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In economics, we know the law of demand: a higher price will lead to a lower quantity demanded. The question is to know how
much lower the quantity demanded will be. Similarly, the law of supply shows that a higher price will lead to a higher quantity
supplied. Another question is to know how much higher. To find answers to these questions which are critically important in
the real world, we need the concept of elasticity. Elasticity is an economics concept that measures the responsiveness of one
variable to changes in another variable. Elasticity is a function eðxÞ that can be built from an arbitrary function y = gðxÞ.
Elasticity at a certain point is usually calculated as eðxÞ = ðdy/dxÞðx/yÞ. Elasticity can be expressed in many forms. An
interesting form, from an economic point of view, is the ratio between the derivative of the logarithm of the distribution
function with respect to the logarithm of the point x, which is developed in this article. The aim of this article is to study the
direction of variation of this elasticity function and to construct a nonparametric estimator because the estimators that have
been constructed so far are parametric estimators and admit many deficiencies in practice. And finally, we study the strong
consistency of the said estimator. A numerical study was carried out to verify the adequacy of the theory.

1. Introduction

We know well that the distribution of a random variable can
be defined by the distribution function, the probability den-
sity function, or the characteristic function. However, they
are not the only functions to describe the distribution of a
random variable. Thus, other functions exist which are also
widely used to define a distinctive character of a random
variable, in particular, the survival or reliability function,
the odds function, the risk function, and the inverse risk
function. As usual,Xis a continuous random variable repre-
senting the lifetime of a component, and its distribution is
denoted byF. We further assume that F has a density func-
tion f . We define (see Veres-Ferrer and Pavía [1]) ∀x > 0:
the reliability/survival function of X at x is SðxÞ = 1 − FðxÞ;
the failure rate of X at x is hðxÞ = f ðxÞ/SðxÞ; the reversed
hazard rate function of X at x is rðxÞ = f ðxÞ/FðxÞ; and the
cumulative hazard rate function of X at x is HðxÞ = Ð x0hðtÞ
dt. These aforementioned functions are introduced in the

literature, are often found in the field of actuarial science
(see Steffensen [2]), and are commonly used in survival anal-
ysis (see Lee and Wang [3]). The hazard rate (HR) plays a
crucial role in reliability and survival analysis, as it defines
the conditional probability of failure of an object in ½t ; t +
dt� given that it did not fail before in ½0 ; t�. This property
leads to many useful features, as for instance, the possibility
of modeling the impact of an environment by a proportional
hazard model. It is also well known that the hazard rate
uniquely defines the distribution function of the time to fail-
ure random variable via the basic exponential formula. The
reversed hazard rate (RHR) or reversed hazard function is
a less intuitive function. It could be interpreted as the condi-
tional probability of the state change happening in an infin-
itesimal interval preceding x, given that the state change
takes place at x or before x. In other words, the RHR is
defined as the ratio of the probability density function and
the corresponding distribution function, and thus in a
reliability setting, it defines the conditional probability of a
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failure of an object in ½t − dt ; t� given that the failure had
occurred in ½0, t�. The reversed hazard rate (RHR) can be
treated as the instantaneous failure rate occurring immedi-
ately before the time point x (the failure occurs just before
the time point x, given that the unit has not survived longer
than time x). Recently, the properties of the reversed hazard
rate (RHR) have attracted considerable interest of researchers
(see Chandra and Roy [4] and Finkelstein [5]). Despite being a
dual function to the hazard rate to a certain extent, its typical
behavior makes it suitable for assessing waiting time, hidden
failures, inactivity times, and the study of systems, including
optimizing reliability and the probability of successful
functioning.

The elasticity function of X is also introduced in the litera-
ture (see Veres-Ferrer and Pavía [1]) and is defined as follows:

e xð Þ = −x
S′ xð Þ
F xð Þ = −x

1 − F xð Þð Þ′
F xð Þ = x

f xð Þ
F xð Þ =

d log F xð Þ
d log x , ∀x > 0:

ð1Þ

Elasticity is one of the most important concepts in eco-
nomic theory. For example, in economics, if x is the price of
a commodity and FðxÞ denotes the demand on that commod-
ity, then the “elasticity” of the demand is defined by (1). In
other words, elasticity measures how sensitive an output vari-
able is to changes in an input variable and is defined as the
ratio of the percentage change in one variable to the percent-
age change in another variable. Lariviere and Porteus [6] adopt
this concept and apply it to the supply chain management.
The elasticity of a random distribution expresses the changes
that the distribution function undergoes when faced with var-
iations in the random variable, that is, how the accumulation
of probability behaves throughout the domain of the variable.
The elasticity function of a distribution shows the behavior of
the accumulation of probability in the domain of the random
variable. In this paper, in the first part, we make an in-depth
study of the asymptotic behavior on the elasticity function
with some simulations of this function in order to illustrate
the variations of the said function. In practice, elasticity func-
tions are not constant; even in economics, they vary as one
moves along the demand curve and the only class where the
elasticity is constant is the class where the demand function
gðxÞ = ax−c, where x is the price and a and c are positive con-
stants. Elasticity in econometrics makes it possible to estimate
a production function, for example, of the nonlinear type of
Cobb-Douglass (see Felipe and Adams [7]). The estimation
of production functions is a very delicate exercise. Thus, the
estimation by the parametric method of elasticity leads to an
estimation of production functions with larger biases apart
from the bias of measurement errors, the main ones being
the bias of omitted variables, bias of specification, and bias of
selection (see Griliches and Mairesse [8]). Most of the time,
the data collected is incomplete data (often censored data).
Consequently, to overcome these problems of bias induced
on the estimation of the production function, we propose, in
the second part or study, a nonparametric estimator based
on the kernel estimation presence of incomplete data more
precisely censored data not informative.

2. Behavior of Elasticity for Some
Standard Distributions

We know that the functions HR and RHR are, respectively,
defined by

h xð Þ = f xð Þ
S xð Þ , r xð Þ = f xð Þ

F xð Þ = f xð Þ
1 − S xð Þ ,∀ x > 0: ð2Þ

By substituting HR in RHR, RHR can be expressed as

r xð Þ = h xð Þ
S−1 xð Þ − 1

= h xð Þ
eH xð Þ − 1 : ð3Þ

From the formula of elasticity (1), we note that

e xð Þ = x
f xð Þ
F xð Þ = xr xð Þ: ð4Þ

We deduce from (3) and (4) that the elasticity function
can be written in the form

e xð Þ = x
h xð Þ

eH xð Þ − 1 : ð5Þ

By differentiating expression (4) with respect to x, we
have

e′ xð Þ = r xð Þ + xr′ xð Þ: ð6Þ

Using formula (3) of RHR, we can write

e′ xð Þ = h xð Þ
eH xð Þ − 1 + x

h′ xð Þ eH xð Þ − 1
À Á

− h2 xð ÞeH xð Þ

eH xð Þ − 1
À Á2 , ð7Þ

which can be simply written in the form

e′ xð Þ =
h xð Þ + xh′ xð Þ − xh2 xð Þ
h i

eH xð Þ − 1
À Á

− xh2 xð Þ
eH xð Þ − 1
À Á2 : ð8Þ

We know that by definition, the elasticity function is
defined for strictly positive random variables (as always in
survival or reliability analysis); we will seek the direction of
variation of the elasticity for most of the standard distribu-
tions used in survival or reliability analysis which are defined
on a domain contained in ℝ+.

In formula (8), it is clear that the sign of e′ðxÞ depends
on that of the numerator expression. In the rest of this par-
agraph, we will focus on the numerator of equality (8), in
order to be able to quickly deduce the sign of e′ðxÞ.
2.1. Uniform Distribution. If X is a random variable such that
X⇝Uð½a ; b�Þ, then we have for x ∈ ½a ; b� where 0 < a < b :
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f xð Þ = 1
b − a

,

F xð Þ = x − a
b − a

:

ð9Þ

Note that the HR hðxÞ and the cumulative HR HðxÞ exist
if and only if x ≠ b; it means x ∈ ½a ; b½. So we have

h xð Þ = 1
b − x

,

H xð Þ = log b − a
b − x

� �
:

ð10Þ

From above results, we obtain

h xð Þ + xh′ xð Þ − xh2 xð Þ
h i

eH xð Þ − 1
� �

= x − a

b − xð Þ2
, ð11Þ

and the numerator of equality (8) gives

h xð Þ + xh′ xð Þ − xh2 xð Þ
h i

eH xð Þ − 1
� �

− xh2 xð Þ = −a
b − xð Þ2

< 0:

ð12Þ

Equation (12) shows that the elasticity is decreasing func-
tion for the uniform distribution.

2.2. Weibull Distribution. Special cases of the Weibull include
the exponential ðβ = 1Þ and the Rayleigh distributions ðβ = 2Þ.
If X is a random variable such that X⇝W ðβ, θÞ, where β > 0
and θ > 0 are shape and scale parameters, then we have ∀x ≥ 0:

f xð Þ = β
xβ−1

θβ
e− x/θð Þβ ,

F xð Þ = 1 − e− x/θð Þβ ,

S xð Þ = e− x/θð Þβ ,

h xð Þ = β
xβ−1

θβ
,

H xð Þ = x
θ

� �β
:

ð13Þ

Using the same formulas (6) and (5), we have

e′ xð Þ =
βxβ−1 e x/θð Þβ − 1

� �
+ βxβ−1e x/θð Þβ β − 1ð Þ 1 − e− x/θð Þβ

� �
− xβ−1e x/θð Þββ x/θð Þβ

θβ e t/θð Þβ − 1
� �2 ,

ð14Þ

or

e′ xð Þ =
β2xβ−1e t/θð Þβ 1 − x/θð Þβ − e− x/θð Þβ

h i
θβ e t/θð Þβ − 1
� �2 : ð15Þ

LetψðxÞ = 1 − ðx/θÞβ − e−ðx/θÞ
β

. As before, the sign of e′ðxÞ
depends on that of ψ which verifies ψ′ðxÞ = −β/θðx/θÞβ−1
½1 − e−ðt/θÞ

β � ≤ 0, ∀x ≥ 0 and ψð0Þ = 0: We deduce that for
the Weibull distribution, the elasticity function is a decreasing
function.

2.3. Burr Distribution. In statistics and econometrics, the
Burr distribution is a continuous probability law depending
on three positive real parameters. It is commonly used to
study household income. If X is a random variable such that
X⇝Bðα, λ, κÞ, then we have for x ≥ 0

f xð Þ = ακλαxκ−1

λ + xκð Þα+1 ,

F xð Þ = 1 − λ

λ + xκ

� �α

,

S xð Þ = λ

λ + xκ

� �α

,

ð16Þ

and we deduce

h xð Þ = ακxκ−1

λ + xκ
,

H xð Þ = α log λ + xκ

λ

� �
:

ð17Þ

Note that the Burr distribution generalizes certain distri-
butions in probability theory. We have the following:

(1) If k = 1, the Burr distribution is the generalized
Pareto distribution

(2) If α = 1, the Burr distribution is the log-logistic
distribution

(3) If α⟶ +∞, the Burr distribution is the Weibull
distribution

Now, we obtain

h xð Þ + xh′ xð Þ − xh2 xð Þ = αλκ2xκ−1

λ + xκð Þ2 : ð18Þ

With the numerator of equality (8), we obtain

h xð Þ + xh′ xð Þ − xh2 xð Þ
h i

eH xð Þ − 1
� �

− xh2 xð Þ

= ακ2xκ−1 λ − αxκ½ �
λ + xκð Þ2

λ + xκ

λ

� �α

−
αλκ2xκ−1

λ + xκð Þ2

= ακ2xκ−1

λ + xκð Þ2
λ − αxκð Þ λ + xκ

λ

� �α

− λ

� �
:

ð19Þ

The last equality shows that the sign of e′ðxÞ depends on
τðxÞ = ðλ − αxκÞððλ + xκÞ/λÞα − λ:
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With τ′ðxÞ = −ðαðα + 1Þκx2κ−1Þ/ðλ + xκÞððλ + xκÞ/λÞα ≤ 0
and τð0Þ = 0, we therefore deduce that the elasticity is a
decreasing function for the Burr distribution.

2.4. Gamma Distribution. A random variable X⇝Γðk, θÞ
with parameters k and θ (strictly positive) if its probability
density function can be put in the form

f xð Þ = xk−1e−x/θ

θkΓ kð Þ
, whereΓ kð Þ =

ð∞
0
xk−1e−xdx: ð20Þ

So we get

F xð Þ = γ k, x/θð Þ
Γ kð Þ ,

r xð Þ = xk−1e−x/θ

θkγ k, x/θð Þ
,

ð21Þ

where

γ k, zð Þ =
ðz
0
xk−1e−xdx, such that γ k,+∞ð Þ = Γ kð Þ and γ k, 0ð Þ = 0:

ð22Þ

Additionally, we have

r′ xð Þ = e−x/θ

θk

k − 1ð Þxk−2 − 1/θð Þxk−1Â Ã
γ k, x/θð Þ − 1/θk

� �
x2k−2e−x/θ

γ2 k, x/θð Þ ,

xr′ xð Þ = xk−1e−x/θ

θk

k − 1ð Þ − 1/θð Þx½ �γ k, x/θð Þ − 1/θk
� �

xke−x/θ

γ2 k, x/θð Þ :

ð23Þ

These last two equalities in formula (6) provide the
expression for e′ðxÞ in the following form:

e′ xð Þ = xk−1e−x/θ

θkγ2 k, x/θð Þ
k −

x
θ

� �
γ k, x

θ

� �
−

1
θk

xke−x/θ
� �

: ð24Þ

We observe that e′ðxÞ has the same sign as φðxÞ = ðk −
ðx/θÞÞγðk, x/θÞ − ð1/θkÞxke−x/θ with φ′ðxÞ = −ð1/θÞγðk, x/θÞ
≤ 0 and φð0Þ = 0: We therefore come to the conclusion that
the elasticity is a decreasing function for the Gamma distri-
bution. Also, remember the following:

(1) If k = 1, the Gamma distribution is exponential
distribution

(2) If k = ν/2 and θ = 2, the Gamma distribution is a chi-
square distribution with ν degree of freedom

(3) If k ∈ℕ \ f0 ; 1g, the Gamma distribution is the
Erlang distribution

2.5. Log-Normal Distribution. The log-normal distribution,
also called the Galton distribution denoted as log −N ðμ, σ2Þ,

is a distribution that is also widely used in reliability and
survival analysis. It is defined for strictly positive random var-
iables whose distribution function and probability density are
defined by

f xð Þ = 1
xσ

ffiffiffiffiffiffi
2π

p e−1/2 log x−μð Þ/σð Þ2 ,

F xð Þ = 1
2 + 1

2 erf log x − μ

σ
ffiffiffi
2

p
� �

∀x > 0,
ð25Þ

where erf is the Gaussian error function defined by erf
ðxÞ = 2/ ffiffiffi

π
p Ð x

0e
−t2dt.

So we have

e xð Þ = x
f xð Þ
F xð Þ =

1/σ
ffiffiffiffiffiffi
2π

p� �
e−1/2 log x−μð Þ/σð Þ2

F xð Þ , with lim
x⟶+∞

e xð Þ

= 0 and lim
x⟶0+

e xð Þ = 0
0 :

ð26Þ

To evaluate the indeterminate form of the last limit
above, we then apply the Hospital rule which gives

lim
x⟶0+

e xð Þ = lim
x⟶0+

μ − log x
σ2

� �
= +∞: ð27Þ

We observe that the function eðxÞ decreases from infin-
ity to 0. However, this observation is silent on the direction
of variation, i.e., whether it decreases monotonically or not.
Thus, we have to trust the derivative e′ðxÞ to see if it is less
than 0, which means that it decreases monotonically accord-
ing to the results of the limits.

Using formula (6), we can write

e′ xð Þ = −
f xð Þ
F2 xð Þ

log x − μ

σ2

� �
F xð Þ + xf xð Þ

� �
: ð28Þ

We notice in this last equality that e′ðxÞ ≤ 0 if and only if
ρðxÞ = ½ððlog x − μÞ/σ2ÞFðxÞ + xf ðxÞ� ≥ 0:

So the derivative of ρ gives

ρ′ xð Þ = 1
xσ2 F xð Þ + log x − μ

σ2

� �
f xð Þ − f xð Þ 1 + log x − μ

σ2

� �� �
,

ð29Þ

= 1
xσ2 F xð Þ > 0;∀x > 0: ð30Þ

Moreover, we have to calculate the limit at 0+ of two
functions which compose the function ρ, i.e.,

ρ xð Þ = ρ xð Þ + xf xð Þ avec ρ xð Þ = log x − μ

σ2

� �
F xð Þ et lim

x⟶0+
xf xð Þ = 0:

ð31Þ
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The limit at 0+ of ρðxÞ gives an indeterminacy in the
form 0 ×∞. We know that the indeterminations of the form
0 × ±∞ are reduced to an indeterminacy of the form 0/0 or
of the form ∞/∞ by noting that a multiplication by 0 is
equivalent to a division by infinity or that a multiplication
by infinity is equivalent to a division by 0. We can rewrite
ρðxÞ in the following form:

ρ xð Þ = u xð Þ
v xð Þ = log x − μ

σ2/F xð Þ , where u xð Þ

= log x − μ and v xð Þ = σ2

F xð Þ ,
ð32Þ

to have the form ∞/∞ in order to apply the Hospital rule.
Note that

xf xð Þ = −
log x − μ

σ2

� �
f xð Þ: ð33Þ

Applying the Hospital rule twice successively, we get

lim
x⟶0+

ρ xð Þ = lim
x⟶0+

−F2 xð Þ
σ2xf xð Þ = lim

x⟶0+
2F xð Þ

log x −m
= 0: ð34Þ

Equations (30), (31), and (34) prove that the elasticity is
a monotonically decreasing function for the log-normal
distribution.

Traditionally in economics or finance or in actuarial sci-
ence, as the main quantities of interest are costs or durations,
the most used probability laws are those with positive
support. The four most common positive distributions are
Gamma, Burr, log-normal, and Weibull. The theoretical
curves in Figure 1 were produced using R and MATLAB
software (for the Burr distribution, which is not defined in
R). Moreover, we notice that whatever the different values
of the parameters of each distribution, the elasticity function
is a monotonically decreasing function.

Remark 1. In this paragraph, we were able to demonstrate
that the elasticity function is a monotonically decreasing
function, at least, for most of the standard distributions that
we know. Thus until proof to the contrary, we estimate that
the elasticity function, in view of the results obtained in this
part, would be an always monotonic decreasing function as
shown in Figure 1. The monotony of the elasticity has no
influence on the construction of its estimator. However,
the monotony facilitates the difficulties of simulations
because there are fewer disturbances.

The following paragraph gives a nonparametric estima-
tion based on the kernel method and a study on the almost
sure convergence of the said estimator. The nonparametric
kernel estimation approach, unlike the parametric approach,
does not require any assumptions about the true probability
law of the observations, and this is its main advantage. It is
therefore a problem of functional estimation; for example,
this implies that the elasticity function which is continuous
will be estimated by a discontinuous function. Another such
approach is that accuracy is better if one has a larger number

of observations. It gives a better estimate with regard to the
minimization of the biases and allows a very good smooth-
ing for the estimator, and it contributes to the robustness
of the estimator.

3. Statistical Inference on the
Elasticity Function

We know that in most cases, the data collected is not com-
plete, which leads us to carry out a study on incomplete data.
There are several types of incomplete data including cen-
sored data. Moreover, the elasticity can depend on a covari-
ate which can represent a given situation or a given state, for
example, generally the case of the elasticity of the demand
compared to the income (i.e., when the income increases,
in most cases, the demand also increases); the covariate
can represent the seasonal period or the geographical loca-
tion, etc. In this part, we will define a nonparametric estima-
tor of the conditional elasticity function in the case of the
right censored data.

3.1. Theoretical Study. Consider n pairs of independent ran-
dom variables ðXi, TiÞ for i = 1,⋯, n that we assume drawn
from the pair ðT , XÞ which is valued in ½0;+∞½ ×ℝ. In this
paragraph, we consider the problem of nonparametric esti-
mation of the conditional density of Y given X = x when
the response variable Yi is rightly censored. Consider a
sequence of independent and identically distributed (i.i.d.)
random variables ðTiÞi=1,⋯,n with a common unknown
conditional distribution function Fð:jxÞ and density func-
tion f ð:jxÞ. Furthermore, we denote by ðCiÞi=1,⋯,n the censor-
ing random variables which are supposed independent and
identically distributed with a common unknown continuous
distribution function G, and its conditional version is noted
Gð:jxÞ. Thus, we construct our estimators by the observed var-
iables ðXi, Yi, δiÞi=1,⋯,n, where Yi = Ti∧Ci and δ = 1Ti≤Ci

,
where 1A denotes the indicator function of the set A. We
assume that ðCiÞ1 ≤ i ≤ n and ðTi, XiÞ1≤i≤n are independent.
The function �G = 1 −G, of the censoring random variables,
is estimated by Kaplan and Meier [9] estimator defined as
follows:

�Gn tð Þ =
Yn
i=1

1 −
1 − δ ið Þ
n − i + 1

� �1
Y ið Þ≤tf g if t ≤ Y nð Þ,

0 otherwise,

8><
>:

ð35Þ

where Y ð1Þ < Y ð2Þ <⋯ < Y ðnÞ are the order statistics of
ðYiÞ1≤i≤n and δðiÞ is the concomitant of Y ðiÞ. Gn is known
to be uniformly convergent to G.

Let LðtjxÞ = P½Y ≤ tjX = x� be the conditional distribution
function of Y given X = x and L1ðtjxÞ = P½Y ≤ t ; δ = 1jX = x�
=
Ð t
0ð1 −GðujxÞÞdFðujxÞ be the conditional subdistribution

function of the uncensored observation ðY ; δ = 1Þ given X =
x, and let f ⋆ðtjxÞ = f ðtjxÞð1 − GðtjxÞÞ be its corresponding
conditional subdensity function. Furthermore, under the
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random censoring scheme, it is clear that the Yi are i.i.d. with
common conditional distribution function L which satisfies

1 − L tjxð Þ = 1 − F tjxð Þð Þ 1 − G tjxð Þð Þ, ð36Þ

and the uncensored model is the special case of the censored

model with G = 0. Using (36) and independence condition of
T and C conditionally on X = x, the conditional cumulative
hazard function H of T given X = x is defined by

H tjxð Þ =
ðt
0

dF ujxð Þ
1 − F ujxð Þ =

ðt
0

dL1 ujxð Þ
1 − L ujxð Þ : ð37Þ

Uniform distribution
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Figure 1: Elasticity function curves for some usual distributions.
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By using formula (37) and recalling that HðtjxÞ = − log
ð1 − FðtjxÞÞ⇔ 1 − FðtjxÞ = exp ð−HðtjxÞÞ, we therefore
define the conditional elasticity function in the case of cen-
sored data by the following relation:

e tjxð Þ = t
f ⋆ tjxð Þ

1 − exp −H tjxð Þð Þ : ð38Þ

LetðYi, δi, XiÞni=1 be a sample of n i.i.d observable r.v.
ðY , δ, XÞ;KandN be kernels on½0 ;∞[ and ℝ, respectively;
and ðhnÞ and ðn ∈ℕÞ be the sequences of positive nonin-
creasing real numbers which will be connected with the
smoothing parameters of the estimators. Set for all x ∈ℝ,
h > 0 and s ∈ ½0;+∞½, KhðxÞ = 1/hKðx/hÞ and NhðsÞ = 1/h
Nðs/hÞ. Then, a nonparametric Nadaraya-Watson type
estimators of the conditional distribution function LðtjxÞ
and conditional subdistribution function of the uncensored
observation ðY ; δ = 1Þ are given by

Ln tjxð Þ = 〠
n

i=1
Wi x, hnð Þ1 Yi≤tf g, ð39Þ

L1n tjxð Þ = 〠
n

i=1
Wi x, hnð Þ1 Yi≤t;δi=1f g, ð40Þ

where for i = 1,⋯, n, Wiðx, hnÞ = ðKhðx − XiÞÞ/ð∑n
j=1Khðx

− XjÞÞ.
From formulas (39) and (40), we have Beran’s type esti-

mator of the conditional cumulative hazard rate function
HnðtjxÞ given by

Hn tjxð Þ =
ðt
0

dL1n ujxð Þ
1 − Ln ujxð Þ , ð41Þ

= 〠
n

i=1

1 Yi≤t;δi=1f gWi x, hnð Þ
1 −∑n

i=11 Y j≤Yif gWi x, hnð Þ , ∀t > 0 and x ∈ℝ:

ð42Þ
Likewise, the kernel estimate of the conditional density

f ⋆ðtjxÞ denoted as f ⋆nðtjxÞ is defined by

f ⋆n tjxð Þ = ∑n
i=1δi�G

−1
n Yið ÞK x − Xið Þ/hnð ÞN t − Yið Þ/hnð Þ

hn∑
n
i=1K x − Xið Þ/hnð Þ

≔
gn t, xð Þ
f Xn xð Þ

, ∀t > 0 and x ∈ℝ,

ð43Þ

where

gn t, xð Þ = 〠
n

i=1
h−2n δi�G

−1
n Yið ÞK x − Xi

hn

� �
N

t − Yi

hn

� �
,

f Xn xð Þ = h−1n 〠
n

i=1
K

x − Xi

hn

� �
:

ð44Þ

Note that this last estimator (43) has been recently used
by Felipe and Adams [7]. We therefore define the estimator
enðtjxÞ of the conditional elasticity function eðtjxÞ, from for-
mulas (41), (43) and (38), in the form

en tjxð Þ = t
f ⋆n tjxð Þ

1 − exp −Hn tjxð Þð Þ , ∀t > 0 and x ∈ℝ: ð45Þ

In the continuation of this work, for any df ϕ, let τϕx =
sup ft, ϕðtjxÞ < 1g be its support’s right endpoint.

Choose 0 < τx ≤ τLx =min ðτFx ; τGx Þ, naturally τFx ; τ
G
x , and

therefore, τx depend on the covariate x. We set I = ½0 ; τx�;
Δ0 = fx ∈ℝ : f XðxÞ > 0g is the support of the marginal den-
sity function f XðxÞ and

ξ Y , X, δ, tjxð Þ = 1 Y≤t,δ=1f g
L Y jxð Þ −

ðt
0

1 − 1 Y≤uf g
1 − L ujxð Þð Þ2 dL1 ujxð Þ∀t ≤ τx:

ð46Þ

Note that the formula of equality (46) is a centred ran-
dom process which plays a very important role in the study
of the almost sure convergence of the said estimator in our
investigation.

For any given conditional function t↦ ϕðtjxÞ, ∀t ∈ℝ+

and x ∈ℝ, ϕ′ðtjxÞ and ϕ′′ðtjxÞ denote, respectively, its first
and second derivatives (with respect to t) whenever all those
derivatives exist. We need the following assumptions.

3.1.1. Assumptions

(1) The Model Assumptions. A1. The random variable X
takes values in a compact subset Δ of Δ0, and the variables
T and C are conditionally independent given X = x.

A 2. The marginal density function f X of X and its first
and second derivatives exist and are uniformly continuous
on Δ0 and β = inf x∈Δ f XðxÞ > 0.

A 3. The joint density gðt, xÞ of ðT , XÞ is bounded and
differentiable up to order 3 and

sup
t,x

∂i+j

∂it∂jx
g t, xð Þ

�����
����� <∞∀i, j ≤ 3: ð47Þ

A 4. There exists a positive constant η such that
inf x∈Δð1 − LðτxjxÞÞ ≥ η.

A 5. The conditional subdistribution functions ðt, xÞ↦
LðtjxÞ and ðt, xÞ↦ L1ðtjxÞ are of class C2, and their first
and second partial derivatives are continuous in I × Δ and
are uniformly bounded.

A 6. The conditional cumulative hazard function HðtjxÞ
is assumed to be strictly positive and there is a constant
ν > 0 such that 0 < f ðtjxÞ < ν ∀ðt ; xÞ ∈ I × Δ:

(2) The Kernel Assumptions. K1. K is a symmetric kernel
of bounded variation on ℝ vanishing outside the interval
½M,+M� for some M > 0 satisfying
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(i)
Ð
ℝKðuÞ = 1

(ii)
Ð
ℝuKðuÞ = 0

(iii)
Ð
ℝu

2KðuÞ = αðKÞ > 0

K 2. N is a C2 probability density with compact support
such that

(i)
Ð
ℝNðuÞ = 1

(ii)
Ð
ℝuNðuÞ = 0

K 3. The function ðu, vÞ↦ ψðu, vÞ = Kððx − uÞ/hnÞN
ððt − vÞ/hnÞ, ∀t, x, is a bounded measurable function.

(3) The Bandwidth Parameter Hypothesis. The bandwidth
parameter ðhnÞn∈ℕ is a sequence of positive nonincreasing
real numbers satisfying the following:

H 1

(i) hn ⟶ 0, n⟶ +∞

(ii) nhn ⟶ +∞,n⟶ +∞

H 2

(i) nhkn ⟶ +∞,n⟶ +∞ and k > 2

(ii) log n/nhn ⟶ 0, n⟶ +∞

(iii) log3n/nhn ⟶ 0, n⟶ +∞

(iv) ðjlog hnj/nhnÞk ⟶ 0, n⟶ +∞ and k > 0

H 3. nh
2
n/log n⟶ +∞,n⟶ +∞.

Remark 2. The assumptions A1, A4-A5, K1-K2, and H1 are
quite standard. A1-A2, A4-A5, K1-K2, and H1-H2 insure the
strong uniform convergence of the estimators LnðtjxÞ and
L1nðtjxÞ to LðtjxÞ and L1ðtjxÞ, respectively, as in (39) and
(40), while assumptions A2-A3, K1-K3, H1, and H3 ensure
the strong uniform convergence of f ⋆nðtjxÞ to f ⋆ðtjxÞ; then,
these two convergences lead to the strong consistency from
enðtjxÞ to eðtjxÞ.

3.1.2. Strong Consistency. In this subsection, we prove the
consistency of our estimator and give a rate of convergence.
Our first result is the almost sure uniform convergence with
an appropriate rate of the cumulative hazard function esti-
mator HnðtjxÞ stated in Proposition 4, which is the key for
investigating the strong consistency of enðtjxÞ and the
almost sure uniform convergence of f ⋆nðtjxÞ given by Propo-
sition 3. The second and last results deal with the strong
consistency of the conditional elasticity function estimator
enðtjxÞ given by Theorem 6.

Proposition 3. Under assumptions A1-A3, K1-K3, H1, and
H3, we have

sup
t∈I,x∈Δ

f ⋆n tjxð Þ − f ⋆ tjxð Þj j = O
log n
nh2n

� �1/2
 !

+ O h2n
À Á

, a:s:as n⟶ +∞:

ð48Þ

Proposition 4. For n large enough and under assumptions
A1, A4-A6, K1-K2, and H1-H2, we get

sup
t∈I,x∈Δ

Hn tjxð Þ −H tjxð Þj j = O
log hnj j
nhn

� �1/2
 !

+ O
log n
nhn

� �3/4
 !

+ O h2n
À Á

, a:s:as n⟶ +∞:

ð49Þ

Remark 5. The two important propositions above lead to the
following theorem which gives the convergence of the esti-
mator (45).

Theorem 6. Under assumptions of the Proposition 3, Propo-
sition 4, and assumption A6, we have

sup
t∈I,x∈Δ

en tjxð Þ − e tjxð Þj j = O
log hnj j
nhn

� �1/2
 !

+ O
log n
nh2n

� �1/2
 !

+ O
log n
nhn

� �3/4
 !

+ O h2n
À Á

, a:s:as n⟶ +∞:

ð50Þ

3.1.3. Auxiliary Lemmas and Proofs of Results. In this subsec-
tion, we state the main lemmas from which we obtained the
results of the previous subsection.

Lemma 7. Let ZnðtjxÞ be any of the estimators LnðtjxÞ or
L1nðtjxÞ given in (39) and (40), respectively. Under assump-
tions A1-A2, A4-A5, K1-K2, and H1-H2, we get

sup
t∈I,x∈Δ

Zn tjxð Þ − Z tjxð Þj j = O
log hnj j
nhn

� �1/2
 !

+ O h2n
À Á

, a:s:as n⟶ +∞:

ð51Þ

Proof. The proof of this lemma parallels the proof of Lemma
8 of Bordes and Gneyou [10]. So, we omit it.

The following lemma gives the almost sure representa-
tion of the estimator (41) in decomposition form.
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Lemma 8. Assume that the assumptions of the Lemma 7 are
satisfied; we have

Hn tjxð Þ −H tjxð Þ = 〠
n

i=1
Wi x, hnð Þξ Yi, Xi, tjxð Þ

+Πn tjxð Þ + Σn tjxð Þ,
ð52Þ

where

Πn tjxð Þ =
ðt
0

Ln ujxð Þ − L ujxð Þ
1 − L ujxð Þð Þ2 d L1n ujxð Þ − L1 ujxð Þð Þ,

Σn tjxð Þ =
ðt
0

Ln ujxð Þ − L ujxð Þð Þ2
1 − Ln ujxð Þð Þ 1 − L sjxð Þð Þ2 dL1n ujxð Þ,

ð53Þ

and ðξðYi, Xi, tjxÞÞ1≤i≤n is a sequence of the centred random
process (46).

Proof. By definition, we have

Hn tjxð Þ −H tjxð Þ =
ðt
0

dL1n ujxð Þ
1 − Ln ujxð Þ −

ðt
0

dL1 ujxð Þ
1 − L ujxð Þ : ð54Þ

It is obvious to see that (54) can be written in the form

Hn tjxð Þ −H tjxð Þ =
ðt
0

d L1n ujxð Þ − L1 ujxð Þð Þ
1 − L ujxð Þ

+
ðt
0

1
1 − Ln ujxð Þ −

1
1 − L ujxð Þ

� �
dL1 ujxð Þ

+
ðt
0

1
1 − Ln ujxð Þ −

1
1 − L ujxð Þ

� �
d L1n ujxð Þ − L1 ujxð Þð Þ:

ð55Þ

By rewriting the expression inside the brackets of the last
two integrals as

Ln ujxð Þ − L ujxð Þ
1 − L ujxð Þð Þ 1 − Ln ujxð Þðð Þ =

Ln ujxð Þ − L ujxð Þ
1 − L ujxð Þð Þ2

+ Ln ujxð Þ − L ujxð Þð Þ2
1 − Ln ujxð Þð Þ 1 − L ujxð Þð Þ2 ,

ð56Þ

it follows that the equality (54) becomes

Hn tjxð Þ −H tjxð Þ =
ðt
0

dL1n ujxð Þ
1 − L ujxð Þ −

ðt
0

1 − Ln ujxð Þ
1 − L ujxð Þð Þ2 dL1 ujxð Þ

+
ðt
0

Ln ujxð Þ − L ujxð Þ
1 − L ujxð Þð Þ2 d L1n ujxð Þ − L1 ujxð Þð Þ

+
ðt
0

Ln ujxð Þ − L ujxð Þð Þ2
1 − Ln ujxð Þð Þ 1 − L sjxð Þð Þ2 dL1n ujxð Þ:

ð57Þ

It suffices to remark that

〠
n

i=1
Wi x, hnð Þξ Yi, Xi, tjxð Þ =

ðt
0

dL1n ujxð Þ
1 − L ujxð Þ

−
ðt
0

1 − Ln ujxð Þ
1 − L ujxð Þð Þ2 dL1 ujxð Þ

ð58Þ

and that the last two integrals representΠnðtjxÞ and ΣnðtjxÞ,
respectively. This ends the proof of this lemma.

Proof of Proposition 3. The proof of this proposition is sim-
ilar to that of Khardani et al. [11].

Proof of Proposition 4. From the proof of Lemma A.2 of Sun
[12] and under the assumption of Lemma 8 and from its
decomposition, we deduce that

sup
t∈I,x∈Δ

Πn tjxð Þj j = O
log n
nhn

� �3/4
 !

a:s:, ð59Þ

and from Lemma 7, we get also that

sup
t∈I,x∈Δ

Σn tjxð Þj j = O
log hnj j
nhn

� �
+ O h4n
À Á

a:s: ð60Þ

By integrating by parts of the equality (58) of Lemma 8,
we arrive at

〠
n

i=1
Wi x, hnð Þξ Yi, Xi, tjxð Þ = L1n tjxð Þ − L1 tjxð Þ

1 − L tjxð Þ

−
ðt
0

L1n ujxð Þ − L1 ujxð Þ
1 − L ujxð Þð Þ2 dL ujxð Þ

+
ðt
0

Ln ujxð Þ − L ujxð Þ
1 − L ujxð Þð Þ2 dL1 ujxð Þ:

ð61Þ
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From Lemma 7 and from assumption A3, we obtain

sup
t∈I,x∈Δ

〠
n

i=1
Wi x, hnð Þξ Yi, Xi, tjxð Þ

�����
����� = O

log hnj j
nhn

� �1/2
 !

+ O h2n
À Á

a:s:

ð62Þ

Equalities (59), (60), and (62) conclude the proof of this
last proposition.

Now, we start the last proof which is the proof of the
main theorem.

Proof of Theorem 6. It is clear to see that

where eu ≔ exp ðuÞ.

We now know that the exponential function exp ð−uÞ is
k − Lipschitzian function with k = 1, i.e.,jexp ð−uÞ − exp

ð−vÞj ≤ ju − vj,∀u, v. Therefore, from assumptions A4 and
A6, we have

Table 1: Comparison of the convergence speed of the three models with the same censorship rate.

Models
Size Parabolic Logarithm Exponential
n RSME ĥ

P
n

RSME ĥ
L
n

RSME ĥ
E
n

20 4.4071e-4 0.69451 9.0019e-4 0.43457 8.4713e-4 0.87147

40 3.9212e-4 0.61241 7.3019e-4 0.40019 9.1121e-5 0.87001

60 3.1432e-4 0.59113 9.9910e-5 0.34017 4.8998e-5 0.79899

80 3.0162e-4 0.54094 8.6988e-5 0.35347 2.9011e-5 0.70111

100 2.7453e-4 0.47397 7.0951e-5 0.34901 1.8766e-5 0.65074

Table 2: Comparison of the convergence speed of the exponential model with two different levels of censoring.

Exponential model with two censoring rate

Size
Percentage of censoring

τ = 15% τ = 45%
n RSME ĥ

P15
n

RSME ĥ
P45
n

20 1.0721e-4 0.78106 8.4713e-4 0.87147

40 9.9470e-5 0.76241 9.1121e-5 0.87001

60 7.9470e-5 0.71999 4.8998e-5 0.79899

80 3.1001e-5 0.68873 2.9011e-5 0.70111

100 1.5141e-5 0.60034 1.8766e-5 0.65074

en tjxð Þ − e tjxð Þj j ≤ τx
1

1 − e−Hn tjxð Þ f ⋆n tjxð Þ − f ⋆ tjxð Þj j + f tjxð Þ
1 − e−H tjxð ÞÀ Á

1 − e−Hn tjxð ÞÀ Á e−Hn tjxð Þ − e−H tjxð Þ
��� ���

" #
, ð63Þ

sup
t∈I,x∈Δ

en tjxð Þ − e tjxð Þj j ≤ cte
sup

t∈I,x∈Δ
f ⋆n tjxð Þ − f ⋆ tjxð Þj j

inf
t∈I,x∈Δ

liminf
n⟶∞

1 − e−Hn tjxð ÞÀ Á + sup
t∈I,x∈Δ

Hn tjxð Þ −H tjxð Þj j
inf

t∈I,x∈Δ
liminf
n⟶∞

1 − e−H tjxð ÞÀ Á
1 − e−Hn tjxð ÞÀ Á

2
4

3
5

≤M0 sup
t∈I,x∈Δ

f ⋆n tjxð Þ − f ⋆ tjxð Þj j + sup
t∈I,x∈Δ

Hn tjxð Þ −H tjxð Þj j
� �

:

ð64Þ
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The Proposition 3 and Proposition 4 complete the proof
of the Theorem 6.

3.2. Simulation Study. In this subsection, we investigate the
performance of the elasticity function estimator based on the
kernel method. For that, we use certain nonlinear models to
see the effect of themodels on the performance or on the speed

of convergence. These models are defined and named by

Parabolicmodel MPð Þ: T = X2 + σε,
Exponential model MEð Þ: T = exp X − 0:1ð Þ + σε,
Logarithmmodel MLð Þ: T = log X + 1:5ð Þ + σε,

ð65Þ

Figure 2: Curves of theoretical and estimated elasticity functions with different models and sizes.
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where the variable represents noise such that σε andX are inde-
pendent and identically distributed random variables. σε is the
noise, and then, ε follow the normal distribution N ð0, 1Þ, i.e.,
σε⇝N ð0, σ2Þ. Since the random variable T is supposed to be
nonnegative, we choose σ such that T is positive. Thus, each
model corresponds to itsσ. In our study, we chose σ = 0:15with

X⇝N ð0, 1Þ normal distribution for the model MP, σ = 0:90
withX⇝N ð0, 1Þ normal distribution forME and σ = 0:50with
X⇝LN ð0, 1Þ lognormal distribution forML. Like the variable
T, the censoring variable C is assumed to be nonnegative.
Here, the random variable C follows a lognormal distribution
LN ð0, σ2c Þ. Then, we considered the theoretical conditional

𝜏 𝜏

Figure 3: Curves of theoretical and estimated elasticity functions with different censoring rates on the exponential model.
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elasticity function to be estimated, resulting from the lognor-
mal distribution, i.e., the conditional probability density of T
given X = x is that of the lognormal distribution with mean
mTðxÞ = 0:01 − 0:2x and standard deviation σTðxÞ = 3 with
x ∈ f1:50 ; 1:88 ; 1:92g, respectively, for ME, MP, and ML.
The behavior of the estimator is evaluated over a several
parameters, such as the sample size nðn ∈ f20 ; 40 ; 60 ; 80 ;
100gÞ, the percentage of censoring τ controlled by ðσ ; σ2c Þ.
To compare the efficiency or the speed of convergence of
the different models, we have fixed the percentage τ = 45%
for all three models, and to compare the effect of censoring
on the convergence and on the performance of the estimator,
we have set two percentages τ = 15% and τ = 45%.

It is well known that, in the numerical study of nonpara-
metric estimators, the kernel does not have enough influence
on the quality or the convergence of the estimator. Thus, for
our practical study, we have chosen the Gaussian kernel for
the two kernels functions K and N . On the other hand, we
know that the choice of the smoothing parameter has a very
great influence on the performance of nonparametric esti-
mators. Since our estimator depends on a single smoothing
parameter hn, we do this: the smoothing parameter hn is
selected using the empirical mean integrated squared error
(MISE) approach on the compact ½zð1Þ, zðnÞ�, where zð1Þ and
zðnÞ are the minimum and the maximum of the observations,
respectively. Explicitly, the MISE is given by the formula:

MISE hnð Þ = 1
n
〠
n

k=1

ðz nð Þ

z 1ð Þ

e kð Þ
n tjxð Þ − e tjxð Þ

h i2
dt, ð66Þ

for a given bandwidth h and for x fixed, and eðkÞn ðtjxÞ with
k = 1,⋯, n are the estimators enðtjxÞ on the kth sample.
Thus, a scan on the value of hn allows to determine the opti-
mal value ĥn for the bandwidth hn which minimize the
empirical MISE (66). Considering a sequence of tuning
parameter ν with 0:10 ≤ ν ≤ 0:90 and generating several
value of hn = nν, we determine the optimal value of the
smoothing parameter hn by

ĥn = arg min
hn

MISE hnð Þ: ð67Þ

With MATLAB, we were able to determine the optimal

parameter h (ĥ
P
n for MP, ĥ

L
n for ML, and ĥ

E
n for ME) and

we calculated the residual mean squared error (RMSE) to
compare the speed of convergence of the three models stud-
ied and also to compare the effect of censorship rates. The
residual mean square error is given by

RMSE = 1
n
〠
n

k=1
en ykjxð Þ − e ykjxð Þð Þ2, ð68Þ

where ðykÞ1≤k≤n is a sequence of random observations from
the chosen models. The numerical results obtained are
grouped in Tables 1 and 2 as well as their corresponding
graphical representations (Figures 2 and 3).

4. Conclusion

In this article, we have shown that the elasticity function is
monotonically decreasing and we have constructed a kernel
estimator. The objective of this article is to show that the
elasticity function is monotonic for distributions with sup-
port in ℝ+. Then, try to build a nonparametric estimator,
to study its almost sure convergence or its strong consis-
tency, and finally to make a numerical study in order to
see the adequacy with the theory. Numerically, we notice
that the ME model has a higher convergence speed than
the others. In addition, we note that when the censorship
rate is higher, its impact on convergence is very visible when
the sample size is less than 100. Remember that the lack of a
calculator led us not to test the sample sizes greater than 100
such as 150, 200, and 500 because with a size n = 100, the com-
putation time with our machine is 44,743 seconds. It should
also be noted that with the objectives being to find the direc-
tion of variation of the elasticity function and to construct an
estimator, in our next article, we will study the asymptotic nor-
mality of this estimator to deduce a theoretical and numerical
study on the central limit theorem (CLT).

Data Availability

The numerical data simulated using MATLAB and R software
with three models (parabolic, exponential, or logarithm) used
to support the conclusions of this study are not real data.
These data are included in the main file of the article, more
precisely the Simulation Study paragraph of the article.
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