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Based on the equivalent bending stiffness of the viscoelastic cracked beam with open cracks, the corresponding complex frequency
characteristic equations of a Timoshenko viscoelastic cracked beam are obtained by using the method of separation of variables
and the Laplace transform. The vibration characteristics of a viscoelastic Timoshenko cracked beams with the standard linear
solid model and Kelvin-Voigt model are investigated. By numerical examples, the effects of the crack location, crack number,
crack depth, and slenderness ratio on the vibration characteristics of the viscoelastic cracked beams are revealed.

1. Introduction

Viscoelastic materials [1, 2] are widely used in civil, mechan-
ical, and aerospace engineering, etc. In order to investigate
the vibration fatigue characteristics of the viscoelastic struc-
tures, the modal analysis method can be used to derive the
analytical solutions. By using the complex modal method
and Laplace transform, Huang and Huang [3] studied the
free vibration of Timoshenko viscoelastic beams satisfying
the standard linear solid constitutive equations. Considering
the axial forces, Chen et al. [4] studied the vibration charac-
teristics of clamped-clamped Timoshenko viscoelastic beams
constituted by the Kelvin-Voigt model. Peng [5] applied the
complex modal method and differential quadrature method
to analyze the transverse vibration characteristics of the elas-
tic Euler-Bernoulli and Timoshenko beams resting on the
viscoelastic foundation.

Additionally, the correspondence principle, integral
transformation, finite element method (FEM), differential
quadrature method [6, 7], and other numerical methods
[8, 9] were applied to analyze the static and dynamic proper-
ties of the viscoelastic beam structures.

This paper is organized as follows. Firstly, the equivalent
flexural stiffness of the viscoelastic cracked beam established
in reference [10] is used to present the motion equation of a

Timoshenko viscoelastic beam with open cracks. Then, the
general explicit analytical expressions for solving the com-
plex frequency of Timoshenko viscoelastic cracked beams
are derived by using the separation of variables method
and Laplace transform. Finally, by numerical examples, the
effects of the crack location, crack number, crack depth,
and slenderness ratio on the vibration characteristics of the
viscoelastic cracked beams are investigated.

2. Formulation of the Problem

According to the constitutive equation of the standard linear
solid model [1, 2], E1 and E2 are the elastic modulus of elas-
tic elements, η is the viscous coefficient of a viscous element,
and the relaxation modulus YðtÞ and shear modulus GðtÞ
are defined as follows:

Y tð Þ = q0 +
q1
p1

− q0

� �
e− t/p1ð Þ,G tð Þ = Y tð Þ

2 1 + νð Þ , ð1Þ

where the Poisson’s ratio ν is a constant, and

p1 =
η

E1 + E2
, q0 =

E1E2
E1 + E2

, q1 =
E1η

E1 + E2
: ð2Þ
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Suppose that the superscript denotes the Laplace trans-
form of the function with respect to the time t, and the
Laplace transform of relaxation modulus and shear modulus
are given as

�Y sð Þ = q0 + sq1
s 1 + sp1ð Þ ,

�G sð Þ = λ1
q0 + sq1
s 1 + sp1ð Þ , ð3Þ

where the parameter is λ1 = 0:5ð1 + νÞ−1, and s is the Laplace
transform parameter.

The physical model of the viscoelastic beam is given as
shown in Figure 1. Let us consider a viscoelastic rectangular
beam with length L (x -axis), width b (y -axis), and height h
(z -axis). Here, wðx, tÞ and ϕðx, tÞ denote the transverse
deflection of the axial line and rotation angle of the beam
cross section subjected to the distributed transverse load
qðx, tÞ, respectively. Assuming that the crack at the loca-
tion x = xj ðj = 1, 2,⋯,NÞ is always open, and it can be
equivalent as a massless viscoelastic rotational spring.
Then, the equivalent flexural stiffness of viscoelastic
cracked beams in time domain and the Laplace domain
established in reference [10] are given as follows:

M x, tð Þ = − EIð Þe x, 0ð Þ ∂ϕ x, tð Þ
∂x

+ EI
⋅� �

e
x, tð Þ ∗ ∂ϕ x, tð Þ

∂x

� �
,

1
EI
À Á

e
x, sð Þ =

1
�Y sð ÞI + 〠

N

j=1

1
�kj sð Þ

δ x − xj
À Á

,

8>>>><
>>>>:

ð4Þ

where ðEIÞeðx, tÞ is the equivalent bending stiffness of a visco-
elastic beam with open cracks. Here, ðEI ·Þeðx, tÞ is the first
derivative of ðEIÞeðx, tÞ with respect to the time t, and the
asterisk ∗ denotes the convolution, i.e., f ðtÞ ∗ gðtÞ = Ð t

0 f ðτÞg
ðt − τÞdτ.

And by using the expression for the rectangular cross
section beams in references [11, 12], the equivalent stiffness
of crack at the location x = xj with the crack depth dj in time
domain and Laplace domain are given as, respectively,

kj tð Þ = μjIY tð Þ, �kj sð Þ = μjI�Y sð Þ, μj =
0:9/hð Þ dj/h

À Á
− 1

Â Ã2
dj/h
À Á

2 − dj/h
À ÁÂ ÃÈ É ,

ð5Þ

where the moment of inertia of the neutral axis is given as
I =∬

Ω
y2dydz:.

The bending moment and shearing force of a Timo-
shenko viscoelastic cracked beam are written as follow,
respectively,

M x, tð Þ = − EIð Þe x, 0ð Þ ∂ϕ x, tð Þ
∂x

+ EI
⋅� �

e
x, tð Þ ∗ ∂ϕ x, tð Þ

∂x

� �
,

Fs x, tð Þ = κ∬
A

G 0ð Þ −ϕ x, tð Þ + ∂w x, tð Þ
∂x

� �
+ _G tð Þ ∗ −ϕ x, tð Þ + ∂w x, tð Þ

∂x

� �� �
dydz,

8>>><
>>>:

ð6Þ

where κ is the shear correction factor of a Timoshenko
beam, and the cross-section is given as A =∬

Ω
dydz.

Utilizing the Laplace transform, one obtain

�M x, sð Þ = −s EI
À Á

e
x, sð Þ ∂ϕ x, sð Þ

∂x
,

�Fs x, sð Þ = s�G sð ÞκA −ϕ x, sð Þ + ∂�w x, sð Þ
∂x

� �
:

ð7Þ

Substituting equations (3), (5), and (6) into equations (7)
and utilizing the inverse Laplace transform, one obtain

1 + p1
∂
∂t

� �
M x, tð Þ = −I 1 + 〠

N

j=1

1
μj

δ x − xj
À Á" #−1

q0 + q1
∂
∂t

� �
∂ϕ x, tð Þ

∂x
,

1 + p1
∂
∂t

� �
Fs x, tð Þ = λ1κA q0 + q1

∂
∂t

� �
−ϕ x, tð Þ + ∂w x, tð Þ

∂x

� �
:

8>>>><
>>>>:

ð8Þ

The free vibration equations of the Timoshenko visco-
elastic beam [4] are

ρA
∂2w x, tð Þ

∂t2
−
∂Fs x, tð Þ

∂x
= 0,

ρI
∂2ϕ x, tð Þ

∂t2
+
∂M x, tð Þ

∂x
− Fs x, tð Þ = 0:

8>>><
>>>:

ð9Þ

3. Solutions

Introduce the following dimensionless variables and parameters

w∗ =
w
L
, ϕ∗ = ϕ, ξ =

x
L
, ξj =

xj
L
, μ∗j = μjL, t

∗ =
t
T
,

I∗ =
I

L4
, A∗ =

A

L2
, ρ∗ =

ρL2

E1T
2 ,m

∗ =
M

E1L
3 , V

∗ =
Fs

E1L
2 ,

E∗
2 =

E2
E1

, η∗ =
η

E1T
, p∗1 =

η∗2
1 + E∗

2
, q∗0 =

E∗
2

1 + E∗
2
, q∗1 =

η∗

1 + E∗
2
:

8>>>>>>>><
>>>>>>>>:

ð10Þ

The dimensionless forms of equations (8) and (9) are given
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Figure 1: Geometric parameters of a viscoelastic Timoshenko
cracked beam.
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as follows

1 + p∗1
∂
∂t∗

� �
m∗ ξ, t∗ð Þ = −I∗ 1 + 〠

N

j=1

1
μ∗j

δ ξ − ξj
À Á" #−1

q∗0 + q∗1
∂
∂t∗

� �
∂ϕ∗ ξ, t∗ð Þ

∂ξ
,

1 + p∗1
∂
∂t∗

� �
V∗ ξ, t∗ð Þ = λ1κA

∗ q∗0 + q∗1
∂
∂t∗

� �
−ϕ∗ ξ, t∗ð Þ + ∂w∗ ξ, t∗ð Þ

∂ξ

� �
,

8>>>><
>>>>:

ð11Þ

ρ∗A∗ ∂
2w∗ ξ, t∗ð Þ
∂t∗2

−
∂V∗ ξ, t∗ð Þ

∂ξ
= 0, 

ρ∗I∗
∂2ϕ∗ ξ, t∗ð Þ

∂t∗2
+
∂m∗ ξ, t∗ð Þ

∂ξ
−V∗ ξ, t∗ð Þ = 0:

8>>><
>>>:

ð12Þ

Based on the separation of variables method [13], the vibra-
tion solutions [14] can be assumed as

w∗ ξ, t∗ð Þ =W∗ ξð Þeiωt∗ , ϕ∗ ξ, t∗ð Þ =Φ∗ ξð Þeiωt∗ ,
m∗ ξ, t∗ð Þ =M∗ ξð Þeiωt∗ , V∗ ξ, t∗ð Þ = F∗

s ξð Þeiωt∗ :

(
ð13Þ

Here in i =
ffiffiffiffiffiffi
−1

p
, ω is the complex eigenfrequency, and

the real part and imaginary part of ω are the natural fre-
quency and decrement coefficient [15, 16], respectively.
W∗ðξÞ, Φ∗ðξÞ, M∗ðξÞ, and F∗

s ðξÞ are the dimensionless
mode functions of the transverse displacement, rotation
angle, bending moment and shearing force for the cracked
beam.

Substituting equation (13) into equations (11) and (12),

M∗ ξð Þ = −I∗
q∗0 + iωq∗1
1 + iωp∗1

Z∗ ξð Þ,

F∗
s ξð Þ = λ1κA

∗ q
∗
0 + iωq∗1
1 + iωp∗1

−Φ∗ ξð Þ + dW∗ ξð Þ
dξ

� �
,

8>>><
>>>:

ð14Þ

c
d
dξ

dW∗ ξð Þ
dξ

−Φ∗ ξð Þ
� �

+ aW∗ ξð Þ = 0,

c
dW∗ ξð Þ

dξ
−Φ∗ ξð Þ

� �
+ arΦ∗ ξð Þ + dZ∗ ξð Þ

dξ
= 0:

8>>><
>>>:

ð15Þ

Here,

Z∗ ξð Þ = 1 + 〠
N

j=1

1
μ∗j

δ ξ − ξj
À Á" #−1

dΦ∗ ξð Þ
dξ

, ð16Þ

r =
I∗

A∗ , a = −
ρ∗

r
iωð Þ2 1 + iωp∗1

q∗0 + iωq∗1
, c =

λ1κ

r
: ð17Þ

By the Laplace transformation of equations (15) and
(16), one obtain

a + cs2
À Á

�W∗ sð Þ = cs�Φ∗ sð Þ − cC1 + csC3 + cC4,

ar − cð Þ�Φ∗ sð Þ = −s�Z∗ sð Þ + C2 − cs �W∗ sð Þ + cC3,

(
ð18Þ

s�Φ∗ sð Þ − C1 = �Z∗ sð Þ + 〠
N

j=1

Z∗ ξj
À Á
μ∗j

e−sξ j , ð19Þ

where �W∗ðsÞ, �Φ∗ðsÞ, and �Z∗ðsÞ are the Laplace transforma-
tion functions of the dimensionless functions of W∗ðξÞ, Φ∗

ðξÞ, and Z∗ðξÞ for the cracked beam, Cmðm = 1, 2, 3, 4Þ are
the undetermined functions, and

C1 =Φ∗ 0ð Þ, C2 = Z∗ 0ð Þ, C3 =W∗ 0ð Þ, C4 =
dW∗ ξð Þ

dξ

����
ξ=0

:

ð20Þ

Combining equations (18) and (19),

�Z∗ sð Þ = 1
s2 − β2

1
À Á

s2 + β2
2

À Á
Á s2 +

a
c

� �
c − arð ÞC1 + s

a
c
+ s2

� �
C2 + saC3 − s2cC4

n

+ 〠
N

j=1

Z∗ ξj
À Á
μ∗j

−ars2 + a 1 −
ar
c

� �h i
e−sξ j

o
,

ð21Þ

�W∗ sð Þ = 1
s2 − β2

1
À Á

s2 + β2
2

À Á
Á − ar − cð ÞC1 + sC2 + s s2 + ar

À Á
C3

�

+ s2 + ar − c
À Á

C4 + 〠
N

j=1

Z∗ ξj
À Á
μ∗j

s2e−sξ j
�
,

ð22Þ

�Φ
∗ sð Þ = 1

s2 − β2
1

À Á
s2 + β2

2
À Á

Á s
a
c
+ c + s2

� �
C1 +

a
c
+ s2

� �
C2 + aC3 − csC4

h

+ 〠
N

j=1

Z∗ ξj
À Á
μ∗j

s
a
c
+ s2

� �
e−sξ j

i
,

ð23Þ

where

β1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

− ar +
a
c

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ar −

a
c

� �2
+ 4a

r" #vuut ,

β2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ar +
a
c

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ar −

a
c

� �2
+ 4a

r" #vuut :

ð24Þ

By the Laplace transformation of equation (21), then, let
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ξ = ξm and 0 < ξ1 < ξ2 <⋯ < ξj <⋯ < ξN < 1, one obtain

Z∗ ξmð Þ = C1
c − ar

β2
1 + β2

2

sinh β1ξmð Þ
β1

a
c
+ β2

1

� �
−
sin β2ξmð Þ

β2

�

Á a
c
− β2

2

� ��
+

C2

β2
1 + β2

2
cosh β1ξmð Þ a

c
+ β2

1

� �
− cos β2ξmð Þ a

c
− β2

2

� �h i

+ C3a
cosh β1ξmð Þ − cos β2ξmð Þ

β2
1 + β2

2

− C4c
β1 sinh β1ξmð Þ + β2 sin β2ξmð Þ

β2
1 + β2

2

+ 〠
m−1

j=1

1
μ∗j

Z∗ ξj
À Á

β2
1 + β2

2

sinh β1 ξm − ξj
À ÁÂ Ã
β1

a
c
c − arð Þ − arβ2

1

h i(

−
sin β2 ξm − ξj

À ÁÂ Ã
β2

a
c
c − arð Þ + arβ2

2

h i)
:

ð25Þ

Then, one obtain

Z∗ ξmð Þ =ΧmC1 +ΠmC2 +ΛmC3 + ΓmC4:  m = 1, 2, 3,⋯,Nð Þ, ð26Þ

where

Χm =
1

β2
1 + β2

2
c − arð Þ a

c
Ω1 ξmð Þ +Ω2 ξmð Þ

h i
+ 〠

m−1

j=1

Χj

μ∗j
Ω5 ξm − ξj

À Á( )
,

Πm =
1

β2
1 + β2

2

a
c
Ω4 ξmð Þ +Ω3 ξmð Þ + 〠

m−1

j=1

Πj

μ∗j
Ω5 ξm − ξj

À Á" #
,

Λm =
1

β2
1 + β2

2
aΩ4 ξmð Þ + 〠

m−1

j=1

Λj

μ∗j
Ω5 ξm − ξj

À Á" #
,

Γm =
1

β2
1 + β2

2
−cΩ2 ξmð Þ + 〠

m−1

j=1

Γj

μ∗j
Ω5 ξm − ξj

À Á" #
,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð27Þ

Ω1 ξð Þ = sinh β1ξð Þ
β1

−
sin β2ξð Þ

β2
,Ω5 ξð Þ = a

c − ar
c

Ω1 ξð Þ − rΩ2 ξð Þ
h i

:

Ω2 ξð Þ = β1 sinh β1ξð Þ + β2 sin β2ξð Þ,Ω4 ξð Þ = cosh β1ξð Þ − cos β2ξð Þ,
Ω3 ξð Þ = β2

1 cosh β1ξð Þ + β2
2 cos β2ξð Þ:

8>>>><
>>>>:

ð28Þ
Substituting equation (26) into the Laplace transforma-

tion of equations (21), (22), and (23), respectively, the
dimensionless functions of Z∗ðξÞ, W∗ðξÞ, and F∗ðξÞ are
expressed as

Z∗ ξð Þ = C1

β2
1 + β2

2
c − arð Þ a

c
Ω1 ξð Þ +Ω2 ξð Þ

h i
+ 〠

N

j=1

Χ j

μ∗j
H ξ − ξ j
À Á

Ω5 ξ − ξj
À Á( )

+
C2

β2
1 + β2

2

a
c
Ω4 ξð Þ +Ω3 ξð Þ + 〠

N

j=1

Π j

μ∗j
H ξ − ξ j
À Á

Ω5 ξ − ξj
À Á" #

+
C3

β2
1 + β2

2
aΩ4 ξð Þ + 〠

N

j=1

Λj

μ∗j
H ξ − ξ j
À Á

Ω5 ξ − ξj
À Á" #

+
C4

β2
1 + β2

2
−cΩ2 ξð Þ + 〠

N

j=1

Γj

μ∗j
H ξ − ξj
À Á

Ω5 ξ − ξ j
À Á" #

,:

ð29Þ

W∗ ξð Þ = C1

β2
1 + β2

2
c − arð ÞΩ1 ξð Þ + 〠

N

j=1

Χj

μ∗j
H ξ − ξ j
À Á

Ω2 ξ − ξj
À Á" #

+ C2

β2
1 + β2

2
Ω4 ξð Þ + 〠

N

j=1

Πj

μ∗j
H ξ − ξj
À Á

Ω2 ξ − ξ j
À Á" #

+ C3

β2
1 + β2

2
arΩ4 ξð Þ +Ω3 ξð Þ + 〠

N

j=1

Λj

μ∗j
H ξ − ξ j
À Á

Ω2 ξ − ξj
À Á" #

+
C4

β2
1 + β2

2
ar − cð ÞΩ1 ξð Þ +Ω2 ξð Þ + 〠

N

j=1

Γj

μ∗j
H ξ − ξj
À Á

Ω2 ξ − ξ j
À Á" #

,:

ð30Þ

Φ∗ ξð Þ = C1

β2
1 + β2

2

a
c
+ c

� �
Ω4 ξð Þ +Ω3 ξð Þ + 〠

N

j=1

Χ j

μ∗j
H ξ − ξj
À Á

Ω6 ξ − ξ j
À Á" #

+
C2

β2
1 + β2

2

a
c
Ω1 ξð Þ +Ω2 ξð Þ + 〠

N

j=1

Πj

μ∗j
H ξ − ξj
À Á

Ω6 ξ − ξ j
À Á" #

+
C3

β2
1 + β2

2
aΩ1 ξð Þ + 〠

N

j=1

Λj

μ∗j
H ξ − ξj
À Á

Ω6 ξ − ξ j
À Á" #

+
C4

β2
1 + β2

2
−cΩ4 ξð Þ + 〠

N

j=1

Γj

μ∗j
H ξ − ξj
À Á

Ω6 ξ − ξ j
À Á" #

,

ð31Þ
where

Ω6 ξð Þ = a
c
Ω4 ξð Þ +Ω3 ξð Þ: ð32Þ

Substituting equations (29), (30), and (31) into equations
(14), the dimensionless functions M∗ðξÞ and Fs

∗ðξÞ are
expressed as

M∗ ξð Þ = −
q∗0 + iωq∗1
1 + iωp∗1

I∗

β2
1 + β2

2
C4 −cΩ2 ξð Þ + 〠

N

j=1

Γ j

μ∗j
H ξ − ξj
À Á

Ω5 ξ − ξj
À Á" #*

+ C1 c − arð Þ a
c
Ω1 ξð Þ +Ω2 ξð Þ

h i
+ 〠

N

j=1

Χj

μ∗j
H ξ − ξj
À Á

Ω5 ξ − ξj
À Á( )

+ C2
a
c
Ω4 ξð Þ +Ω3 ξð Þ + 〠

N

j=1

Πj

μ∗j
H ξ − ξ j
À Á

Ω5 ξ − ξ j
À Á" #

+ C3 aΩ4 ξð Þ + 〠
N

j=1

Λj

μ∗j
H ξ − ξj
À Á

Ω5 ξ − ξj
À Á" #+

:

ð33Þ

F∗
s ξð Þ = −

q∗0 + iωq∗1
1 + iωp∗1

λ1κA
∗

β2
1 + β2

2

Á −C3 arΩ2 ξð Þ + β3
1 sinh β1ξð Þ − β3

2 sin β2ξð ÞÂ�

− aΩ1 ξð Þ − a
c
〠
N

j=1

Λj

μ∗j
H ξ − ξj
À Á

Ω4 ξ − ξj
À Á�

+ C1
a
c
+ ar

� �
Ω4 ξð Þ +Ω3 ξð Þ + a

c
〠
N

j=1

Χj

μ∗j
H ξ − ξj
À Á

Ω4 ξ − ξj
À Á" #

+ C2
a
c

Ω1 ξð Þ + 〠
N

j=1

Πj

μ∗j
H ξ − ξj
À Á

Ω4 ξ − ξj
À Á" #

− C4 arΩ4 ξð Þ +Ω3 ξð Þ − a
c
〠
N

j=1

Γj

μ∗j
H ξ − ξj
À Á

Ω4 ξ − ξj
À Á" #)

:

ð34Þ
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By the boundary conditions, the set of linear equations is
derived to determine the functions fCg

A½ � Cf g = 0: ð35Þ

Here, ½A� is a 4 × 4 coefficient vector, and fCg =
fC1, C2, C3, C4gT.

If there exists a nonzero solution of fCg, the determi-
nant of the coefficients vector is zero, i.e.,

det A½ � = 0: ð36Þ

By utilizing MATLAB programs, the complex eigenfre-
quency ω can be obtained with the different boundary
conditions.

4. Numerical Results and Discussion

To verify the correctness and applicability of the present
exact analytical method (EAM), the numerical examples
for comparisons have been provided. Let d1 ⟶ 0, the pres-
ent model is degenerated into the intact model of the stan-
dard linear solid mechanism. Huang and Huang [3]
analyzed the vibration properties of the clamped-clamped
beam. Based on the common physical and geometric param-
eters with reference [3], the analytical results of the first
eigenfrequencies are shown in Table 1. It is noticed that
the errors of the natural frequency and decrement coefficient
are less than 2.5% and 6%, respectively.

Then, let E1 ⟶∞ and d1 ⟶ 0, the present model is
degenerated into the Kelvin-Voigt intact model. Anderson
and Simone [17] analyzed the vibration properties of the
simple-supported and clamped-clamped beams. The geo-
metric and physical parameters are L = 0:5m, A = 1:5625 ×
10−2m2, I = 2:0345 × 10−5m4, ρ = 7850kg/m3, E2 = 210 × 109
Pa, G = 80:8 × 109Pa, and η = 2 × 10−8E2 ⋅ h. The first two
eigenfrequencies are shown in Table 2. As a whole, the ana-
lytical results are consistent with the results in Tables 1 and 2
to some extent.

For a standard linear solid beam under the simple-
supported boundary conditions, it is supposed that the
material and geometric parameters are E2 = 39:68GPa,
E1 = 14GPa, ρ = 500kg/m3, L = 1m, and b = 0:1m. Addi-
tionally, Poisson’s ratio ν = 0:3, the uniform sudden load
Q0 = 106N ⋅m−1, and the shear correction factor κ = 10ð1
+ νÞ/ð12 + 11νÞ. In order to analyze the effect of viscous
coefficient on the vibration properties of the viscoelastic
beam, the viscous coefficient is taken as η ∈ 6:9 × ½104, 1012�
GPa ⋅ h according to references [15, 16].

For the sake of simplicity, the k-th eigenfrequency of the
viscoelastic Timoshenko and Euler-Bernoulli beams are
defined by ωTB and ωEB, respectively. Additionally, the real
part (natural frequency) and imaginary part (decrement
coefficient) of the k-th eigenfrequency ωk are defined by Re
ðωkÞ and Im ðωkÞ. To consider the effect of viscous coeffi-
cient η, let slenderness ratio L/h = 50 and crack location
x1 = 0:4L. The first two eigenfrequencies of the simply-
supported standard linear solid viscoelastic Timoshenko

and Euler-Bernoulli beams when the crack depth d1/h =
0:0001 and d1/h = 0:4 are analyzed, respectively. In
Tables 3 and 4, it is shown that when the slenderness ratio
is high, the decrement coefficient Im ðωkÞ and natural fre-
quency Re ðωkÞ of the first two eigenfrequencies of the
Timoshenko model are close to those of the Euler-
Bernoulli model, which means that the transverse shear
deformation and moment of inertia has less influence on
dynamic characteristics of beam when the slenderness
ratio is high.

Then, let L/h = 10, the effects of the viscous coefficient
η on the first three frequencies of the simply-supported
viscoelastic intact beams with standard linear solid model
(SLS) and Kelvin-Voigt model (KV) are analyzed in
Tables 5 and 6, respectively. It is seen that, with the vis-
cous coefficient increasing, the decrement coefficient Im
ðωkÞ of the first three frequencies first increase and then
decrease. When η ∈ 6:9 × ½104, 108�GPa ⋅ h, the decrement
coefficient Im ðωkÞ increases with the order of mode
function increasing. While η ∈ 6:9 × ½109, 1012�GPa ⋅ h, the
decrement coefficient tends to be a constant. There is a
similar conclusion presented by Peng [5] based on the
vibration properties of the Timoshenko elastic beam rest-
ing on the viscoelastic foundation.

Additionally, with the viscous coefficient η and order of
mode function increasing, the natural frequency Re ðωkÞ of
the first three frequencies with the SLS model increases,
and then it almost remains a constant when η ≥ 6:9 × 108
GPa ⋅ h. However, the natural frequency Re ðωkÞ of the first
three frequencies with KV model decreases first, and when
η = 6:9 × 107GPa ⋅ h, it reduces to zero [16].

ERe,k =
Re ωEB,kð Þ − Re ωTB,kð Þ

Re ωEB,kð Þ × 100%,

EIm,k =
Im ωEB,kð Þ − Im ωTB,kð Þ

Im ωEB,kð Þ × 100%:

ð37Þ

Let κ⟶∞, equations (30)–(36) are degenerated into
the analytical expressions of the viscoelastic Euler-Bernoulli

Table 1: First eigenfrequency of the clamped-clamped viscoelastic
intact beam.

EAM Ref. [3]

1st 21.6236-2.3659i 22.1745-2.2284i

Table 2: First two eigenfrequencies of the simple-supported and
clamped-clamped viscoelastic beam.

EAM Ref. [17]

Simple-supported

1st 6707.09-0.450i 6712.36-0.45i

2nd 22126.22-4.89i 21713-4.90i

Clamped-clamped

1st 12279.1-1.507i 12279.91-1.51i

2nd 26895.14-7.227i 25212.07-7.42i
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cracked beam. The coefficients EIm,k and ERe,k are defined by
equation (37) to consider the effects of the transverse shear
deformation and moment of inertia. And based on the SLS
model and KV model, the variations of the first frequency

of the simply-supported viscoelastic beams with a single
crack and a row of equal cracks distributed with equal spac-
ing for different viscous coefficient η are analyzed in
Tables 7–10, respectively. It is found that, when η ∈ 6:9 × ½

Table 3: The first two eigenfrequencies of the simply-supported standard linear solid viscoelastic Timoshenko and Euler-Bernoulli beams
with different viscous coefficient η when d1/h = 0:0001.

η
1st 2nd

Re (ωTB,01) Im (ωTB,01) Re (ωEB,01) Im (ωEB,01) Re (ωTB,02) Im (ωTB,02) Re (ωEB,02) Im (ωEB,02)

6:9 × 104 259.06 0.0152 259.24 0.0152 1034.19 0.2422 1036.95 0.2435

6:9 × 105 259.07 0.1520 259.24 0.1522 1034.22 2.4215 1036.98 2.4344

6:9 × 106 259.11 1.5186 259.28 1.5206 1037.11 23.941 1039.89 24.067

6:9 × 107 263.50 14.090 263.69 14.107 1158.05 80.359 1161.33 80.459

6:9 × 108 299.26 9.7928 299.46 9.7932 1202.35 10.136 1205.56 10.137

6:9 × 109 301.30 1.0156 301.50 1.0156 1202.87 1.0159 1206.08 1.0159

6:9 × 1010 301.32 0.1016 301.52 0.1016 1202.88 0.1016 1206.09 0.1016

6:9 × 1011 301.32 0.0102 301.52 0.0102 1202.88 0.0102 1206.09 0.0102

6:9 × 1012 301.32 0.0010 301.52 0.0010 1202.88 0.0010 1206.09 0.0010

Table 4: First two frequencies of the simply-supported standard linear solid viscoelastic Timoshenko and Euler-Bernoulli beams with a
single crack for different viscous coefficient η when d1/h = 0:4.

η
1st 2nd

Re (ωTB,1) Im (ωTB,1) Re (ωEB,1) Im (ωEB,1) Re (ωTB,2) Im (ωTB,2) Re (ωEB,2) Im (ωEB,2)

6:9 × 104 250.26 0.0142 250.41 0.0142 1021.22 0.2361 1023.90 0.2374

6:9 × 105 250.26 0.1418 250.41 0.1420 1021.25 2.3612 1023.92 2.3735

6:9 × 106 250.31 1.4172 250.45 1.4189 1024.03 23.351 1026.73 23.472

6:9 × 107 254.28 13.218 254.43 13.233 1142.60 79.879 1145.78 79.979

6:9 × 108 288.95 9.7668 289.13 9.7673 1187.26 10.136 1190.37 10.136

6:9 × 109 291.06 1.0156 291.23 1.0156 1187.79 1.0159 1190.90 1.0159

6:9 × 1010 291.08 0.1016 291.26 0.1016 1187.79 0.1016 1190.90 0.1016

6:9 × 1011 291.08 0.0102 291.26 0.0102 1187.79 0.0102 1190.90 0.0102

6:9 × 1012 291.08 0.0010 291.26 0.0010 1187.79 0.0010 1190.90 0.0010

Table 5: First three frequencies of the simply-supported standard linear solid viscoelastic beam with different viscous coefficient η.

η
1st 2nd 3rd

Re (ωTB,01) Im (ωTB,01) Re (ωTB,02) Im (ωTB,02) Re (ωTB,03) Im (ωTB,03)

6:9 × 104 1275.20 0.3682 4876.05 5.3834 10281.3 23.931

6:9 × 105 1275.25 3.6813 4879.09 53.698 10309.7 236.63

6:9 × 106 1280.65 36.178 5134.38 403.76 11507.9 801.35

6:9 × 107 1444.61 87.109 5660.20 100.55 11952.6 101.36

6:9 × 108 1482.76 10.144 5671.23 10.159 11957.9 10.159

6:9 × 109 1483.19 1.0160 5671.34 1.0160 11957.9 1.016

6:9 × 1010 1483.19 0.1016 5671.35 0.1016 11957.9 0.1016

6:9 × 1011 1483.19 0.0102 5671.35 0.0102 11957.9 0.0102

6:9 × 1012 1483.19 0.0010 5671.35 0.0010 11957.9 0.0010
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104, 107�GPa ⋅ h, the coefficient EIm,1 of the SLS viscoelastic
cracked beam decreases with the crack location ξ1 decreas-
ing when ξ1 ≤ 0:5, and the crack number and viscous coeffi-

cient increasing. While η ∈ 6:9 × ½108, 1012�GPa ⋅ h, the
coefficient EIm,1 tends to be zero. It is revealed that the vis-
cous coefficient has little effect on the variations of the first

Table 6: First three frequencies of the simply-supported Kelvin-Voigt viscoelastic beam with different viscous coefficient η.

η
1st 2nd 3rd

Re (ωTB,01) Im (ωTB,01) Re (ωTB,02) Im (ωTB,02) Re (ωTB,03) Im (ωTB,03)

6:9 × 104 2496.69 5.4121 9547.07 79.131 20127 351.79

6:9 × 105 2496.30 54.121 9514.59 791.31 19821 3517.96

6:9 × 106 2437.54 541.22 4519.79 7915.27 0 64116

6:9 × 107 0 10234 0 162289 0 819881

6:9 × 108 0 144434 910274 287925 1992351 287925

6:9 × 109 248022 28792 954308 28792 2012850 28792

6:9 × 1010 249671 2879.2 954738 2879.2 2013054 2879.2

6:9 × 1011 249688 287.92 954742 287.92 2013056 287.92

6:9 × 1012 249688 28.792 954742 28.792 2013056 28.792

Table 7: Variations of the first frequency of the simply-supported SLS viscoelastic beam with a single crack for different viscous
coefficient η and crack location ξ1.

η
ξ1 = 0:1 ξ1 = 0:2 ξ1 = 0:3 ξ1 = 0:4 ξ1 = 0:5

ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1

6:9 × 104 1.580 3.139 1.475 2.937 1.388 2.724 1.278 2.610 1.249 2.570

6:9 × 105 1.580 3.128 1.483 2.926 1.388 2.731 1.278 2.601 1.258 2.548

6:9 × 106 1.605 3.075 1.444 2.878 1.383 2.693 1.328 2.566 1.291 2.515

6:9 × 107 1.659 0.503 1.523 0.516 1.416 0.531 1.416 0.544 1.339 0.546

6:9 × 108 1.562 0 1.452 0.010 1.380 0.010 1.316 0 1.263 0.010

6:9 × 109 1.595 0.010 1.480 0.010 1.417 0.010 1.346 0.010 1.301 0

6:9 × 1010 1.595 0 1.480 0 1.417 0 1.346 0 1.301 0

6:9 × 1011 1.595 0 1.480 0 1.417 0 1.346 0 1.301 0

6:9 × 1012 1.595 0 1.480 0 1.417 0 1.346 0 1.301 0

Table 8: Variations of the first frequency of the simply-supported SLS viscoelastic beam with cracks for different viscous coefficient η and
crack number N .

η
N = 0 N = 1 N = 2 N = 4 N = 8

ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1

6:9 × 104 1.619 3.217 1.249 2.570 1.168 2.345 1.018 2.038 0.863 1.752

6:9 × 105 1.620 3.215 1.258 2.548 1.168 2.341 1.020 2.038 0.864 1.694

6:9 × 106 1.633 3.157 1.291 2.515 1.146 2.317 1.021 2.025 0.892 1.690

6:9 × 107 1.694 0.497 1.339 0.546 1.253 0.569 1.097 0.608 0.884 0.672

6:9 × 108 1.621 0.010 1.263 0.010 1.164 0.010 1.001 0 0.870 0.010

6:9 × 109 1.619 0 1.301 0 1.214 0 1.057 0 0.835 0

6:9 × 1010 1.620 0 1.301 0 1.214 0 1.057 0 0.835 0

6:9 × 1011 1.620 0 1.301 0 1.214 0 1.057 0 0.835 0

6:9 × 1012 1.620 0 1.301 0 1.214 0 1.057 0 0.835 0
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frequency between the Timoshenko beam model and Euler
beam model. The results of the coefficient EIm,1 based on
the KV model are similar with those of the SLS model.

To sum up, for a higher value of η, the crack depth, crack
number, and order of mode function has very less effect on
the decrement coefficient Im ðωkÞ of the viscoelastic beam.
Therefore, the following analyses are mainly focused on

the effects of crack depth, crack number, order of mode
function, and slenderness ratio on the natural frequency Re
ðωkÞ of the viscoelastic beams.

Next, to consider the effect of a crack, it is supposed that
ω0k and ωk are the k-th eigenfrequency of the viscoelastic
intact and cracked beam, respectively, then the correspond-
ing k-th natural frequency ratio is defined as λk = Re ðωkÞ/

Table 9: Variations of the first frequency of the simply-supported KV viscoelastic beam with a single crack for different viscous
coefficient η and crack location ξ1.

η
ξ1 = 0:1 ξ1 = 0:2 ξ1 = 0:3 ξ1 = 0:4 ξ1 = 0:5

ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1

6:9 × 104 1.582 3.129 1.481 2.926 1.373 2.733 1.310 2.599 1.289 2.548

6:9 × 105 1.578 3.129 1.473 2.926 1.373 2.733 1.310 2.599 1.285 2.548

6:9 × 106 1.501 3.129 1.410 2.926 1.324 2.733 1.259 2.601 1.237 2.548

6:9 × 107 — 3.330 — 3.141 — 2.960 — 2.837 — 2.788

6:9 × 108 — 4.579 — 3.994 — 3.531 — 3.258 — 3.164

6:9 × 109 1.598 0 1.496 0 1.398 0 1.332 0 1.306 0

6:9 × 1010 1.577 0 1.474 0 1.376 0 1.309 0 1.283 0

6:9 × 1011 1.577 0 1.473 0 1.376 0 1.309 0 1.282 0

6:9 × 1012 1.577 0 1.473 0 1.376 0 1.309 0 1.282 0

Table 10: Variations of the first frequency of the simply-supported KV viscoelastic cracked beam for different viscous coefficient η and crack
number N .

η
N = 0 N = 1 N = 2 N = 4 N = 8

ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1 ERe,1 EIm,1

6:9 × 104 1.619 3.217 1.289 2.548 1.174 2.345 1.033 2.044 0.854 1.694

6:9 × 105 1.618 3.214 1.285 2.548 1.179 2.345 1.028 2.044 0.847 1.694

6:9 × 106 1.539 3.214 1.237 2.548 1.141 2.342 1.001 2.040 0.835 1.694

6:9 × 107 — 3.416 — 2.788 — 2.608 — 2.357 — 2.148

6:9 × 108 — 4.874 — 3.164 — 2.796 — 2.323 — 1.844

6:9 × 109 1.641 0 1.306 0 1.203 0 1.053 0 0.883 0

6:9 × 1010 1.620 0 1.283 0 1.179 0 1.027 0 0.852 0

6:9 × 1011 1.619 0 1.282 0 1.179 0 1.026 0 0.851 0

6:9 × 1012 1.619 0 1.282 0 1.179 0 1.026 0 0.851 0
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Figure 2: Variations of the first three frequency ratio versus crack location ξ1 of the simply-supported cracked beam with different crack
depth d1/h.
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Re ðω0kÞ. In the case of a simple-supported Timoshenko vis-
coelastic beam with a single crack, the variations of the first
three frequency ratio versus crack location ξ1 of the cracked
beam with different crack depth d1/h = 0:2, 0.4, and 0.6 are
presented in Figure 2. It is noticed that the crack location
has a significant effect on the natural frequency ratio. When
ξ1 = 0:5 because of the midspan moment of the 2nd modal
functions is null in Figure 2(b), the 2nd natural frequency
ratio is λ2 = 1. Similarly, when ξ1 = 1/3 or 2/3, the crack
depth has no effect on the 3rd natural frequency ratio in
Figure 2(c). It is concluded that, the k-th natural frequency
ratio is independent with the crack depth when the crack
is located at some critical position.

Then, to consider the effect of crack depth d/h, the vari-
ations of the first two frequency ratio of the simply-
supported viscoelastic beam with the symmetrically distrib-
uted cracks N are presented in Figure 3. It is found that
the first two natural frequencies decrease with the crack
number N and crack depth dj/h increasing. When N = 1,
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Figure 3: Variations of the first two frequency ratio versus crack depth d/h of the simply-supported cracked beam with different crack number N.
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Figure 4: Variations of the first two frequency ratio versus crack depth d1/h of the simply-supported beam with a single crack for different
slenderness ratio L/h.
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the 2nd natural frequency ratio is independent with the
crack depth in Figure 3(b).

Next, to consider the effect of slenderness ratio, the var-
iations of the first two frequency ratio versus crack depth
d1/h of the simply-supported beam with a single crack
(ξ1 = 0:5) are analyzed in Figure 4. It is noticed that the 1st
frequency ratio increases with the slenderness ratio increas-
ing, while the 2nd frequency ratio is independent with the
slenderness ratio.

Finally, the variations of the first five circular frequencies
of the simply-supported Timoshenko viscoelastic beam with
a single crack for different slenderness ratio L/h are pre-
sented in Figure 5. It is found that the variations of the first
five circular frequencies between the Timoshenko and Euler
cracked beam models increase with the order of mode func-
tion increasing and slenderness ratio decreasing. When L/h
= 50, the variations of the 1st circular frequency is ERe,1 =
0:1% and that of the 5th circular frequency is ERe,5 = 1:5%.
While L/h = 20, 10, and 5, the corresponding variations of
the 1st circular frequency are 0.2%, 1.2%, and 4.1% and
those of the 5th circular frequency are 7.4%, 22.3%, and
45.5%. It is seen that the effects of the transverse shear defor-
mation and moment of inertia on the variations of the first
five circular frequencies is dependent with the slenderness
ratio.

5. Conclusions

In this paper, the dynamic properties of a viscoelastic Timo-
shenko cracked beams based on the standard linear solid
model and Kelvin-Voigt model are investigated. Based on
the equivalent bending stiffness of the viscoelastic cracked
beam with open cracks, the corresponding complex fre-
quency characteristic equations of a Timoshenko viscoelastic
cracked beam are obtained by using the method of separa-
tion of variables and the Laplace transform. Some conclu-
sions arising from the numerical results can be
summarized as follows:

(1) For a higher value of η, the crack depth, crack num-
ber, and order of mode function has very less effect
on the decrement coefficient Im ðωkÞ of the visco-
elastic beam

(2) The transverse shear deformation and moment of
inertia has less influence on dynamic characteristics
of beam when the slenderness ratio is high, while
the variations of the first five circular frequencies
between the Timoshenko and Euler cracked beam
models increase with the order of mode function
increasing and slenderness ratio decreasing

(3) The first three natural frequencies of the viscoelastic
cracked beam with the SLS model decrease with the
crack number and crack depth increasing. And when
the crack is located at some critical position, the k-th
natural frequency is independent with the crack
number, crack depth, and slenderness ratio
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