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Giardiasis is among the ignored zoonotic illnesses accorded by the World Health Organization that is caused by Giardia duodenalis.
The disease is ignored regardless of the harm it causes to people and other creatures. In this paper, a mathematical model for giardiasis
illness transmission is formed, which considers sickness carriers and control measures such as screening, treatment, and sanitation of
the environment around people. In the assessment, the basic reproduction number, R0, which is used for analyzing the local stability of
the equilibria is determined using the state-of-the-art next-generation matrix, while the Metzler constancy speculation is used to show
the overall adequacy of the global stability of the equilibrium point free from the disease. In addition, a Lyapunov function has been
used to study the stability of the endemic equilibrium point. The assessment of parameters is performed to explore the limits that
significantly influence the transmission components of the disease disorders using the normalizing sensitivity index method. The
result revealed that the recruitment rate is the most sensitive limit to the reproduction number. The environment-human
interaction parameter is the second influential factor in the transmission of giardiasis in the community. In the same manner, the
outcomes recommend that carriers assume an expected part in the rate of giardiasis subsequently; disregarding them could risk
endeavors to control the pestilence. Besides, the mathematical recreation of the model shows that a mix of each of the three
interventions fundamentally affects the control of giardiasis. In this way, we advise implementing the strategies simultaneously in
endemic areas to effectively stop the spread of the giardiasis disease in humans.

1. Introduction

Giardiasis is a digestive contamination brought about by a
parasite called Giardia lamblia, Giardia gastrointestinal, or
Giardia duodenalis. The main cause of diarrhea in children
below the age of five is Giardia protozoan parasites, particu-
larly in poor countries. The life cycle of Giardia normally
begins with the ingestion of cysts that are located in food
and water contaminated by host feces. The transmission of
diarrhea increases by using unsafe water and inadequate
sanitation and hygiene during food preparation [1]. It is
worth noting that only one excretion of the infected person
can release as much as 109 cysts, while with only 10 cysts,
giardiasis can begin in the community [2, 3]. At present,
there are eight groups of genes from A to H that are recog-

nized for giardiasis, but only A and B are species that are
unfavorable for humans, and other genotypes C to H mostly
infect animals. Symptoms during infections might include
severe diarrhea, nutrient malabsorption, cognitive and
developmental defects, fever, itchy skin, weight loss, stomach
cramps, greasy poop that can float, an upset stomach, or
nausea, to mention a few [4, 5].

The parasite infects both developing and developed
countries, with widespread in developing countries. Accord-
ing to the World Health Organization, this disease has been
designated as an ignored Diseases Initiative in September
2004 for its high burden and association with poverty [6].
The incidence of giardiasis worldwide is estimated to be
2 8 × 108 cases per year. Around 200 million people have
been detected with giardiasis symptoms due to poor
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sanitation and access to safe drinking water in developing
countries. The high incidence of disease in developing coun-
tries is due to the fact that most African countries are facing
difficulties with accurately identifying, detecting, and report-
ing infectious diseases as a result of remote communities,
poor transport, and a shortage of qualified health workers
and laboratory facilities for accurate diagnosis [5, 7].

The risk of giardiasis contamination accelerates with the
consumption of raw food. That is why international recom-
mendations provide innocuousness in food preparations,
like practicing appropriate hand hygiene for protection
against protozoan parasites and maintaining food packed
or closed. Also, it is insisted on separating raw from cooked
food, using purified or boiled water, and making sure that
food is cooked at a temperature of more than 70°C [8, 9].

A substantial contribution has been made in mathemat-
ics modeling for a better understanding of the epidemiology
and dynamics of diseases, e.g., giardiasis. Saul and Nyerere
[10] formulate a giardiasismathematical model that includes
humans, domestic animals, and contaminated environments
in order to assess the dynamics of the disease. The results
showed that the transmission from individual to individual
is the most significant in the dynamics of giardiasis. The
giardiasis mathematical model describing the Giardia trans-
mission dynamics in rural Australia has also been developed
by Waters et al. [16]. The study showed that the endemic
infection of an animal with zoonotic protozoa can lead to
epidemic infections in humans, although there is no
human-to-human transmission. These findings demonstrate
the importance of transmissible zoonoic species via environ-
mental reservoirs. In addition, Li et al. [11] developed a
mouse model of infection to investigate immunity against
secondary infections caused by Giardia duodenalis. The
study suggests that, because of the emergence of robust
immunity to reinfection, an effective giardiasis vaccine can
be developed in adult mouse models. Despite a number of
studies looking at the dynamics of this disease, giardiasis is
still affecting many people in poor countries. To achieve
the eradication of this disease, current control interventions
need to be assessed. Thus, if we are to eradicate or curb the
disease, there is a need to assess the present control interven-
tions. Until now, there are no previous studies that have con-
sidered screening, treatment, and sanitation interventions to
study the dynamics of giardiasis. The purpose of the study is
thus to gain insight into the impact of screening, treatment,
and sanitation on giardiasis transmission dynamics.

The order of the manuscript is as follows: the model is
formulated in Section 2, with a dynamical analysis of the
mode in Section 3. The model sensitivity analysis with its
interpretation has been done in Section 4. Finally, we per-
formed numerical simulation and discussion in Section 5,
which leads us to the conclusion of Section 6.

2. Model Description and Formulation

The human population is subdivided into five groups,
including susceptible individuals S t , exposed individuals
E t , infected individuals I t , carrier or asymptomatic indi-
viduals A t , and the removed population R t , as described

in the basic model in Figure 1. The susceptible state is the
state that involves healthy individuals who are at risk of
getting giardiasis disease. The exposed population involves
individuals who have been infected but have not yet devel-
oped clinical symptoms of the disease and are incapable of
infecting other humans. The infectious individuals represent
individuals who are actively infected and manifest all clinical
symptoms of the disease. The infected individuals are capa-
ble of infecting other individuals through unhygienic inter-
actions as well as shedding giardiasis pathogens into the
environment (food and water). The infected individual
under this transmission is a key player in the zoonotic
aspect. Transmission of Giardia normally occurs through
the ingestion of infectious cyst stages that are excreted in
human or animal feces. Cysts may be present in water, food,
or utensils contaminated with feces from humans and
animals. The infected individual can then pollute the envi-
ronment (food and water) with the Giardia through touch-
ing and making it unhygienic if proper controls like
washing hands before eating and improper handling of food
are not well maintained [12, 13]. The fourth state is the
asymptomatic population A t . This population includes
carrier individuals who do not show clinical signs of the dis-
ease but transmit the Giardia pathogens to other individuals
through shedding pathogens into the environment in direct
or indirect ways. The recovered population resents individ-
uals who recover after gaining immune-supportive services,
treatment, and/or naturally. The Giardia population is rep-
resented by the letter G t . The human population is
recruited by birth and the loss of immunity at the rates Λ
and ρ, respectively. A susceptible human acquires pathogens
from both the environment and infected individuals with the
force of infections λ that follows the standard mass action
principle. Therefore, λ is the combination of three forces of
infection which is defined as follows:

λ = β1I + β2A + β3G S 1

The parameter beta1 represents the direct transmission
of the disease pathogens from the infected person to the sus-
ceptible person; beta2 represents the direct transmission of
the disease pathogens from the carrier person to the suscep-
tible person. The indirect pathway of disease pathogens from
the environment to a susceptible person is represented by a
parameter beta3. Once infected, the Giardia pathogens incu-
bate for 1–4 weeks in the human intestine and thus progress
and become infectious at the incubation rate 1 − α κE, and
the remaining portion, ακE, becomes asymptomatic to the
disease. Also, a portion pI and σI recovers naturally and
by treatment, respectively, while ηI become asymptomatic
or carriers of the Giardia pathogens. In addition, the
infected human can die at the rate ψ. The carrier or asymp-
tomatic person can recover naturally at the rate γ and die at
the rate δ. The general population is subjected to screening
in order to identify any potential carriers; consequently,
the identified carriers join the infectious population at the
rate ν. The recovered individuals are reduced by the individ-
uals who become susceptible after losing immunity at the
waning rate ρ. Moreover, both the infected and asymptomatic
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individuals can shed Giardia pathogens at the rates ε and d,
respectively. All human populations are also naturally reduced
at the rate μ. The Giardia population G grows through depos-
ited pathogens from both the infected and asymptomatic
human populations into the environment. The cysts are
reduced from the environment by death at a rate of τ.

From the descriptions of the parameters in Table 1 and
the model in Figure 1, a system of the nonlinear ordinary
differential equations is formulated as follows:

dS
dt

=Λ + ρR − β1I + β2A + β3G S − μS,

dE
dt

= β1I + β2A + β3G S − μ + κ E,

dI
dt

= 1 − α κE + νA − η + ψ + μ + p + σ I,

dA
dt

= ακE + ηI − μ + ν + δ + γ A,

dR
dt

= p + σ I + γA − μ + ρ R,

dG
dt

= εI + dA − τ + χ G,

2

together with nonnegative initial conditions

S 0 > 0,
E 0 ≥ 0,
I 0 ≥ 0,
R 0 ≥ 0,
A 0 > 0,
G 0 > 0

3

2.1. The Basic Characteristics of the Giardiasis Model

2.1.1. Positivity of the Solution. The positivity and bounded-
ness of the solutions of the model system (2) are tested to see
if the model is well-posed and biologically meaningful [17,
18]. Here, it suffices to see that all variables of the model
are positive and well-posed in the invariant region.

Ω = S, E, I, A, R,G ∈ℝ6
+ S + E + I + A + R ≤N , where

N is the total human population, and, hence the following
Lemma:

Lemma 1. Given S 0 ≥ 0, E 0 , I 0 > 0, A 0 > 0, R 0 > 0,
and G 0 ≥ 0, the region Ω = S t , E t , I t , R t ,G t ∈
ℝ6 of the model (1) positively invariant ∀t ∈ℝ+.

Proof. The model is biologically meaningful if state variables
are nonnegative ∀t > 0. Now, by using the first equation of
the model (2)

dS t
dt

=Λ + ρR t − λS t − μS t , 4

we then have

dS t
dt

≥ − λ + μ S t , 5

integrating equation (5) using separation of variables tech-
niques results in

S t ≥ S 0 e− λ+μ t 6

Therefore, using equation (6) as t⟶∞, S 0 ≥ 0. Sim-
ilarly, other model variables can be shown and verified non-
negative. This concludes that all equations of the model
system (2) have nonnegative solutions such that for ∀t ≥ 0,
we have S t ≥ 0, E t ≥ 0, I t ≥ 0, R t ≥ 0, and G t ≥ 0.

2.1.2. Invariant Region. According to proposition 4.1 of [18,
19], it immediately follows that ℝ6 is positively invariant for
the dynamical system (2) which means that any trajectory

pR

𝛼𝜅E

λS
E

⋲I

I

G

(p + 𝜎)I

𝜂I

A

dA

𝛾A
𝜐A RS

𝜇S
𝜇E

𝜇R(𝜇 + 𝛿)A
(𝜇 + 𝜓)I

(τ + 𝜒)G

Λ (1 − 𝛼)𝜅E

Figure 1: A flowchart on the transmission of giardiasis disease in human and unclean environment. The solid line shows a transfer of
persons from one compartment to another. The dotted lines show cysts being excreted by infected and carrier individuals in the
environment. Another dotted arrow shows the force of infections from the unhygienic environment (food and water) to the susceptible
human population.
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starting from the region ℝ6
+ remains inside ℝ6

+ for the time
t = 0, T .

Proof. Using the dynamical system (2) and initial conditions
x0 ∈Ω, the sum of human population N t is as follows:

N t = S t + E t + I t + A t + R t ,
dS t
dt

+ dE t
dt

+ dI t
dt

+ dA t
dt

+ dR t
dt

=Λ − μN − ψI − δA

7

Using the positivity of the solution, at disease-free, ψ =
δ = 0. Hence,

dN t
dt

≤Λ − μN t 8

As a result, the general formula for equation (8) is given
as follows in applying the variable separation technique:

N t ≤
Λ

μ
+ N 0 −

Λ

μ
e−μt 9

As t⟶∞, then lim
t⟶t

N t ≤Λ/μ that is 0 ≤N t ≤Λ/μ.
Hence, the initial conditions are bounded in time t = 0, T .

Also, by considering the Giardia pathogens population,
we have

dG t
dt

= εI t + dA t − τG t ≤
εΛ

μ
− τG t 10

Hence, the solution 0 ≤ lim
t⟶∞

inf G t ≤ lim
t⟶∞

sup G t

≤ εΛ/μ. This shows that all solutions (S t , E t , I t , A t ,
R t , and G t ) of the model system (2) are attracted in the
invariant region Ω = S, E, I, A, R ∈ℝ5

+ : 0 ≤N t ≤Λ/μ ;G
t ∈ℝ1

+ 0 ≤G ≤ εΛ/μ . Therefore, model system (2) is
biologically meaningful.

3. Dynamical Analysis of the Model

3.1. Equilibrium Point Free from Disease. The model system
(2) has a unique equilibrium point free from disease which is
obtained by putting all of the infected classes equal to zero,
that is, at an equilibrium point free from disease E = I = A
= 0 and G = 0. Thus, solving the system is given by

E0 = S0, E0, I0,A0, R0,G0 = Λ

μ
, 0, 0, 0, 0, 0 11

Table 1: Parameter descriptions of the model system (2).

Parameter Description

Λ Recruitment rate of human

ρ Warning rate of removed individuals

β1 The rate of transmission between susceptible and infected humans

β2 The rate of transmission among asymptomatic and susceptible human beings

β3 Transmission rate between the environment and the susceptible human

K Half saturation constant in the environment

κ Incubation period of pathogens in human

μ Natural death rate of human

α Probability of becoming infectious to giardiasis

ν Progression rate of asymptomatic individuals to infectious state/screening rate

γ Natural recovery rate of asymptomatic human

η Progression rate of infected to asymptomatic stage in human

ψ Dearth of infected human due to giardiasis

p Natural recovery rate of infected human

δ Dearth rate of asymptomatic human due to giardiasis

ε Shedding rate of Giardia by the infected human into the environment

d Shedding rate of Giardia by the asymptomatic human into the environment

τ Death rate of the pathogens from the environment

σ Treatment rate of the infectious individuals

χ Sanitation rate of the environment
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3.2. Basic Reproductive Number. Thebasic reproductive num-
berR0 referred to the number of secondary cases caused by one
infectious person during the entire [20] in a totally susceptible
population. Using the next-generation operator method, the
basic reproduction number is calculated. It shall be
obtained by taking a dominant eigenvalue from the matrix.
It is achieved by taking a lead eigenvalue from the matrix

∂F i E0
∂xj

∂V i E0
∂xj

−1

= FV−1, 12

where F i is the rate of appearance of new infection in com-
partment i, V i =V −

i −V +
i is the transfer rate of individuals

from one compartment i to another, with V −
i denoting the

rate of transfer of individuals out of the compartment i, V +
i

is the rate of transfer of individuals into compartment i, xj is
the infected classes (E, I, A, and G) of model system (2), and
E0 is the disease-free equilibrium point. For the model system
(2), the infectious classes are as follows:

dE
dt

= β1IS + β2AS + β3GS − ϕ1E,

dI
dt

= ϕ5κE + νA − ϕ2I,

dA
dt

= ακE + ηI − ϕ3A,

dG
dt

= εI + dA − ϕ6G,

13

where

ϕ1 = μ + κ,

ϕ2 = η + ψ + μ + p + σ,

ϕ3 = μ + ν + δ + γ,

ϕ4 = μ + ρ,

ϕ5 = 1 − α,

ϕ6 = τ + χ,

ϕ7 = p + σ

14

From the system (13), we obtain

F i =

β1IS + β2AS + β3GS
0
0
0

,

V i =

ϕ1E

ϕ2I − ϕ5κE − γA

ϕ3A − ακE − ηI

ϕ6G − εI − dA

15

Then, the partial derivative ofF i andV i with respect to E,
I, A, and G evaluated at E0 gives

F =

0 Λβ1
μ

Λβ2
μ

Λβ3
μ

0 0 0 0
0 0 0 0
0 0 0 0

,

V =

ϕ1 0 0 0
−κϕ5 ϕ2 −γ 0
−ακ −η ϕ3 0
0 −ε −d ϕ6

,

16

V−1 =

ϕ2ϕ3ϕ6 − γηϕ6
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

0 0 0

αγκϕ6 + κϕ3ϕ5ϕ6
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

ϕ1ϕ3ϕ6
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

γϕ1ϕ6
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

0

ακϕ2ϕ6 + ηκϕ5ϕ6
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

ηϕ1ϕ6
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

ϕ1ϕ2ϕ6
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

0

αγεκ + dαϕ2κ + dηϕ5κ + εϕ3ϕ5κ

ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

dηϕ1 + εϕ3ϕ1
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

γεϕ1 + dϕ2ϕ1
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

ϕ1ϕ2ϕ3 − γηϕ1
ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

17
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It follows that the reproduction number R0 is the spec-
tral radius of the next-generation matrix ρ FV−1 given as

R0 = Re1 + Re2 + Re3, 18

given that

Re1 =
β1Λ αγκϕ6 + κϕ3ϕ5ϕ6
μ ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

,

Re2 =
β2Λ ακϕ2ϕ6 + ηκϕ5ϕ6
μ ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6

,

Re3 =
β3Λ αγκε + αdκϕ2 + dηκϕ5 + κεϕ3ϕ5

μ ϕ1ϕ2ϕ3ϕ6 − γηϕ1ϕ6
,

19

where Rei i = 1, 2, 3 are partial reproduction numbers
induced by being susceptible to infectious transmission,
susceptible to asymptomatic carrier transmission, and
susceptible to environmental transmission, respectively.

3.3. Local Stability of an Equilibrium Point Free from
Disease. Local stability of an equilibrium point free from
the disease E0 is determined by first finding the Jacobian
matrix of the model system (2) concerning each state vari-
able (i.e., S, E, I, A, R, and G). Based on the sign of the real
parts of the eigenvalues evaluated at E0 of the Jacobian
matrix, the stability of the model system (2) will be evalu-
ated. The partial differentiation of the model system (2) with
respect to S, E, I, A, R, and G at E0 gives the Jacobian matrix
J E0 as

J E0 =

−μ 0 −
Λβ1
μ

−
Λβ2
μ

ρ −
Λβ3
μ

0 −ϕ1
Λβ1
μ

Λβ2
μ

0 Λβ3
μ

0 κϕ5 −ϕ2 ν 0 0
0 ακ η −ϕ3 0 0
0 0 ϕ7 γ −ϕ4 0
0 0 ε d 0 −ϕ6

,

20

where ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, and ϕ7 have the same mean-
ing as in (14).

From matrix (20), the first columns have diagonal
entries. Therefore, the diagonal −μ is the first eigenvalue of
the Jacobian matrix (20). Thus, excluding that column and
row containing λ1 = −μ, the rest eigenvalues are calculated.
Then, the reduced 5 × 5 matrix from (20) becomes

ξ =

−ϕ1
Λβ1
μ

Λβ2
μ

0 Λβ3
μ

κϕ5 −ϕ2 ν 0 0
ακ η −ϕ3 0 0
0 ϕ7 γ − μ + ρ 0
0 ε d 0 −ϕ6

21

Again, it is easily seen that one eigenvalue of matrix ξ is
λ2 = μ + ρ. After omitting the diagonal entry of matrix ξ, the
matrix (20) is reduced to 4 × 4 matrix and becomes

Ψ =

−ϕ1
Λβ1
μ

Λβ2
μ

0Λβ3
μ

κϕ5 −ϕ2 ν 0
ακ η −ϕ3 0
0 ε d 0 − ϕ6

, 22

and the characteristic polynomial for the remaining matrix
(22) is

D λ = λ4 + b1λ
3 + b2λ

2 + b3λ + b4 23

The corresponding Routh-Hurwitz matrix of the
polynomial (23) is

D4 =

b1 b3 0 0
1 b2 b4 0
0 b1 b3 0
0 1 b2 b4

, 24

where

b1 = ϕ1 + ϕ2 + ϕ3 + ϕ6,

b2 = −
αβ2κΛ

μ
−
β1κΛϕ5

μ

− ην + ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3 + ϕ1ϕ6 + ϕ2ϕ6 + ϕ3ϕ6,

b3 = −
αβ1κΛν

μ
−
αβ2κΛϕ2

μ
−
β2ηκΛϕ5

μ
−
β1κΛϕ3ϕ5

μ

−
β3κΛεϕ5

μ
−
αβ3dκΛ

μ
− ηνϕ1 + ϕ1ϕ2ϕ3

−
αβ2κΛϕ6

μ
−
β1κΛϕ5ϕ6

μ

− ηνϕ6 + ϕ1ϕ2ϕ6 + ϕ1ϕ3ϕ6 + ϕ2ϕ3ϕ6,

b4 = ϕ1ϕ2ϕ3ϕ6 − ηνϕ1ϕ6 1 − R0 25
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The equilibrium point free from the disease is locally
asymptotically stable if the principal leading minors of
Dn are all positive for n = 1, 2,⋯, 4 Thus,

ΔD1 = b1 = ϕ1 + ϕ2 + ϕ3 + ϕ60,

ΔD2 =
b1 b3

1 b2
= b1b2 − b3,

ΔD3 =

b1 b3 0

1 b2 b4

0 b1 b3

= −b4b
2
1 + b2b3b1 − b23,

ΔD4 =

b1 b3 0 0

1 b2 b4 0

0 b1 b3 0

0 1 b2 b4

= −b4b
2
3 + b1b2b4b3 − b21b

2
4

26

Then, the remaining four eigenvalues of the Jacobian
matrix (22) have negative real parts if they satisfy the
Routh-Hurwitz criteria [21, 22], that is, ΔDi0, i = 1, 2,
⋯, 4. It can be noted that ΔD10 since ϕ1 + ϕ2 + ϕ3 + ϕ6
0 0, ΔD20 if b1b2b3, ΔD30 if, b1b2b3b

2
1b4 + b23 and ΔD4

0 if R01 and b1b2b3b4b4b
2
3 + b21b

2
4.

The following theorem is therefore established.

Theorem 2. If the leading minors of ΔDn are all positive,
then the equilibrium point free from the disease E0 of the
model system (2) is locally asymptotically stable when R01.

Biologically, it indicates that giardiasis can be eliminated
from the population provided that the size of the popula-
tions of the model (2) is on the basis of the attraction of
an equilibrium point free from the disease E0 when R01, that
is to say, an outbreak does not arise when infectious human
beings are introduced into a community of susceptible indi-
viduals. By contrast, if R01 it is surely that giardiasis in the
population, then it means that this disease is persisting.

3.4. Global Stability of the Equilibrium Point Free from the
Disease. The approach of Castillo-Chavez is applied to analyze
the global stability of the disease-free equilibrium solution of
the model system (2) (Castillo et al. [23]). Using this approach,
the model system (2) can be written as follows:

dHn

dt
=D1 Hn −HE0

+D12Hi,

dHi

dt
=D2Hi,

27

where Hn stands for classes of at-risk individuals such as Hn

= S, R T . Hi stands for carrier and infected individuals, that
is, Hi = E, I, A,G T , where T stands for transpose of Hn
and Hi while HE0 is Hn at equilibrium point free from the
disease E0. The matrices D1 and D12 are obtained by differen-
tiating the nontransmitting equations of the model system (2)
to nontransmitting and transmitting state variables, respec-
tively. The equilibrium point free from the disease E0 is glob-
ally asymptotically stable if the real part of the eigenvalues of
D1 is negative and D2 is a Metzler matrix (that is, the off-
diagonal elements of D2 are nonnegative). Thus, from the
model system (2)

D1 =
−μ ρ

0 −ϕ4
,

D12 =
0 −

Λβ1
μ

−
Λβ2
μ

−
Λβ3
μ

0 ϕ7 γ 0

28

The eigenvalues of D1 are −μ and − μ + ρ . Furthermore,
the matrix D2 is obtained by differentiating the transmitting
equations of the model system (2) with respect to transmitting
variables at the equilibrium point free from the disease, and it
is given as follows:

D2 =

−ϕ1
Λβ1
μ

Λβ2
μ

Λβ3
μ

ϕ5κ −ϕ2 ν 0
ακ η −ϕ 0
0 ε d −ϕ6

29

It can be noted, that the eigenvalues of D1 are all negative
and real. In addition, the matrix  

2 D is a Metzler matrix since
all of its off-diagonal elements are positive. This shows that at
the equilibrium point free from the disease, dHn/dt =D1 Hn
−HEo +D12Hi is globally asymptotically stable.

3.5. The Endemic Equilibrium Point. The giardiasis present
equilibrium point is a point E∗ = S∗, E∗, I∗, R∗, A∗ that
found when the model system (2) is set to zero and solved
simultaneously [24] in conditions that I∗ ≠ 0, E ≠ 0, and R∗

≠ 0, where

S∗ = Λϕ1ϕ3 + ρϕ1ϕ3ϕ7I
∗ + ργηϕ1I

∗ + ργακϕ1λ
∗

ϕ1ϕ3ϕ4 λ∗ + μ
,

E∗ = λ∗

ϕ1
,

I∗ = ϕ1ϕ2ϕ3νακλ
∗

ϕ1ϕ2ϕ3 − ϕ3ϕ5κλ
∗ ,
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R∗ = ϕ1ϕ7ϕ3I
∗ + γηϕ1I

∗ + γκλ∗

ϕ1ϕ3ϕ4
,

G∗ = εϕ1ϕ3I
∗ + dηϕ1I

∗ + dακϕ6λ
∗

ϕ1ϕ3ϕ6
,

A∗ = ηϕ1I
∗ + αkλ∗

ϕ1ϕ3
,

λ∗ = β1I
∗ + β2A

∗ + β3G
∗ S∗ 30

3.6. Stability of Endemic Equilibrium Point

Theorem 3. The endemic equilibrium point E∗ of the model
system (2) is globally asymptotically stable if R0 > 1.

Proof. Consider the following Lyapunov function as used in
[18, 24] with state variables x∗ and nonnegative Lyapunov
constants wi i = 1, 2,⋯, 6 ,

L =w1 S − S∗ ln S∗

S
+w2 E − E∗ ln E∗

E

+w3 I − I∗ ln I∗

I
+w4 A − A∗ ln A∗

A

+w5 R − R∗ ln R∗

R
+w6 G −G∗ ln G∗

G
,

31

then the first derivative of function L is

dL
dt

=w1 1 − S∗

S
dS
dt

+w2 1 − E∗

E
dE
dt

+w3 1 − I∗

I
dI
dt

+w4 1 − A∗

A
dA
dt

+w5 1 − R∗

R
dR
dt

+w6 1 − G∗

G
dG
dt

32

By using the model system (2), equation (32) is
expressed as follows:

dL
dt

=w1 1 − S∗

S
Λ + ρR − β1I + β2A + β3G S − μS

+w2 1 − E∗

E
β1I + β2A + β3G S − ϕ1E

+w3 1 − I∗

I
ϕ5κE + νA − ϕ2I

+w4 1 − A∗

A
ακE + ηI − ϕ3A

+w5 1 − R∗

R
ϕ7I + γA − ϕ7R

+w6 1 − G∗

G
εI + dA − ϕ6G

33

At the equilibrium point, we have the following constants:

Λ = β1I
∗ + β2A

∗ + β3G S∗ + μS∗ − ρR∗,

μ + κ E∗ = β1I
∗ + β2A

∗ + β3G
∗,

ϕ2I
∗ = ϕ5κE + νA,

ϕ3A
∗ = ακE + ηI,

ϕ7R
∗ = ϕ7I + γA,

ϕ6G = εI + dA

34
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Figure 2: Dynamics of the infectious population for R0 > 1 Using different initial values of I t , the phase portraits converge to the endemic
equilibrium point.
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By inserting the constants (34) into equation (33) we
then have

dL
dt

=w1μS 1 − S∗

S
S∗

S
− 1 −

λ − λ∗

μS

− ϕ2w2E 1 − E∗

E

2
− ϕ2w3I 1 − I∗

I

2

− ϕ3w4A 1 − A∗

A

2
− ϕ7w5R 1 − R∗

R

2

− ϕ6w6G 1 − G∗

G

2

35

The function (35) became less than or equal to zero
when S = S∗, E = E∗, I = I∗, A = A∗, R = R∗, and G =G∗, fol-
lowing the methodology employed in [18, 24, 25]. As a
result, the endemic equilibrium point, E∗ , is the singleton
with the largest compact invariant set in the domain for
which dL/dt = 0. We demonstrate that the endemic equilib-
rium point E∗ is globally asymptotically stable in the invari-
ant set Ω for R0 > 1 as noted in the work of Mukandavire
et al. [25] and LaSalle [26]. Numerically, Figure 2 shows
the phase portraits that are asymptotically converging to
the endemic point.

4. Sensitivity Analysis

In this section, we study the robustness of the model
parameters through sensitivity analysis using the basic
reproduction number R0. The analysis helps identify which
parameters require greater attention to successfully man-
age the disease at the appropriate moment. The sensitivity
index of each parameter of the model (2) is analytically
calculated through the normalized forward sensitivity
index [24, 27–29]. For example, the sensitivity index of
R0 for Λ is obtained using the formula ΓR0

Λ = ∂R0/∂Λ ×Λ
/R0 = +1. Sensitivity indices for other parameters of R0
can be computed using a similar method. It can be noticed
from Table 2 that the parameters Λ, β1, β2, β3, η, ε, and d
have positive sensitivity indices stipulating that the
increasing of these parameters leads to the increase of R0

and thus brings a chance of disease outbreak. On the other
hand, the parameters κ, μ, α, ν, γ, ψ, p, δ, τ, σ, and χ
have negative indices. This indicates that increasing any
parameter in this group while maintaining other parame-
ters constant lowers the basic reproduction number, there-
fore lowering the burden of disease in the population. The
R0 decreases with an increase in the parameters catering
for control measures (ν, σ, and χ). This suggests that a
suitable combination of sanitation, screening for asymp-
tomatic carriers, and treatment of symptomatic patients
as an optimal control measure is required to address the
problem of giardiasis in the population.

Table 2: Sensitivity index values of R0 using parameter values in Table 3.

Parameter Sensitivity index value Parameter Sensitivity index value

Λ +1 η +0.0963

β1 +0.36 ψ -0.0098

β2 +0.6692 p -0.0703

β3 +0.9996 δ -0.0179

κ -0.2047 ε +0.1482

μ -0.9999 d +0.5162

α -0.0297 τ -0.4942

ν +0.0928 σ -0.5982

γ -0.1721 χ -0.3295

Table 3: Parameter values of the model system (2).

Parameter Parameter value per day Source

Λ 0.036-0.06 [10, 14]

ρ 0.0001 Assumed

β1 0.00035 [10, 15]

β2 0.00034 Assumed

β3 0.00034 [10]

κ 0.0001 Assumed

μ 0.00004215 [16]

α 0.001 Assumed

ν 0.0025 Assumed

γ 0.5-0.04 [10]

η 0.1 Assumed

ψ 0.00001 Assumed

p 0.0714 [10]

δ 0.001 Assumed

ε 0.25 [10]

d 0.0025 Assumed

τ 0.03 [15]

σ 0.01 Assumed

χ 0.5 Assumed
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5. Numerical Simulation and Discussion

In this section, the numerical simulations of the model
system (2) were carried out using the MATLAB ODE45
solver. In order to illustrate the specific behavior of the
model, the initial conditions of the state variables have
been arbitrarily chosen and are as follows: S 0 = 4000, E
0 = 3000, I 0 = 2000, A 0 = 1000, R 0 = 800, and G 0
= 50000. To support some of the analytical results previ-
ously presented, various graphical representations are pre-
sented and discussed. Since many of the parameters were
not readily available, we used those we found in the liter-
ature review while making assumptions about others for

the sake of illustration. Parameter values in Table 3 were
used to perform the simulations.

5.1. Effect of Treatment Intervention. Figures 3(a)–3(c)
demonstrate that with an increased treatment rate, σ,
there is a corresponding decrease in exposed individuals,
E t . It can also be witnessed from Figure 3(b) that an
increase in treatment rates σ tends to significantly lower
the infection related to this disease in infectious individ-
uals, I t . On the other hand, it can be observed that
adequate treatment indicates that more individuals can
recover; see Figure 3(c).
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Figure 3: (a–c) The effects of treatment on different epidemiological classes of giardiasis transmission dynamics.
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5.2. Effects of Sanitation Intervention. Figures 4(a) and 4(b)
show that as the sanitation rate increases from 1% to 60%,
there is a significant decline in the number of both infectious
and carrier individuals. Also, it can be noticed that as the
sanitation rate increases, the number of giardiasis pathogens
in the surroundings decreases, as depicted in Figure 4(c).
The results suggest the significance of undertaking sanitation
if we are to end this epidemic.

5.3. Effect of Screening Intervention. Here, we go over how
screening interventions can help prevent the giardiasis dis-
ease. Figure 5(a) demonstrates that an increase in screen rate

ν results in a drop in carriers, as those who are being
screened eventually enroll in the infectious (see
Figure 5(b)) class and receive treatment. This finding sug-
gests that if giardiasis carriers are not detected and treated,
the disease will spread more quickly. Similarly, it can be
observed from Figure 5(c) that, as a result of more screening,
giardiasis is greatly minimized as screened individuals
receive medical attention, which also reduces environmental
contamination.

5.3.1. Effect of Combined Interventions. The impact on the
transmission dynamics of giardiasis disease of using
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Figure 4: (a–c) The effects of sanitation on different epidemiological classes of giardiasis transmission dynamics.
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Figure 5: (a–c) The effects of screening on different epidemiological classes of giardiasis transmission dynamics.
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sanitation and screening as complementary to treatments is
shown in Figure 6. The data showed that there was a larger
reduction in the number of isolated individuals when all
three interventions were used at the same time, as opposed
to applying two interventions simultaneously.

6. Conclusion

A deterministic mathematical model for the transmission
dynamics of giardiasis has been developed and analyzed in
the present work. The model, which considers both direct
and indirect transmission, consists of five compartments:
susceptible human, exposed human, infectious human,
recovered human, and the Giardia population. The model
is a system of ordinary differential equations that include
multiple interventions in the presence of carriers. We calcu-
lated the reproduction number using the next-generation, R0
, and utilized it to ascertain the stability of the DFE point. It
was determined that the DFE point was unstable when R01
and locally asymptotically stable for R01. The DFE point
was globally asymptotically stable when R01, according to
the Metzler stability theory. The developed model includes
intervention strategies such as sanitation, treatment, and
carrier screening. Our results demonstrate that including
these control measures in the model provides more major
benefits for the eradication of the Giardia epidemic. The
analysis of the model parameters reveals that hygiene,
screening, and treatment control strategies have a negative
value as their increase reduces the risk of transmission of
disease in the community. As control interventions increase,
model simulations demonstrate that the number of infec-
tious individuals decreases more rapidly over time. In addi-

tion, numerical simulations demonstrate that when all three
interventions are combined (treatment, screening, and sani-
tation), they significantly reduce the prevalence of disease in
the population faster than with just two interventions. Since
the model has shown that treatment, screening, and sanita-
tion facilities have a major influence in reducing the number
of giardiasis cases in the community, we thus recommend
that these areas be enhanced in endemic regions. Since the
model presented in this work is not all-inclusive, its underly-
ing assumptions can be modified to take into consideration
additional treatments, including public health education,
which is essential in increasing illness awareness. In addi-
tion, the assumptions might be loosened to accommodate
the cost-effectiveness tactics of the control.
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