancy oscillations. Moreover, we sup-
pose ð e!r , e

!
θ, e

!
ϕÞ is the corresponding vector units and ðr,

θ, ϕÞ is a spherical polar coordinates.

3.1. The Applied Periodical Functions. The following are
functions in terms of the time dependency of stream
function ψ:

Ψ r, θ ; tð Þ
P r, θ ; tð Þ
q! r, θ ; tð Þ

8>><
>>:

9>>=
>>; = Re

ψ r, θð Þe−iωt

p r, θð Þe−iωt

q! r, θð Þe−iωt

8>><
>>:

9>>=
>>;: ð6Þ

The two-dimensional velocity vector is

q! r, θð Þ = qr r, θð Þ, qθ r, θð Þh i: ð7Þ

3.2. The Dimensionless Quantities. By using U for the
scale of velocity, the particle, and a for the length in
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Figure 4: Time-dependent distribution of real friction force on a sphere a1 versus the frequency for different separation parameters with
a2/a1 = 4:0, U2/U1 = 1:0, and RH = 10:0.
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[22], then we have

ψ′ = ψ

Ua2
,

q!′ = q!

U
,

t ′ = ωt,
∇2′ = a2∇2,

p′ = ap
μU

,

r′ = r
a
:

ð8Þ

By using equation (8) into equation (2) and using
equation (5), we have

ωa2

μ

� �
∂q!

∂t
= −∇p + ∇2 q! − R2

H q!: ð9Þ

In addition, we have

RmSt
∂
∂t

+ R2
H

� �
q! = −∇p + ∇2 q!, ð10Þ

where Rm = aU/μ and St = lω/U are the Reynolds and the
Strouhal numbers, respectively, ðSt > >1, Rm < <1Þ. From
equation (9), the field equations with stream function
terms are

∂p
∂r

= −
1

r2 sin θ

∂
∂θ

R2
H − iωRmSt

Â Ã
ψ −

1
r2 sin θ

∂
∂θ

E2ψ
À Á

,

ð11Þ

1
r
∂p
∂θ

= −
1

r sin θ

∂
∂r

R2
H − iωRmSt

Â Ã
ψ + 1

r sin θ

∂
∂r

E2ψ
À Á

:

ð12Þ
Eliminating the pressure from equations (11) and

(12), a fourth-order partial differential equation was
obtained by using the stream function:

E2 E2 − α2
À Á

ψ = 0, ð13Þ
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Figure 5: Time-dependent distribution of imaginary friction force on a sphere a1 versus the frequency for different separation parameters
with a2/a1 = 4:0, U2/U1 = 1:0, and RH = 10:0.
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where α =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
H − iκ2

p
, κ =

ffiffiffiffiffiffiffiffiffiffiffiffi
aω/ν2

p
is the frequency

parameter, E2 = ð∂2/∂r2Þ + ð1 − ξ2/r2Þð∂2/∂ξ2Þ is the Stoke-
sian operator, and ξ = cos θ. The consistent solution of
(13) is as follows:

ψ r, θð Þ = 〠
∞

n=2
Anr

−n+1 + Bnr
1/2Kn− 1/2ð Þ αrð Þ

� �
In ξð Þ, ð14Þ

where the Gegenbauer function is Inð:Þ of the first kind
of order n and degree −1/2. The modified Bessel func-
tion is Knð:Þ of the second kind of order n. Thus, the
components of velocity are calculated by

qr r, θð Þ = −〠
∞

n=2
Anr

−n−1 + Bnr
−3/2Kn− 1/2ð Þ αrð Þ

h i
Pn−1 ξð Þ,

ð15Þ

qθ r, θð Þ = 〠
∞

n=2
1 − nð ÞAnr

−n−1 + Bnr
−1/2 nKn− 1/2ð Þ αrð Þ

�h

− αrKn+ 1/2ð Þ αrð Þ
�i In ξð Þffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ2
p ,

ð16Þ
where Pnð:Þ is the polynomial of the Legendre of degree
n. In the oscillating volume particle V , a nondimensional

drag force operates by [15] and modified by [22]:

Fz

α2
= V + 4π lim

r⟶∞

rψ

sin2θ
� �

e−it : ð17Þ

Additionally, equation (18) gives

Fz

2πμα2 = 2
3 a

3U + A2

� �
e−it : ð18Þ

A drag force into equation (18) can be normalized by act-
ing upon a solid sphere a1 swimming within an infinite vis-
cous fluid region in the absence of another hard sphere
without slippage, which is introduced by [15]:

F∞ = −6πμaU : ð19Þ

4. The Problem Solution

The two rigid spheres of radii are aj, j = 1, 1, and suppose
that a2ða2 > a1Þ. The influence by a magnetic field, axially
oscillated inside an endless fluid flow of Stokes, suggests that
the two hard spheres vibrate with respective amplitudes U1
and U2 going with the associating line of their centers which
are isolated by a constant distance h. Then, the fluid flow
stops at limitlessness. The system of spherical frameworks
is utilized and formed over the focus of the two unbending
spheres. In the meantime, the discoveries of this work are
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Figure 6: Time-dependent distribution of real friction force on a sphere a1 versus the frequency for different separation parameters with
a2/a1 = 2:0, h/a1 + a2 = 1:5, and RH = 10:0.
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characterized in Figure 1. This connection between the two
coordinates ðr1, θ1Þ and ðr2, θ2Þ is given by r22 = r21 + h2 + 2h
r1 cos θ1, θ1) or r21 = r22 + h2 − 2hr2 cos θ2, θ1). Suppose the
fluid velocities of the two solid spheres are

q!
jð Þ
r j, θj
À Á

= q jð Þ
r r j, θ j
À Á

, q jð Þ
θ r j, θj
À ÁD E

: ð20Þ

4.1. Boundary Conditions. As a result of the components of
the spheres’ velocities approaching zero at an extended dis-
tance, the surfaces of solid spheres aj, j = 1, 1 exhibit the fol-
lowing conditions:

(1) Impenetrability conditions:

qrjr j=aj =Uj cos θj, j = 1, 2: ð21Þ

(2) Dynamical conditions:

qθjr j=aj = −U j sin θj, j = 1, 2: ð22Þ

By applying the superposition principle, we have

qr r1, θ1 ; r2, θ2ð Þ = q 1ð Þ
r r1, θ1ð Þ + q 2ð Þ

r r2, θ2ð Þ, ð23Þ

qθ r1, θ1 ; r2, θ2ð Þ = q 1ð Þ
θ r1, θ1ð Þ + q 2ð Þ

θ r2, θ2ð Þ: ð24Þ

The function of the stream and the components of veloc-
ity are written in the following forms:

ψ r, θð Þ = 〠
∞

n=2
A 1ð Þ
1n r

−n+1
j + B 1ð Þ

1n r
1/2
1 Kn− 1/2ð Þ αr1ð Þ

h i
In ξ1ð Þ

+ 〠
∞

n=2
A 2ð Þ
2n r

−n+1
2 + B jð Þ

2n r
1/2
2 Kn− 1/2ð Þ αr2ð Þ

h i
In ξ2ð Þ,

ð25Þ

qr r, θð Þ = −〠
∞

n=2
A 1ð Þ
1n r

−n−1
1 + B 1ð Þ

1n r
−3/2
1 Kn− 1/2ð Þ αr1ð Þ

� �
Pn−1 ξ1ð Þ

− 〠
∞

n=2
A 2ð Þ
2n r

−n−1
2 + B 2ð Þ

2n r
−3/2
2 Kn− 1/2ð Þ αr2ð Þ

� �
Pn−1 ξ2ð Þ,

ð26Þ
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Figure 7: Time-dependent distribution of imaginary friction force on a sphere a1 versus the frequency for different separation parameter
with a2/a1 = 2:0, h/a1 + a2 = 1:5, and RH = 10:0.
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qθ r, θð Þ = 〠
∞

n=2
1 − nð ÞA 1ð Þ

1 nr−n−11 + B 1ð Þ
1n r

−3/2
1 nKn− 1/2ð Þ αr1ð Þ

�h

− αr1Kn+ 1/2ð Þ αr1ð Þ
�i In ξ1ð Þffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ21

q
+ 〠

∞

n=2
1 − nð ÞA 2ð Þ

2 nr−n−11 + B 2ð Þ
2n r

−3/2
2

h

Á nKn− 1/2ð Þ αr2ð Þ − αr2Kn+ 1/2ð Þ αr2ð Þ
� �i In ξ2ð Þffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ22

q :

ð27Þ
Applying the boundary conditions from equations (21)

and (22) into (24) and (25), we obtained the following four
equations:

〠
∞

n=2
A1na

−n−1
1 + B1na

−3/2
1 Kn− 1/2ð Þ αa1ð Þ

h i
Pn−1 ξ1ð Þ

+ 〠
∞

n=2
A2nr

−n−1
2 + B2nr

−3/2
2 Kn− 1/2ð Þ αr2ð Þ

h i
r1=a1

Pn−1 ξ2ð Þ = −U1ξ1:

〠
∞

n=2
A1nr

−n−1
1 + B1nr

−3/2
1 Kn−1/2 αr1ð ÞÂ Ã

r2=a2
Pn−1 ξ1ð Þ

+ 〠
∞

n=2
A2na

−n−1
2 + B2na

−3/2
2 Kn− 1/2ð Þ αr2ð Þ

h i
Pn−1 ξ2ð Þ = −U2ξ2:

In ξ1ð Þffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21

q 〠
∞

n=2
− n − 1ð ÞA1na

−n−1
1 + B1na

−3/2
1 nKn− 1/2ð Þ αa1ð Þ

�h

− αa1Kn+ 1/2ð Þ αa1ð Þ� + In ξ2ð Þffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ22

q 〠
∞

n=2
− n − 1ð ÞA2nr

−n−1
2

Â

+ B2nr
−3/2
2 nKn− 1/2ð Þ αr2ð Þ − αr2Kn+ 1/2ð Þ αr2ð Þ

� i
r1=a1

= −U1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21

q
:

In ξ1ð Þffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21

q 〠
∞

n=2
− n − 1ð ÞA1nr

−n−1
1 + B1nr

−3/2
1 nKn− 1/2ð Þ αr1ð Þ

�h

− αr1Kn+ 1/2ð Þ αr1ð Þ�
r2=a2

+ In ξ2ð Þffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ22

q 〠
∞

n=2
− n − 1ð ÞA2na

−n−1
2

Â

+ B2na
−3/2
2 nKn− 1/2ð Þ αa2ð Þ − αa2Kn+ 1/2ð Þ αa2ð Þ

� i
= −U2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ22

q
:

ð28Þ

The procedure of the Gauss elimination is assumed to
solve the above equations to get the constants AðjÞ

n and BðjÞ
n , j

= 1, 2. Then, by equations (18) and (19), we can obtain the fol-
lowing expression of the hydrodynamic nondimensional drag
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Figure 8: Time-dependent distribution of real friction force on a sphere a1 versus the frequency for different separation parameters with
h/a1 + a2 = 1:5, U2/U1 = 1:0, and RH = 10:0.
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force coefficients on the particle a1:

F jð Þ
z = 2

3πμα
2 2a3j U j + 3A jð Þ

2n
� �

e−it = K j + iK j′
� �

e−it , ð29Þ

where

Re F jð Þ
z

F jð Þ
∞

( )
= Kj cos t + K j′ sin t,

Im F jð Þ
z

F jð Þ
∞

( )
= −Kj sin t + K j′ cos t,

ð30Þ

where Kj and K j′ are defined physically as in-phase and out-of
phase forces of the oscillations, respectively.

5. Results and Discussions

In this paper, we describe the influence of the normal mag-
netic field upon two hard spheres that oscillate along their
connecting lines and associate their centers. We show that
the unsteady normalized drag force coefficients of the real

part Re fFð1Þ
z /Fð1Þ

∞ g and the imaginary part Im fFð1Þ
z /Fð1Þ

∞ g
act on the solid sphere a1, respectively, shown in
Figures 2–9 and Tables 1–3. Therefore, the two parts of
forces are determined analytically and numerically for differ-

ent relevant parameters as the number of the Hartmann RH ,
the frequency κ, the parameter of separation h/ða2 + a1Þ,
the velocity’s ratio U2/U1, and the size ratio a2/a1. Physi-
cally, this means that the value and direction of the mag-
netic field oscillate with time at any point in the
unbounded region. Furthermore, this means that the com-
bined effect of the magnetic field and the oscillation on the
particles will now experience a changing force, causing
them to move with the wave. In fact, the real drag force
coefficient is enhanced with the increase of the frequency
and the magnetic field in the case of a small period of
time and conversely for a large period of time. On the
other side, the imaginary drag force coefficient disinte-
grates in the increase of the frequency parameters, but
for the magnetic effects, it differs from a high or low level
due to the period of time.

Figure 2 exposes an analysis of Re fFð1Þ
z /Fð1Þ

∞ g versus the
frequency parameter for different values of time t = 0:1, 0:5
, 1:0, and 4:0, and the number of the Hartmann number is
RH = 0:0, 2:0, 6:0, and 10:0 that the two hard spheres oscil-
late with equal velocities and sizes with separation h/a2 +
a1 = 1:5. Also, clearly, the nondimensional forces increment
and diminish from least to greatest values at t = 0:1 and 4:0;
with the growth of RH , the forces reverse their effects, where
at t = 0:1, they increase with the increase of RH and converse
at t = 4:0. Furthermore, this phenomenon has the lowest sig-
nificance when the frequency becomes low and highest
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Figure 9: Time-dependent distribution of imaginary friction force on a sphere a1 versus the frequency for different separation parameters
with h/a1 + a2 = 1:5, U2/U1 = 1:0, and RH = 10:0.
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significance when there is high hesitancy, but for the values
t = 0:5 and 1:0, it rises with the growth of Hartmann num-
bers, and also, it has the most increased significance for
low hesitancy and gradually goes to lowest values for the
increased frequency. As expected, increasing RH decreases
flow amplitude. In this case, the magnetic field acts as a resis-
tance to the flow.

Figure 3 shows an analysis of Im fFð1Þ
z /Fð1Þ

∞ g against the
frequency for different values of time t = 0:1, 0:5, 1:0, and 4:0
, and the Hartmann numbers RH = 0:0, 2:0, 6:0, and 10:0
move with equal velocities and equal size with h/a2 + a1 =
1:5. Hence, the dimensionless frictional force begins to
improve and also diminishes from the greatest significance
for low hesitancy to the lowest significance for the elevated
hesitancy at t = 0:5 and 1:0, and hence, the drag force
reverses the impact at t = 4:0 versus the frequency, while it
reduces with the growth of RH at t = 0:5 and 1:0 and
improves at t = 0:1 and 4:0.

Figure 4 exhibits an analysis of Re fFð1Þ
z /Fð1Þ

∞ g versus
the frequency for different separation distance h/a2 + a1 =
1:05, 1:5, 4:0, ∞ at times t = 0:1, 0:5, 1:0, and 4:0 for a2/a1
= 4:0 action in the identical direction with equal speeds
and RH = 10:0. In addition, the nondimensional force

increases with the expansion of the divergence space
between the spheres from the lowest value at a lower fre-
quency to the greatest value at an increased frequency. In
addition, at t = 0:5, the real coefficient rises with the
expansion of the separation distance and reverses its
impacts at ðX, YÞ = ð13:2,8:7058Þ with the same impact
at t = 1:0 at this point ðX, YÞ = ð8,3:63531Þ, while at t =
4:0, it reduces and then grows with the expansion of the
gap space at ðX, YÞ = ð9:2,−4:8439Þ.

Figure 5 reveals the unsteady imaginary coefficient Im
fFð1Þ

z /Fð1Þ
∞ g versus the frequency for different separation

space h/a2 + a1 = 1:05, 1:5, 4:0, ∞ at times t = 0:1, 0:5, 1:0,
and 4:0 for a2/a1 = 4:0 with an equal size and RH = 10:0.
Moreover, the force coefficient reduces with the separation
distance growth at t = 0:1, 0:5, and 1:0 but reverses its direc-
tion at t = 4:0. While, for the beginning three time values, it
started from high at the low frequency to low at the high fre-
quency and finally reversing its direction.

Figure 6 presents an analysis of the real part Re fFð1Þ
z

/Fð1Þ
∞ g against the frequency for various velocity ratios U2

/U1 = −2:0, −1:0, 1:0, and 2:0 at times t = 0:1, 0:5, 1:0, and
4:0 for a2/a1 = 2:0, h/a2 + a1 = 1:5, and RH = 10:0. There-
fore, the nondimensional force diminishes with the

Table 1: Time-dependent distribution of real drag force for different parameters with t = 0:1:

h/a1 + a2 κ
U2/U1 = 1:0 U2/U1 = −1:0

RH = 0:0 RH = 1:0 RH = 10:0 RH = 0:0 RH = 1:0 RH = 10:0

1.05

0.0 0.737106 1.956094 22.742968 1.604499 2.381086 21.742540

2.0 2.127277 2.468029 22.678823 2.315930 2.617443 21.679880

4.0 3.509225 3.719294 22.511454 3.196566 3.407236 21.514107

6.0 4.633449 4.812597 22.312454 4.119232 4.295981 21.308851

8.0 5.639012 5.802021 22.174961 4.984639 5.145009 21.148056

10.0 6.545034 6.698222 22.160419 5.766347 5.917192 21.089533

1.5

0.0 0.855934 2.063856 21.764544 1.509353 2.139260 22.302687

2.0 2.281406 2.577374 21.703287 2.134518 2.465844 22.238976

4.0 3.397105 3.602867 21.543362 3.292780 3.504675 22.071772

6.0 4.436660 4.609584 21.352989 4.343953 4.522521 21.869513

8.0 5.398842 5.555285 21.221554 5.292153 5.454566 21.721756

10.0 6.275108 6.421771 21.209362 6.147829 6.300527 21.688688

10.0

0.0 0.949419 2.100399 21.996012 1.045610 2.100730 22.005285

2.0 2.216419 2.528693 21.933681 2.216784 2.529166 21.942924

4.0 3.349177 3.557647 21.770565 3.349727 3.558286 21.779716

6.0 4.393228 4.568616 21.574938 4.393896 4.569368 21.583952

8.0 5.348567 5.507622 21.436214 5.349294 5.508429 21.445065

10.0 6.215195 6.364499 21.414633 6.215923 6.365305 21.423302

∞

0.0 0.995011 2.100564 22.000648 0.995011 2.100564 22.000648

2.0 2.216602 2.528929 21.938303 2.216602 2.528929 21.938303

4.0 3.349452 3.557966 21.775141 3.349452 3.557966 21.775141

6.0 4.393562 4.568992 21.579443 4.393562 4.568992 21.579443

8.0 5.348931 5.508025 21.440639 5.348931 5.508025 21.440639

10.0 6.215559 6.364902 21.418966 6.215559 6.364902 21.418966
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improvement of the velocity ratios at t = 0:1 and begins
from a minimum at the lower frequency to a maximum
at the heightened frequency. In addition, the values of t
= 0:5 and 1:0 decrease with the improvement of the ratio
of the speeds and flip its impacts at the point ðX, YÞ = ð
13:6,8:18006Þ while it rises and then reduces from less to
most at the time t = 4:0.

Figure 7 represents the normalized imaginary force Im
fFð1Þ

z /Fð1Þ
∞ g versus the frequency for distinct speeds U2/U1

= −2:0, −1:0, 1:0, and 2:0 and t = 0:1, 0:5, 1:0, and 4:0 with
h/a2 + a1 = 1:5 and RH = 10:0. Due to this, the force
improves as the velocity ratio grows at t = 0:1, 0:5, and 1:0
and initiates from the most at the lower frequency to less
at the heightened frequency. Therefore, at t = 4:0, it reduces
with the expansion of the velocity’s ratio from min to max.

Figure 8 displays an investigation of Re fFð1Þ
z /Fð1Þ

∞ g ver-
sus the frequency for distinct size ratio at times t = 0:1,
0:5, 1:0, and 4:0 for the two rigid spheres move in the
identical path with h/a2 + a1 = 1:5 and RH = 10:0. Also,
the normalized force declines with the improvement of
size ratio at t = 0:1, and for the time values t = 0:5 and
1:0, it reverses its effects at the point of reflection. How-
ever, it goes from a low value at a low frequency that is

improving with respect to the size ratio and then goes to
a high value at a high frequency where it is reducing as
the ratio size improves at the point of inversion, ðX, YÞ
= ð9:2,−4:75159Þ at the time value t = 4:0.

Figure 9 displays an analysis of the frictional force Im f
Fð1Þ
z /Fð1Þ

∞ g versus the frequency for different size ratios a2/
a1 = 1:0, 2:0, 4:0, and 10:0 for the two hard spheres moving
in the same direction with equal size and h/a2 + a1 = 1:5
and RH = 10:0. Moreover, the nondimensional drag force
improves as the size ratio rises at t = 0:1, 0:5, and 1:0, start-
ing from the highest value to the lowest value at the high fre-
quency, but at t = 4:0, the size ratio declined with increasing
frequency, starting from the low frequency and then increas-
ing to the heightened frequency. The two coefficients of drag
forces are calculated numerically in Tables 1 and 2, but
Table 3 represents the limiting case of the steady state and
the comparison between this study and the case of the
absence of a magnetic field in the work of Faltas and El-
Sapa [7]. Finally, all the figures have the following behavior:
the drag force coefficients are proportional to the frequency,
and the Hartmann number distinguishes low and high fre-
quency where they differ according to the time at high
frequency.

Table 2: Time-dependent distribution of imaginary drag force for different parameters with t = 0:1.

h/a1 + a2 κ
U2/U1 = 1:0 U2/U1 = −1:0

RH = 0:0 RH = 1:0 RH = 10:0 RH = 0:0 RH = 1:0 RH = 10:0

1.05

0.0 0.014958 0.196264 2.281908 0.062305 0.238905 2.181531

2.0 2.313483 2.142515 2.942240 1.841162 1.749658 2.824662

4.0 5.246850 5.172472 4.923199 4.725361 4.669257 4.754086

6.0 9.063329 9.019673 8.210455 8.523103 8.485922 7.957600

8.0 13.815021 13.785376 12.744536 13.202316 13.176731 12.383576

10.0 19.482973 19.461624 18.416477 18.781002 18.762648 7.935371

1.5

0.0 0.104732 0.207076 2.183738 0.146120 0.214642 2.237733

2.0 2.124735 1.982060 2.814270 2.058339 1.932504 2.892788

4.0 4.914481 4.849117 4.705865 5.033382 4.965434 4.857947

6.0 8.625447 8.584078 7.845160 8.853466 8.812407 8.119753

8.0 13.196646 13.168102 12.176163 13.588350 13.560367 12.621916

10.0 18.628876 18.608147 17.595196 19.237036 19.216887 18.260399

10.0

0.0 0.095628 0.210743 2.206963 0.104600 0.210776 2.207893

2.0 2.090080 1.956012 2.848191 2.090725 1.956631 2.849446

4.0 4.964515 4.898038 4.771873 4.966308 4.899822 4.774103

6.0 8.723106 8.681906 7.964615 8.726628 8.685424 7.968464

8.0 13.365860 13.337582 12.370331 13.371682 13.343403 12.376435

10.0 18.892776 18.872316 17.885242 18.901468 18.881008 17.894215

∞

0.0 0.099845 0.210759 2.207428 0.099845 0.210759 2.207428

2.0 2.090403 1.956322 2.848818 2.090403 1.956322 2.848818

4.0 4.965411 4.898930 4.772988 4.965411 4.898930 4.772988

6.0 8.724867 8.683664 7.966540 8.724867 8.683664 7.966540

8.0 13.368771 13.340492 12.373383 13.368771 13.340492 12.373383

10.0 18.897121 18.876661 17.889727 18.897121 18.876661 17.889727
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6. Conclusion

The impact of the magnetic field on the interaction of two
oscillating rigid spheres moving into an endless Stokes flow
launching along the axis of symmetry is contemplated. We
employed a semianalytical strategy and a collocation method
to get the solution and hence calculate the nondimensional
friction force coefficients. In the meantime, we determined
the drag coefficients for different size proportions, speed
proportions, separation distance, frequency parameters,
and Hartmann numbers. Then again, it shows that in the
case of low frequencies and the drag force, it starts at the
most extreme and subsequently diminishes. Thus, it is more
critical to notice the effects of the Hartman number that
shows that the real part of the drag force diminishes by
expanding the Hartmann number over a long time, though
the imaginary part of the drag force increments by expand-

ing the Hartmann number over a long time, and in the
two cases, it begins from a base for low frequency and after-
ward comes to a maximum for high hesitation. Accordingly,
the nondimensional drag force coefficients increment as the
detachment distance develops at specific points in the fre-
quency, and it reverses its impacts. Subsequently, it dimin-
ishes for the real force and increments for the coefficient of
the imaginary drag force as the speed proportion rises. Faltas
and El-Sapa [7] and Chen and Keh proposed great support
and accuracy in the limiting cases. The future scope of this
study may be in many fields of technology and in biomedi-
cine, and magnetic oscillating particles have been used for
years. In biomedicine, they are utilized in imaging, drug
delivery, and magnetic hyperthermia (MH). Under the influ-
ence of alternating high-frequency magnetic fields, MH
increases local temperatures in target cells by activating
magnetic nanoparticles locally. The application of this study

Table 3: Comparison of the real and imaginary parts of drag force coefficients for spheres with the same size moving in the same direction
for different relevant parameters at the steady state.

RH
a1 + a2

h
Re F 1ð Þ

z

F 1ð Þ
∞

n o
Im F 1ð Þ

z

F 1ð Þ
∞

n o
κ = 0:001 κ = 1:0 κ = 10:0 κ = 0:001 κ = 1:0 κ = 10:0

0.0

0.0 1.000707 1.707107 8.071068 -0.000707 -0.818218 -18.182178

0.1 0.954897 1.706979 8.070275 -0.001278 -0.818067 -18.177900

0.2 0.915261 1.706403 8.066340 -0.001173 -0.816729 -18.153742

0.3 0.881792 1.712857 8.060099 -0.001082 -0.810913 -18.104197

0.4 0.853876 1.731624 8.055985 -0.001004 -0.822532 -18.037106

0.5 0.830904 1.735158 8.061214 -0.000937 -0.858508 -17.971771

0.6 0.812182 1.709487 8.084454 -0.000880 -0.898281 -17.936876

0.7 0.796809 1.661024 8.132718 -0.000830 -0.923711 -17.967096

0.8 0.783453 1.601257 8.201556 -0.000785 -0.928828 -18.096043

0.9 0.770626 1.538112 8.254853 -0.000744 -0.916600 -18.329855

1.0

0.0 2.111111 2.209795 8.217622 -0.000001 -0.566201 -18.146912

0.1 2.110948 2.209604 8.216791 -0.000001 -0.566098 -18.142637

0.2 2.110714 2.209111 8.212633 -0.000001 -0.565348 -18.118498

0.3 2.111449 2.210530 8.205931 -0.000001 -0.563880 -18.068985

0.4 2.111403 2.215577 8.201185 -0.000001 -0.566104 -18.001928

0.5 2.106214 2.218520 8.205776 -0.000001 -0.576653 -17.936602

0.6 2.092247 2.211147 8.228627 -0.000001 -0.593546 -17.901655

0.7 2.067723 2.188815 8.277059 -0.000001 -0.610617 -17.931725

0.8 2.031941 2.150701 8.346972 -0.000001 -0.622034 -18.060406

0.9 1.986013 2.099322 8.402543 -0.000001 -0.625439 -18.294281

10.0

0.0 22.111111 22.111237 23.097952 0.000000 -0.161110 -15.662010

0.1 22.106461 22.106586 23.093203 0.000000 -0.161070 -15.657987

0.2 22.080599 22.080725 23.066809 0.000000 -0.160839 -15.635173

0.3 22.028883 22.029007 23.014126 0.000000 -0.160363 -15.588047

0.4 21.961988 21.962112 22.946213 0.000000 -0.159712 -15.523438

0.5 21.903486 21.903612 22.887344 0.000000 -0.159063 -15.458811

0.6 21.886805 21.886929 22.871883 0.000000 -0.158684 -15.420453

0.7 21.949163 21.949287 22.938110 0.000000 -0.158900 -15.440438

0.8 22.116991 22.117117 23.113535 0.000000 -0.160046 -15.551090

0.9 22.385357 22.385485 23.389128 0.000000 -0.162350 -15.777214
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in the practical field may be presented as an experimental
investigation of a sphere performing torsional oscillations
in a Stokes flow. An experimental setup was developed that
allowed the movement of the sphere to be remotely con-
trolled by a magnetic field.
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