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In this study, the steady hydromagnetic flow of two immiscible couple stress fluids through a uniform porous medium in a
cylindrical pipe with slip effect is investigated analytically. Essentially, the flow system is divided into two regions, region I and
region II, which occupy the core and periphery of the system, respectively. The flow is driven by a constant pressure gradient
applied in a direction parallel to the cylinder’s axis, and an external uniform magnetic field is applied in the direction
perpendicular to the direction of fluid motion. Instead of the classical no-slip condition, the slip velocity along with vanishing
couple stress boundary conditions is taken on the surface of the rigid cylinder, and continuity conditions of velocity, vorticity,
shear stress, and couple stress are imposed at the fluid-fluid interface. The governing equations are modeled using the fully
developed flow conditions. The resulting differential equations governing the flow in the two regions are converted to
nondimensional forms using appropriate dimensionless variables. The nondimensional equations are solved analytically, and
closed-form expressions for the flow velocity, flow rate, and stresses are derived in terms of the Bessel functions. The impacts
of several parameters pertaining to the flow such as the magnetic number, couple stress parameters, Darcy number, viscosity
ratio, Reynolds number, and slip parameter on the velocities in respective regions are examined and illustrated through graphs.
The flow rate’s numerical values are also calculated for different fluid parameters and displayed in tabular form. It is found
that increasing the magnetic number, viscosity ratio, Reynolds number, and slip parameters decreases the velocities of the
fluids whereas increasing the couple stress parameter, Darcy number, and pressure gradient increases fluid velocities. The
results obtained in this paper show an excellent agreement with the already existing results in the literature as limiting cases.

1. Introduction

Over the last few decades, the study of non-Newtonian fluids
has received a lot of attention as these types of fluids fre-
quently occur in many industrial, scientific, and technologi-
cal processes. Many important complex and real fluids
which include molten metals, polymeric liquids, slurries,
blood, liquid crystals, lubricants, soaps, greases, gelatin,
and paints belong to this family of fluids. This class of fluids
does not follow the Newtonian fluid theory as they possess
microstructure and a nonsymmetric stress tensor in their
fluid structure. For this reason, several new microcontinuum

theories [1–3] pertaining to non-Newtonian fluids have been
developed for describing the rheological behavior of numer-
ous complex fluids. The couple stress fluid, initiated by
stokes [4], is one of the popular theories of polar fluids that
considers the possibility of polar effects such as the presence
of couple stresses and body couples in the fluid medium. The
flow behavior of various fluids that contain a substructure
such as lubricants with small amounts of additives, poly-
mers, colloidal suspensions, liquid crystals, animal and
human blood, polymer-thickened oils, muddy water, and
electrorheological and synthetic fluids can be modeled using
the couple stress fluid theory [5]. A couple stress fluid model
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has been successfully employed to study the mechanism of
peristalsis [6, 7]. The couple stress fluid theory widely used
in modeling the flow of biological fluids such as synovial
fluids [8–11] and blood [12–14].

In realistic situations, most of the flow problems arising
in the industries, manufacturing process, geology, ground-
water hydrology, reservoir mechanics, biomechanics, mag-
netofluid dynamics, geophysics, plasma physics, and so on
occur with two or more fluids of different densities/viscosi-
ties flowing immiscibly in the same channel or cylindrical
pipe. Examples of these systems are the flow of several
immiscible oils through the bed of rocks or soils, the flow
in the rivers with several industrial fluids, blood flow in the
arteries, the flow of air and fuel droplets in combustion
chambers, the flow of air and exhaust gases at engine outlets,
gas and Petrolia flow in pipes of oil, water-air flows around
ship halts, etc. These are referred to as multiphase flows in
the literature. Owing to its wide areas of applications, several
researchers have studied multiphase fluid flows. Chaturani
and Samy [15] as well as Sinha and Singh [16] investigated
the effects of couple stresses on blood flow, and many other
authors (Valanis and Sun [17], Sharan and Popel [18], and
Garcia and Riahi [19]) discussed blood flow considering it
as a two-phase flow in which they have assumed blood as a
couple stress fluid. Besides its application in blood flow,
the study of multiphase flow has several important applica-
tions in various fields of engineering and science. Umavathi
et al. [20] analytically solved the problem of flow through a
horizontal channel with a couple stress fluid sandwiched
between viscous fluid layers. They discussed the effects of
various flow parameters and concluded that the couple stress
parameter influences the flow. Umavathi et al. [21] made a
detailed study on the flow and heat transfer of a couple stress
fluid in contact with a Newtonian fluid. Abbas et al. [22]
analyzed the hydromagnetic mixed convective two-phase
flow of couple stress and viscous fluids in an inclined chan-
nel. They obtained closed-form solutions of velocity and
temperature profiles by using the perturbation method.
Devakar et al. [23] studied the unsteady flow of couple stress
fluid sandwiched between Newtonian fluids through a chan-
nel. There are many other works concerning multiphase
fluid flows (see Packham and Shall [24], Rao and Usha
[25], Chamkha et. al [26], Umavathi et al. [27, 28], and
Umavathi and Shekar [29]).

In view of its numerous applications, the researchers at
present are engaged in exploring immiscible flows of fluids
through a porous medium under various circumstances.
Umavathi et al. [30] studied the problem of the convective
flow of two immiscible fluids (couple stress and viscous
fluids) through a vertical channel. They obtained an approx-
imate solution by using the regular perturbation method.
Devakar and Ramgopal [31] presented analytical solutions
for the fully developed flows of two immiscible couple stress
and Newtonian fluids through a nonporous and porous
medium in a horizontal cylinder. Srinivas and Murthy [32]
studied the flow of two immiscible couple stress fluids
between two permeable beds. They obtained an exact solu-
tion to the considered problem. An analysis of the Poiseuille
flow of immiscible micropolar-Newtonian fluids through

concentric pipes filled with the porous medium was done
by Yadav et al. [33]. Other important studies in this direc-
tion include Chamkha [34], Harmindar and Singh [35],
Singh [36], and Srinivas et al. [37]. Though many
researchers have worked on the flow of immiscible fluids
through porous channels, the flow of immiscible non-
Newtonian fluids through porous cylinders is reasonably
underexplored despite its applicability in blood flows, chem-
ical engineering, crude oil extraction, etc. One such type of
problem is going to be discussed in this paper.

Magnetohydrodynamics (MHD) is also an interesting
and important area of modern engineering sciences and
involves the interaction of magnetic forces and electrically
conducting fluids. The application of magnetic fields to
the flow of immiscible fluids originates from reducing the
flows for many medical and industrial purposes. The study
of the hydromagnetic flow of moving fluids through a
porous medium is currently a subject of great interest
owing to plentiful applications in industrial, engineering,
and medical devices. Owing to these applications, several
studies have been conducted to examine the effect of mag-
netic fields on the flows of immiscible fluids. In light of
this, Vajravelu et al. [38] studied the hydromagnetic
unsteady flow of two conducting immiscible fluids between
two permeable beds. Malashetty et al. [39] analyzed the
magnetohydrodynamic two-fluid convective flow and heat
transfer in an inclined composite porous medium. Raju
and Nagavalli [40] studied the unsteady two-layered fluid
flow and heat transfer of conducting fluids in a channel
between parallel porous plates under a transverse magnetic
field. Ansari and Deo [41] investigated the effect of a mag-
netic field on the two immiscible viscous fluids flowing in a
channel filled with a porous medium. The influence of an
inclined magnetic field on the Poiseuille flow of immiscible
micropolar-Newtonian fluids through the horizontal
porous channel where the permeability of both the regions
of the horizontal porous channel has been taken differently
was discussed by Yadav and Jaiswal [42]. In another paper,
Jaiswal and Yadav [43] investigated the influence of a mag-
netic field on the Poiseuille flow of immiscible Newtonian
fluids through a highly porous medium. More recently,
Kumar and Agrawal [44] studied the magnetohydrody-
namic pulsatile flow and heat transfer of two immiscible
couple stress fluids in a porous channel.

A majority of the studies regarding the flow of immisci-
ble non-Newtonian fluids quoted above were carried out by
imposing the no-slip boundary condition. However, several
theoretical and experimental studies [45–50] reveal that slip
exists at the solid boundary. So, for flows containing fluids
through solid boundaries, consideration of a velocity slip is
more realistic and appropriate. Recently, Punnamchandar
and Fekadu [51] investigated the effects of slip and uniform
magnetic field on the flow of immiscible couple stress fluids
in a porous medium channel. In another paper, Punnam-
chandar and Fekadu [52] considered the problem of the
effects of slip and inclined magnetic field on the flow of
immiscible fluids (couple stress fluid and Jeffrey fluid) in a
porous channel. It is observed that the effects of slip and
magnetic field on the flow of immiscible couple stress fluids

2 Journal of Applied Mathematics



through a porous medium in a cylindrical pipe have not
been discussed yet.

Keeping this in view the wide potential applications of
immiscible couple stress fluids flow and the importance of
exact solutions described above, the goal of the current paper
is to determine exact solutions for the steady hydromagnetic
flow of two immiscible couple stress fluids through a porous
medium in a cylindrical pipe with slip effect. The impacts of
different flow parameters on the velocity field and flow rate
are investigated. The slip factor in fluid flows makes the
problem even more realistic and interesting, which moti-
vated us to consider this problem. The practicality and the
complexities involved due to the porosity and cylindrical
nature of the geometry also make the work presented in this
paper novel.

2. Basic Equations

The basic equations describing the flow of couple stress fluid
including a Lorentz force are (Stokes [4, 5]) as follows:

Continuity equation (conservation of mass):

∂ρ
∂t

+∇: ρq!
� �

= 0: ð1Þ

Momentum equation (conservation of momentum):

ρ
Dq!

Dt
= ρ f

!
+ 1
2∇ × ρ c!

� �
−∇P − μ∇ × ∇ × q! − η∇

× ∇ × ∇ × ∇ × q! + λ + μð Þ∇ ∇·q!
� �

+ J
!
× B

!
,

ð2Þ

where the scalar quantity ρ is the couple stress fluid density
and P is the fluid pressure at any point. The vectors q, f , and
c are the velocity, body force per unit mass, and body couple

per unit mass, respectively. The term J
!
× B

!
in equation (2)

is the Lorentz force (electromagnetic body force) in which

J
!

is the electric current density and B
!

is the total magnetic
field.

The force stress tensor τij (Stokes [5]) that arises in the
theory of couple stress fluids is given by

τij = −P + λ∇:q!
� �

δij + 2μdij +
1
2 εijk m,k + 4ηωk,rr + ρck½ �:

ð3Þ

The couple stress tensormij (Stokes [5]) that arises in the
theory has the linear constitutive relation

mij =
1
3mδij + 4η′ωj,i + 4ηωi,j: ð4Þ

In the above, ωi,j is the spin tensor, ρck is the body cou-
ple vector, dij is the components of the rate of shear strain,
δij is the Kronecker symbol, eijk is the Levi-Civita symbol,
and comma denotes covariant differentiation.

The material constants λ and μ are the viscosity coeffi-
cients, and η and η′ are the couple stress viscosity coeffi-
cients satisfying the constraints

μ ≥ 0, 3λ + 2μ ≥ 0, ηj j ≥ η′, η′ ≥ 0: ð5Þ

There is a length parameter l = ffiffiffiffiffiffiffi
η/μp

which is a charac-
teristic measure of the polarity of the couple stress fluid,
and this parameter is identically zero in the case of nonpolar
fluids.

3. Formulation of the Problem

The physical model concerns an axisymmetric fully devel-
oped hydromagnetic flow of two immiscible couple stress
fluids flowing through a porous medium in a horizontal cir-
cular pipe of radius R0. Owing to the fluids’ immiscibility,
there are two separate regions of fluid flow: region I, or the
core region, and region II, or the periphery region. The flow
geometry of the problem is depicted in a cylindrical polar
coordinate system ðr, θ, zÞ with the origin at the center of
the tube and common axis of the cylindrical regions taken
as the z-axis, as shown in Figure 1. Region I ð0 ≤ r ≤ RÞ is
occupied with couple stress fluid with density ρ1, shear vis-
cosity μ1, and couple stress viscosity η1, comprising the core
region of the pipe whereas region II ðR ≤ r ≤ R0Þ is occupied
by a different couple stress fluid having density ρ2, shear vis-
cosity μ2, and couple stress viscosity η2, comprising the
peripheral region of the pipe. The motion of the fluids in
both regions is caused by a constant pressure gradient
applied in a direction parallel to the cylinder’s axis, i.e., z
-axis, and an external uniform magnetic field of strength
B0 directed perpendicular to the flow direction is also
applied.

To develop the governing equations for the considered
model, the following presumptions are taken in the analysis
of the current study:

(i) The fluids are considered incompressible, and the
flow is assumed to be steady, laminar, and fully
developed

(ii) Both the fluid regions are saturated with the uni-
form porous media of permeability k

(iii) The Lorentz force is the only body force acting on
the fluids, with no body couples

(iv) The magnetic Reynolds number of the flow is
assumed to be very small, and no external voltage
is applied so that the induced magnetic field is
neglected and the Hall effect of magnetohydrody-
namics is assumed to be negligible

Under the assumptions made, the vector forms of con-
servation equations governing the flow of steady, incom-
pressible immiscible couple stress fluids through a porous
cylinder in the presence of a transverse magnetic field can
be written in the following form (Punnamchandar and
Fekadu [51] and Kumar and Agrawal [44]):
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Continuity equations:

∇:q!i = 0: ð6Þ

Momentum equations:

−∇P − μi∇ × ∇ × q!i − ηi∇ × ∇ × ∇ × ∇

× q!i + J
!

i × B
!
−
μ

k
q!i = 0,

ð7Þ

where i = 1, 2 denotes distinct fluid regions.
The additional term −μ/kq!i in the governing equation

(7) is due to the porous medium (Chamkha [34]) where k
is the permeability of the porous medium and q!iði = 1, 2Þ
is the velocity vector.

The current density J
!
i is expressed by Ohm’s law (Gold

[53]):

J
!
i = σi E

!
+ q!i × B

!� �
, ð8Þ

where σiði = 1, 2Þ and E
!

stand for electrical conductivity of
the fluids for regions I and II and electric field, respectively.

Here, E
!
= 0 as there is no external electric field, and jB!j

= B0 because of our assumption that the induced magnetic
field is too less (assumed to be zero) as compared to the
external magnetic field. Hence, the Lorentz force is given by

F
!

i = J
!
i × B

!
= σi q!i × B

!� �
× B

!
= −σiB

2
0 q
!
i: ð9Þ

Due to the unidirectional and symmetric nature of the
flow, the fluid velocity vectors for both regions are to be in
the form q!i = ð0, 0, uiðrÞÞ where i = 1, 2. These choices of
velocities automatically satisfy the continuity equation (6)
in respective flow regions. Under the above conditions,
equation (7) governing the flow of the couple stress fluids
in the respective regions can be written as follows:

In region I ð0 ≤ r ≤ RÞ (core region), we have

−η1∇
4u1 + μ1∇

2u1 −
μ1
k

+ σ1B
2
0

� �
u1 =

∂P
∂z

: ð10Þ

In region II ðR ≤ r ≤ R0Þ (peripheral region), we have

−η2∇
4u2 + μ2∇

2u2 −
μ2
k

+ σ2B
2
0

� �
u2 =

∂P
∂z

, ð11Þ

where ∇2 is the differential operator defined as

∇2 = d2

dr2
+ 1
r
d
dr

: ð12Þ

From equations (3) and (4), the force stress tensor τij
and couple stress tensor mij of the couple stress fluids are
given by

τrz ið Þ =
d
dr

μiui − ηi∇
2ui

Â Ã
, i = 1, 2, ð13Þ

mrθ ið Þ = ηi
d2ui
dr2

−
ηi ′
r
dui
dr

, i = 1, 2: ð14Þ

To determine u1ðrÞ and u2ðrÞ, the boundary and inter-
face conditions have to be specified.

3.1. Boundary and Interface Conditions. The description and
mathematical form of the boundary conditions are pre-
sented in this section.

Instead of the usual no-slip condition, the slip velocity is
taken on the surface of the rigid cylinder. In 1823, Navier
[54] suggested a general boundary condition that presents
the possibility of slipping at the solid boundary. This condi-
tion states that the tangential velocity of the fluid relative to
the solid at a point on its surface is proportional to the tan-
gential stress acting at that point. The proportionality that
characterizes the surface’s “slipperiness” is known as the slip
length.

In view of the higher-order nature of governing equa-
tions, additional boundary conditions are required to find
the solution. In addition to the Navier slip boundary condi-
tion, we use the Stokes (Stokes [5]) boundary conditions to
solve the governing equations of the flow under consider-
ation. The Stokes boundary condition assumes that the cou-
ple stresses vanish on the boundary of the solid.

The slip boundary condition along with zero couple
stresses on the boundary is not sufficient to find the solution
to the problem. A characteristic feature of the two-fluid flow
problem is the coupling across the fluid/fluid interface. The
fluid layers are mechanically coupled via the transfer of
momentum across the interface. By the virtue of coupling
of fluid layers at the fluid-fluid interface through momentum
transfer, the continuity conditions for the velocity, vorticity,
couple stress, and shear stress are adopted at the fluid-fluid
interface. Therefore, the following physically realistic and
mathematically consistent boundary and interface condi-
tions are used for the considered physical model:

(i) The slip condition along with vanishing couple
stresses are taken at the boundary of cylindrical pipe
r = R0

Following Punnamchandar and Fekadu [51], the slip
condition gives

u2 R0ð Þ = ±γ⋆s τrz 2ð Þ R0ð Þ, ð15Þ

where γ⋆s such that ð0 ≤ γ⋆s <∞Þ corresponds to the slip
coefficient at the upper boundary (Navier [54]). Note that
as γ⋆s = 0, the classical no-slip case is recovered (Devakar
and Ramgopal [31]).
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Following Srinivas and Murthy [32], the vanishing of
couple stress on the surface of the cylinder leads to

mrθ 2ð Þ R0ð Þ = 0: ð16Þ

(ii) The continuity conditions for the velocity, vorticity,
shear stress, and couple stress are adopted at the
fluid-fluid interface. Following Kumar and Agrawal
[44], this implies

u1 rð Þ = u2 rð Þ at r = R, ð17Þ

du1 rð Þ
dr

= du2 rð Þ
dr

at r = R, ð18Þ

τrz 1ð Þ rð Þ = τrz 2ð Þ rð Þ at r = R, ð19Þ

mrθ 1ð Þ rð Þ =mrθ 2ð Þ rð Þ at r = R: ð20Þ

(iii) Regularity condition: the axisymmetric flow sug-
gested that the velocity of the fluid is finite on the
axis of the cylinder r = 0. Following Devakar and
Ramgopal [31], this implies

u1 rð Þ is finite at r = 0: ð21Þ

To solve equation (10) and equation (11) under the
boundary conditions (equation (15)–equation (21)), we
make use of the following nondimensional quantities:

r⋆ = r
R
,

z⋆ = z
R
,

u⋆i =
ui
u0

,

P⋆ = P

ρ1u
2
0
,

s = R0
R
,

γs =
γ⋆s μ2
R

,

ð22Þ

where u0 and R are characteristic velocity and radius for the
given flow model, respectively, and i = 1, 2 denotes distinct
fluid regions.

Using the dimensionless variables in equations (10) and
(11), the nondimensional form of the governing equations
(after dropping the stars) is as follows:

For the core region I ð0 ≤ r ≤ 1Þ, we have

∇4u1 − s21∇
2u1 + s21

1
Da

+M2
� �

u1 = s21ReG: ð23Þ

For the peripheral region II ð1 ≤ r ≤ sÞ, we have

∇4u2 − s22∇
2u2 + s22

1
Da

+M1
2

� �
u2 =

s22ReG
nμ

, ð24Þ

where

s2i =
μiR

2

ηi
,

M2 = B2
0R

2σ1
μ1

,

M1 =M

ffiffiffiffiffi
nσ
nμ

s
,

nσ =
σ2
σ1

,

nμ =
μ2
μ1

,

Da = k

R2 :

ð25Þ

In the above equations, G = −∂P/∂z is a constant pres-
sure gradient, Re = ρ1UR/μ1 is the Reynolds number, s2i =
μiR

2/ηi is the couple stress parameter, Da = k/R2 is the Darcy
number, nσ = σ2/σ1 is the conductivity ratio, M = B0Rffiffiffiffiffiffiffiffiffiffiffi

σ1/μ1
p

is the magnetic number, and nμ = μ2/μ1 is the vis-
cosity ratio.

From equations (13) and (44), the nondimensional
forms of the shear stresses and couple stresses are

τrz ið Þ =
u0μi
R

d
dr

ui −
1
s2i
∇2ui

� �
, i = 1, 2, ð26Þ

mrθ ið Þ =
u0ηi
R2

d2ui
dr2

−
η′i
ηi

1
r
dui
dr

" #
, i = 1, 2: ð27Þ

4. Solution of the Problem

4.1. Flow Velocity in the Two Regions. The methodology used
to get the general solution of the nondimensional differential
equations (23) and (24) governing the fluids flow is as fol-
lows: finding the complementary solution ucðrÞ of the
homogenous differential equation and then determining
the particular solution upðrÞ of the nonhomogeneous differ-
ential equation. Thus, the general solution can be con-
structed as

ui rð Þ = uc rð Þ + up rð Þ: ð28Þ

Region I ð0 ≤ r ≤ 1Þ:
Let

α21 + α22 = s21, ð29Þ
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α21α
2
2 = s21

1
Da

+M2
� �

: ð30Þ

Then, the equation (23) governing the fluid in region I
can be written as

∇2 − α21
À Á

∇2 − α22
À Á

u1 = ReGs21, ð31Þ

where

α21, α22 =
s21 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s41 − 4s21 1/Dað Þ +M2ð Þ

p
2 : ð32Þ

First, we consider the corresponding homogeneous dif-
ferential equation

∇2 − α21
À Á

∇2 − α22
À Á

u1 = 0: ð33Þ

The solution of (33) is obtained by using the superposi-
tion principle such that

u 1ð Þ
c rð Þ = y1 rð Þ + y2 rð Þ, ð34Þ

where

∇2 − α21
À Á

y1 = 0, ð35Þ

∇2 − α22
À Á

y2 = 0: ð36Þ
Further, the differential equations (35) and (36) can be

reduced to the following modified Bessel differential equa-
tions:

r2
d2yi
dr2

+ 1
r
dyi
dr

− α2i r
2yi = 0, i = 1, 2: ð37Þ

The solutions to the above two equations (35) and (36),
respectively, are

y1 rð Þ = C1I0 α1rð Þ + C2K0 α1rð Þ, ð38Þ

y2 rð Þ = C3I0 α2rð Þ + C4K0 α2rð Þ: ð39Þ
Inserting the expressions (38) and (39) into (34), we

obtain the general solution of equation (33) as

uc rð Þ = C1I0 α1rð Þ + C2K0 α1rð Þ + C3I0 α2rð Þ + C4K0 α2rð Þ:
ð40Þ

The particular solution of the differential equation (31)
can be easily obtained as

yp rð Þ = ReGs21
α21α

2
2
: ð41Þ

Therefore, the general solution of the differential equa-
tion (31), after substituting (40) and (41) in equation (28),
becomes

u1 rð Þ = C1I0 α1rð Þ + C2K0 α1rð Þ + C3I0 α2rð Þ

+ C4K0 α2rð Þ + ReGs21
α21α

2
2
,

ð42Þ

where C1, C2, C3, and C4 are arbitrary constants.
Region-II ð1 ≤ r ≤ sÞ:
Let

β2
1 + β2

2 = s22, ð43Þ

β2
1β

2
2 = s22

1
Da

+M1
2

� �
: ð44Þ

Then, equation (24) governing fluid flow in region II can
be written as

∇2 − β2
1

À Á
∇2 − β2

2
À Á

u2 =
Re Gs22
nμ

, ð45Þ

where for region II,

β2
1, β2

2 =
s22 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s42 − 4s22 1/Dað Þ +M1

2ð Þ
p

2 : ð46Þ

Therefore, similarly solving equation (45) by the method
stated above, we get

u2 rð Þ =D1I0 β1rð Þ +D2K0 β1rð Þ +D3I0 β2rð Þ

+D4K0 β2rð Þ + ReGs22
nμβ

2
1β

2
2
, ð47Þ

where D1, D2, D3, and D4 are arbitrary constants.
The closed-form solutions of the differential equations

(31) and (45) are given by equations (42) and (47) contain
modified Bessel functions. Here, I0ðα1rÞ, I0ðα2rÞ, I0ðβ1rÞ,
and I0ðβ2rÞ and K0ðα1rÞ, K0ðα2rÞ, K0ðβ1rÞ, and K0ðβ2rÞ
are the first kind modified Bessel’s functions of zero order
and the second kind modified Bessel’s functions of zero
order, respectively.

4.2. Stress in the Two Regions. From equation (26), the non-
dimensional tangential stress of the fluid in region I is given
by

τrz 1ð Þ =
μ1u0
R

�
α1 −

α31
s21

� �
I1 rα1ð ÞC1 − K1 rα1ð ÞC2ð Þ

+ α2 −
α32
s21

� �
I1 rα2ð ÞC3 − K1 rα2ð ÞC4ð Þ

�
:

ð48Þ
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From equation (27), the couple stress in region I is given
by

mrθ 1ð Þ =
η1u0
R2

"
α21I0 rα1ð Þ − α1

r
1 + η1 ′

η1

 !
I1 rα1ð Þ

 !
C1

+ α21K0 rα1ð Þ + α1
r

1 + η1 ′
η1

 !
K1 rα1ð Þ

 !
C2

+ α22I0 rα2ð Þ − α2
r

1 + η1 ′
η1

 !
I1 rα2ð Þ

 !
C3

+ α22K0 rα2ð Þ + α2
r

1 + η1 ′
η1

 !
K1 rα2ð Þ

 !
C4

#
:

ð49Þ

Similarly, tangential stress in region II given by equation
(26) becomes

τrz 2ð Þ =
μ2u0
R

"
β1 −

β3
1
s22

 !
I1 rα1ð ÞD1 − K1 rβ1ð ÞD2ð Þ

+ β2 −
β3
2
s22

 !
I1 rβ2ð ÞD3 − K1 rβ2ð ÞD4ð Þ

#
:

ð50Þ

The couple stress of fluid in region II given by equation
(26) becomes

mrθ 2ð Þ =
η2u0
R2

"
β2
1I0 rβ1ð Þ − β1

r
1 + η2 ′

η2

 !
I1 rβ1ð Þ

 !
D1

+ β2
1K0 rβ1ð ÞÀ

+ β1
r

1 + η2 ′
η2

 !
K1 rβ1ð Þ

!
D2

+ β2
2I0 rβ2ð Þ − β2

r
1 + η2 ′

η2

 !
I1 rβ2ð Þ

 !
D3

+ β2
2K0 rβ2ð Þ + β2

r
1 + η2 ′

η2

 !
K1 rβ2ð Þ

 !
D4

#
:

ð51Þ

To obtain a complete solution to the concerned problem,
we have to determine the constants Ci and Di for i = 1, 2, 3,
4. Ci andDi for i = 1, 2, 3, 4 are calculated numerically by solv-
ing the algebraic system obtained from the boundary
conditions.

4.3. Determination of Arbitrary Constants. Nondimensiona-
lizing the boundary conditions (15)–(21), we have the
following:

(i) Since themodified Bessel function of the second kind,
i.e., KnðrÞ, is not finite at a singular point r = 0, there-
fore for finite values of u1ðrÞ along the axis of a cylin-
drical pipe, the coefficient of KnðαirÞ for n = 0, 1 and
i = 1, 2 should be zero. Thus, we have

C2 = C4 = 0: ð52Þ

(ii) The slip and vanishing of couple stress boundary
conditions at r = s give

u2 sð Þ = ±γsτrz 2ð Þ sð Þ, ð53Þ

mrθ 2ð Þ sð Þ = 0, ð54Þ
where γs = γ⋆s μ2/R is the nondimensional slip
parameter

(iii) Continuity of velocities, vorticites, shear stresses
and couple stresses at the fluid-fluid interface r = 1
are as follows:

u1 rð Þ = u2 rð Þ, ð55Þ

du1 rð Þ
dr

= du2 rð Þ
dr

, ð56Þ

τrz 1ð Þ 1ð Þ = τrz 2ð Þ 1ð Þ, ð57Þ
mrθ 1ð Þ 1ð Þ =mrθ 2ð Þ 1ð Þ: ð58Þ

Substituting equation (42) and equations (47)–(51) in
equations (52)–(58), the linear system of an algebraic equa-
tion with six unknown arbitrary constants C1, C3, and Di
for i = 1, 2, 3, 4 involved in the solution of the problem is

Pressure
gradient (G)

Ro Region-II: Couple stress fluid

Magnetic field of intensity Bo

r

z
Region-I: Couple stress fluidR

Figure 1: Geometrical configuration.
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formed. Using Mathematica software, all constants C1, C3,
and Di for i = 1, 2, 3, 4 have been evaluated uniquely using
the above boundary conditions. Owing to the lengthy
expressions of these constants, they are not presented here.

4.4. Total Flow Rate. The nondimensional volumetric flow
rate across the whole cross-section of a porous cylinder is
given by (Devakar and Ramgopal [31])

Q =
ð2π
0

ð1
0
ru1dr +

ð2
1
ru2dr

� �
dθ: ð59Þ

Invoking the values of u1ðrÞ and u2ðrÞ from equations
(42) and (47) in equation (59) and integrating, we obtain

Q = 2π
"
C1

I1 α1ð Þ
α1

+ C3
I1 α2ð Þ
α2

+ ReDaG

2 1 +DaM2À Á
Á sI1 sβ1ð Þ − I1 sβ1ð Þð ÞD1

β1
− sK1 sβ1ð Þ − K1 sβ1ð Þð ÞD2

β1

+ sI1 sβ2ð Þ − I1 sβ2ð Þð ÞD3
β2

− sK1 sβ2ð Þ − K1 sβ2ð Þð ÞD4
β2

+ ReGDa s2 − 1
À Á

2nμ 1 +DaM2
1

À Á
#
:

ð60Þ

5. Results and Discussion

Analytical solutions for the steady, laminar hydromagnetic
flow of two immiscible and incompressible couple stress
fluids through porous medium in a horizontal cylinder have
been obtained. The numerical evaluation of the analytical
expressions for velocity profile and flow rate are done for
different flow parameters values, such as the magnetic num-
ber, couple stress parameter, Reynolds number, Darcy num-
ber, ratio of viscosities, slip parameter, and pressure gradient
using Mathematica software package. The numerical values

for each case, when a particular parameter is varied, are
obtained by keeping Da = 1:0, M = 1, Re = 2, nσ = 1:0, nμ =
1:1, γs = 0:1, G = 10, s1 = 1, s2 = 1, and s = 2.

The variations of velocity profiles for different flow
parameters are shown graphically through Figures 2–9.
Figure 2 illustrates the influence of the magnetic number
M on the velocities. It is observed that the fluid velocities
in both regions are decreasing with an increment of mag-
netic number M. This finding suggests that the magnetic
field applied to the flow system retards the motion of the
fluid. This is consistent with the fact that a strong magnetic
field applied to the flow literally increases the Lorentz
force, which strongly opposes the fluid’s motion and lowers
the velocities. This result is validated by the works of
Ansari and Deo [41], Kumar and Agarwal [44], and Pun-
namchandar and Fekadu [51, 52]. Further, as M⟶ 0,
the magnetic number loses its properties and behaves as
a normal flow in the absence of a magnetic field (Srinivas
and Murthy [32]).
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Figure 2: Variations of uiðrÞði = 1, 2Þ against M when Da = 1:0,
Re = 2, nσ = 1:0, nμ = 1:1, γs = 0:1, G = 10, s1 = 1, s2 = 1, and s = 2.
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The effects of couple stress parameters s1 and s2 on the
flow are displayed in Figures 3–4. The effect of the couple
stress parameter s1 on the flow velocity profiles is seen in
Figure 3. In this case, we notice that a rise in the couple
stress parameter s1 causes the fluid’s velocity to increase in
both flow areas. Figure 4 shows a similar trend when varied
with the couple stress parameter s2. Therefore, we draw the
conclusion that raising couple stress parameters si for i = 1
, 2 causes fluid velocities to increase in both flow areas. This
result validates our problem with the previous works of
Umavathi et al. [20], Devakar et al. [23], Srinivas and
Murthy [32], Srinivas et al. [37], and Kumar and Agarwal
[44]. Since s2i = μiR

2/ηi, an increase in couple stress viscosi-
ties ηi for i = 1, 2 corresponds to a decrease in the couple
stress parameters si. As a result, increasing couple stress
coefficients ηi for i = 1, 2 has a retarding effect on fluid veloc-
ities. This indicates that the presence of couple stress in the
fluid reduces the velocity of a fluid. This is due to the fact
that physically, the couple stresses expend some energy to
rotate the particles, which reduces the particles’ velocity.
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Figure 5: Variations of uiðrÞði = 1, 2Þ with Da when M = 1, Re = 2,
nσ = 1:0, nμ = 1:1, γs = 0:1, G = 10, s1 = 1, s2 = 1, and s = 2.
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Figure 6: Variations of uiðrÞði = 1, 2Þ with nμ when Da = 1:0, M
= 1, Re = 2, nσ = 1:0, γs = 0:1, G = 10, s1 = 1, s2 = 1, and s = 2.
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Furthermore, it is to be noted that in the absence of couple
stresses, that is, as ηi ⟶ 0, the parameter si ⟶∞, the
properties of couple stress in the fluid vanish and the case
of classical viscous fluid can be obtained from this work
(Umavathi et al. ([28–30]), Abbas et al. [22], Devakar et al.
[23], and Devakar and Ramgopal [31]). Therefore, it is
understood that the velocity in the case of couple stress fluid
is lower than that of a Newtonian fluid.

The effect of Darcy’s number Da on the fluid velocities is
shown in Figure 5. From this figure, it is noticed that the
velocities in both fluid regions increase with the increase of
Darcy’s number Da. Since Da = k/R2, an increase in Darcy’s
number corresponds to an increase in the permeability (per-
meable parameter k) of the porous medium, which supports
the flow. Lesser permeability causes a slighter fluid velocity
to be observed inside the flow medium occupied by the fluid.
Thus, it may be concluded that an increase in the Darcy’s
number enhances fluid velocities. This is due to the reason
that the additional flow resistance that the porous structure
offers diminishes as Da (permeable parameter k) gradually
increases. A similar kind of behavior can be found in Refs.
Srinivas and Murthy [32], Srinivas et al. [37], Punnamchan-
dar and Fekadu [51], and Kumar and Agarwal [44].

Figure 6 describes the effect of the ratio of viscosities nμ
on velocity profiles. Figure 6 reveals that as the viscosity ratio
nμ increases, the velocity of the fluid decreases in both flow
regions. This is because as the viscosity ratio nμ increases,
greater flow resistance is provided. As a result, velocity
drops. Therefore, we conclude that an increase in the ratio
of viscosities inhibits fluid motion. A similar view can be
found in the works of Umavathi et al. [21], Umavathi et al.
[30], Srinivas and Murthy [32], and Punnamchandar and

Fekadu [51]. Figure 7 presents the effect of the Reynolds
number on the velocity profile. Thereby, we observe that as
the Reynolds number Re increases, there is a decrease in
the velocities of the fluid in both flow regions. This indicates
that velocity is reduced by the increase of the Reynolds num-
ber Re and our results well agreed with the results of Deva-
kar et al. [23], Devakar and Ramgopal [31], Srinivas and
Murthy [32], and Punnamchandar and Fekadu [51].

Figure 8 represents the velocity profile for the different
values of the pressure gradient. It is observed that with the
increase in G, velocity is increasing in both the fluid regions.
Physically, the more the pressure gradient, the more the fluid
is pushed to generate the flow, which results in an increase in
fluid velocity. Figure 9 displays the effect of the slip param-
eter γs on the fluid flow velocity profiles. Figure 9 shows that
increasing the slip parameter reduces fluid velocity in both
zones. Obviously, fluid slippage has the opposite impact on
fluid motion, and increasing the slip parameter reduces the
velocity significantly in both regions. A similar trend was
observed in the work of Punnamchandar and Fekadu [51,
52]. Furthermore, when the slip parameter is set to zero,
the classical case of no slip is recovered as a special case.

The numerical values of the volume flow rate are com-
puted for various pertinent flow parameters and are pre-
sented in Tables 1–8. The effect of the magnetic number M
on the flow rate is shown in Table 1. From Table 1, we notice
that the total flow rate decreases as the magnetic number M
increases from 0:5 to 2 for fixed values of Da = 1:0, Re = 2,
nσ = 1:0, nμ = 1:1, γs = 0:1, G = 10, s1 = 1, s2 = 1, and s = 2.
Tables 2 and 3 shows the nature of flow rates for different
values of couple stress parameter si, i = 1, 2. From the tables,
we can see that the total flow rate increases with an increase

Table 1: Variations of Qiði = 1, 2Þ and Q with respect to M.

M Q1 Q2 Q

0. 19.6805 20.0851 39.7655

1 15.9975 16.9066 32.904

1.5 12.9213 14.2132 27.1345

2. 10.8443 12.4318 23.2761

Table 2: Variations of Qiði = 1, 2Þ, Q with respect to s1.

s1 Q1 Q2 Q

1 15.9975 16.9066 32.904

2 18.0884 18.7352 36.8237

3 18.5571 19.2242 37.7813

4 18.7069 19.4358 38.1428

Table 3: Variations of Qiði = 1, 2Þ, Q with respect to s2.

s2 Q1 Q2 Q

1 15.9975 16.9066 32.904

2 18.0883 23.0374 41.1257

3 18.6223 25.6862 44.3085

4 18.8456 26.9956 45.8412

Table 4: Variations of Qiði = 1, 2Þ, Q with respect to Da.

Da Q1 Q2 Q

0.1 5.58574 7.23685 12.8226

0.3 10.9187 12.3188 23.2375

0.5 13.3591 14.5399 27.899

0.8 15.2487 16.2378 31.4865

Table 5: Variations of Qiði = 1, 2Þ, Q with respect to nμ.

nμ Q1 Q2 Q

0.5 22.9166 27.7223 50.6389

1. 16.7912 17.9853 34.7765

1.5 13.5173 13.7398 27.2571

2. 11.3849 11.2239 22.6088

Table 6: Variations of Qiði = 1, 2Þ, Q with respect to Re.

Re Q1 Q2 Q

1 16.7912 17.9853 34.7765

2 11.3849 11.2239 22.6088

3 8.71848 8.28735 17.0058

4 7.09974 6.59498 13.6947
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of couple stress parameters si, i = 1, 2. Table 4 demonstrates
the effect of Darcy’s number on the flow rate. From
Table 4, we can see that the total flow rate increases with
an increase in Darcy’s number. Table 5 shows the effect of
the viscosity ratio on the flow rate. The flow rate shows a
decreasing trend with the growth of the viscosity ratio.
Table 6 displays various values of flow rate with respect to
the Reynolds number. It is seen from Table 6 that as the
Reynolds number increases, the total flow rate decreases.
Table 7 represents the flow rate for the different pressure
gradient values. From the table, it is observed that increasing
the pressure gradient increases the volume flow rate across
the pipe cross-section. Table 8 presents the numerical flow
rate data with respect to slip parameter γs. It is observed that
the volume flow rate gets decreased with an increase of slip
parameter γs.

6. Conclusions

The problem of steady, laminar, and fully developed hydro-
magnetic flow of two immiscible couple stress fluids through
a porous medium in a horizontal cylinder under the effect of
the Navier slip boundary condition is considered in the pres-
ent study. The motion is generated by a constant pressure
gradient delivered along the axial direction, i.e., z-axis. The
resulting set of coupled differential equations associated with
the flow of the two fluids subject to the appropriate bound-
ary and interface conditions is solved analytically. Exact
solutions are obtained in terms of the modified Bessel func-
tions. The effects of various physical parameters on the
velocity profiles and total flow rate are studied. The signifi-
cant findings of the current investigation are the following:

(i) Increasing the magnetic number, viscosity ratio,
Reynolds number, and slip parameter reduces fluid
velocities

(ii) The increment of the couple stress parameters,
Darcy number, and pressure gradient enhances the
fluid velocity in both flow regions

Table 8: Variations of Qiði = 1, 2Þ, Q with respect to γs.

γs Q1 Q2 Q

0.05 16.3244 18.5806 34.905

0.1 15.9975 16.9066 32.904

0.15 15.656 15.1585 30.8145

0.2 15.2991 13.3312 28.6303

Table 7: Variations of Qiði = 1, 2Þ, Q with respect to G.

G Q1 Q2 Q

5 7.99873 8.45329 16.452

10 15.9975 16.9066 32.904

15 23.9962 25.3599 49.3561

20 31.9949 33.8132 65.8081

(iii) Increase in the magnetic number, slip parameter,
viscosity ratio, and Reynolds number suppress the
volume flow rate

(iv) Increase in the couple stress parameter, Darcy num-
ber, and pressure gradient promotes volume flow
rate

This work can be extended to the unsteady flow problem
and is also made to include heat transfer/thermal effects. We
would like extend this work by taking various fluids like
micropolar fluid, or any other non-Newtonian fluid.

Nomenclature

B0: Magnetic field intensity
Ci,Di, ði = 1, 2, 3, 4Þ: Arbitrary constants
Da: Darcy number
G: Pressure gradient

J
!
: Current density

M: Magnetic number
mij: Couple stress
P: Fluid pressure at any point
q!iði = 1, 2Þ: Velocity vector in regions I and II

Q: Total volumetric flow rate
Qiði = 1, 2Þ: Flow rate in regions I and II
R: Radius of the inner cylindrical region
Re: Reynolds number
R0: Radius of the cylinder
s: = R0/R, radius ratio
siði = 1, 2Þ: Couple stress parameters
uiði = 1, 2Þ: Velocity components
∇2: The operator d2/dr2 + ð1/rÞðd/drÞ
r, θ, z: Cylindrical coordinates
Inð:Þ,Knð:Þ: Modified Bessel functions
ηi, η′i: Couple stress viscosity coefficients
γs: Nondimensional slip parameter
γ⋆s : Slip coefficient
μiði = 1, 2Þ: Dynamic viscosity coefficients
nμ: Ratio of viscosities
ρiði = 1, 2Þ: Density of fluid in regions I and II
σiði = 1, 2Þ: Electrical conductivity
nσ: Ratio of electrical conductivity
τij: Shear stress.
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