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The dynamical behaviour of traveling waves in a class of two-dimensional system whose amplitude obeys the two-dimensional
complex cubic-quintic Ginzburg-Landau equation is deeply studied as a function of parameters near a subcritical bifurcation.
Then, the bifurcation method is used to predict the nature of solutions of the considered wave equation. It is applied to reduce
the two-dimensional complex cubic-quintic Ginzburg-Landau equation to the quintic nonlinear ordinary differential equation,
easily solvable. Under some constraints of parameters, equilibrium points are obtained and phase portraits have been plotted.
The particularity of these phase portraits obtained for new ordinary differential equation is the existence of homoclinic or
heteroclinic orbits depending on the nature of equilibrium points. For some parameters, one has the orbits starting to one
fixed point and passing through another fixed point before returning to the same fixed point, predicting then the existence of
the combination of a pair of pulse-dark soliton. One has also for other parameters, the orbits linking three equilibrium points
predicting the existence of a dark soliton pair. These results are very important and can predict the same solutions in many
domains, particularly in wave phenomena, mechanical systems, or laterally heated fluid layers. Moreover, depending on the
values of parameter systems, the analytical expression of the solutions predicted is found. The three-dimensional graphs of
these solutions are plotted as well as their 2D plots in the propagation direction.

1. Introduction

During the past three decades, considerable progresses have
been made in the spontaneous emergence of patterns in spa-
tially extended nonequilibrium systems. The existence of
spatiotemporal patterns has been deeply established on the
basis of equivariant bifurcation theory [1, 2]. Patterns result-
ing from a symmetry-breaking Hopf bifurcation are espe-
cially vulnerable to instability. Particularly, the extended
nonlinear dynamical systems display an amazing variety of

behaviours, namely, pattern formation, self-organization,
and spatiotemporal chaos [3, 4].

Much effort has been devoted to the modeling of differ-
ent dynamical regimes and the transitions between them by
nonlinear partial differential equations (NPDEs). NPDEs
play considerable roles in several scientific and engineering
fields. Among the NPDEs, one can cite the Korteweg-de
Vries equation, the van der Waals equation, the nonlinear
Schrödinger equation, the Navier-Stokes equation, the
magnetohydrodynamic equation, the Ginzburg-Landau equa-

Hindawi
Journal of Applied Mathematics
Volume 2023, Article ID 2549560, 11 pages
https://doi.org/10.1155/2023/2549560

https://orcid.org/0009-0007-5803-5184
https://orcid.org/0000-0001-6440-3579
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2549560


tion, [5–10] and so on, all of them being used to describe the
propagation of the wave in different matters. They have been
extensively used in different branches of physics and applied
mathematics. The Ginzburg-Landau equation is one of the
models of NPDEs that has had notable success in characteriz-
ing evolution phenomena in a wide range of dynamical
systems. In recent works of Gonpe et al. and Tafo et al. [11,
12], the one-dimensional complex cubic-quintic Ginzburg-
Landau equation (CQGLE) was used to find many types of
dynamical regimes, namely, the phase turbulence, weak
turbulence, defect turbulence, spatiotemporal intermittency
regimes, or laminar state. In order to understand the different
nonlinear phenomena, many powerful methods to build exact
solutions of nonlinear evolution equations have been estab-
lished and developed such as specially envelope transform
and direct ansatz method, successfully used to obtain a type
of chirped bright and dark solitary waves as solutions of
one-dimensional cubic Ginzburg-Landau equation [13, 14];
the one-soliton and two-soliton solutions of the derivative
NLS equations were found by using the Hirota bilinear
method as well as the square operator method [15–17], the
exponential function approach [18], the similarity transforma-
tion [19, 20], and the network method [21]. The periodic and
blow-up solutions for two-dimensional Ginzburg-Landau
equation were obtained by using the homogeneous balance
principle, the general Jacobi elliptic function method [22],
the Riccati-Bernoulli sub-ODE method [23, 24] the sine-
cosine approach [25, 26], and the Cole-Hopf transformation
method [27] which are applied for the constructing of many
new exact solutions, as well as the bifurcation theory for planar
dynamical systems to the two-dimensional cubic complex
Ginzburg-Landau equation [28] and so on.

In real physical systems, most one-dimensional studies
are simplified versions of two or more dimensional ones.
Many studies in 1D CQGLE have been done, and they show
interesting results. However, the case of 2D CQGLE is more
complex, and the studies of solutions obtained from this
equation could give us new kinds of solutions, which can
help in many domains. The author [28] worked in 2D GLE
but in the cubic case by using the bifurcation theory. He
found three equilibrium points and established analytical
solutions around equilibrium points. This is why the
research field in this light is steel-opened and deserves par-
ticular attention. The present work is aimed at extending
the study in the case of 2D CQGLE in an anisotropic system
by using bifurcation theory for a planar dynamical system in
order to construct new traveling wave solutions. Let us now
consider the 2D CQGLE as given in [28–30]

iAt +
1
2Axx +

1
2 α + ic2 Ayy + 1 − ic3 A 2A − 1 − ic5 A 4A = iσA,

1

where A = A x, y, t is a complex wave amplitude, with
i2 = −1. x, y are the propagation coordinates and t is the
retarded time, while α, c2, c3, c5, and σ are real constants.
The term proportional to α represents the linear dispersion,
and c2 is the diffusion coefficient in y direction. The terms
proportional to parameters c3 and c5 represent the nonlinear

dispersion of wave patterns, respectively. The term propor-
tional to σ denotes the linear growth or damping. A weakly
nonlinear and dissipative system having a canonical model
can be expressed with the CQGLE. In order to justify the main
motivation of the present work, let us outline that in [28], an
equation in the form of Eq. (1) appears without the quintic
terms proportional to A 4A, while the phase portraits plotted
showing at maximum 3 equilibrium points were obtained and
used to predict the nature of solutions and then, some exact
traveling wave solutions were constructed. In [29], Eq. (1)
was found, but the coefficient of the quintic term is propor-
tional to iγ, then its real part was zero, and the plot of solutions
was obtained numerically by means of a pseudospectral algo-
rithm, taking arbitrary the Gaussian form as an initial wave-
form as u = 2 exp −1/4 x2 + y2 , which is a hard problem.
The equation found in [30] is identical to that found in [29],
and some localized explicit solutions were computed, although
they were not predicted via the bifurcation of phase portraits.
In the recent works of Shtyrina et al. [31], some solutions of
the CQGLE were found, but in the implicit forms. These
works concerning the Ginzburg-Landau equation and partic-
ularly the 2D cases justify that the field of studies on these
equations is still open and deserves particular attention. This
is why in the present work, we carry an emphasis on the bifur-
cation of phase portraits in order to predict the nature of solu-
tions of the CQGLE, and moreover, we seek additional
solutions as those periodic, which to the best of our knowledge
were not been done before.

The outline of this paper is as follows: In Section 2.1, we
convert the 2D CQGLE into a traveling wave system that is
proved to be the Hamiltonian system, followed by the find-
ing of equilibrium points and the study of bifurcation of
phase portraits for the traveling wave system. In Section
3.1, we find some exact solutions. In Section 3.4, the graph-
ical representation of some solutions is provided. Next, in
Section 4, we study the stability of modulated wave in the
system, and finally, in Section 5, a conclusion and perspec-
tive are made.

2. Equilibrium Points and Bifurcation of
Phase Portraits

2.1. Preliminary. In this section, we transform the 2D
CQGLE into a nonlinear ordinary differential equation, eas-
ily solvable. To do this, let us assume the traveling solution
of Eq. (1) in the form [28, 32–34]

A x, y, t = exp iη φ x, y, t , η = px + st, 2

where φ x, y, t is a real function, while p and s are the wave
number and spectral parameter, respectively. Inserting Eq.
(2) into Eq. (1), one obtains

i φt + isφ + 1
2 φxx + 2ipφx − p2φ + 1

2 α + ic2 φyy

+ 1 − ic3 φ3 − 1 − ic5 φ5 = iσφ,
3

which can be separated into the real and imaginary parts to give
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φt −
1
2 c2φyy − σφ + pφx − c3φ

3 + c5φ
5 = 0,

1
2 φxx + αφyy − s + 1

2 p
2 φ + φ3 − φ5 = 0

4

Let us assume that

φ x, y, t =Ψ ξ with ξ = f x + gy + ht, 5

where f and g are connected as f 2 + g2 = 1 and h is an arbitrary
constant. Substituting Eq. (5) into Eq. (4), we get after many
transformations the nonlinear ODE:

Ψ − a1Ψ + a3Ψ
3 − a5Ψ

5 = 0, 6

with

a1 =
2s + c1p

2

f 2 + αg2
,

a3 =
2

f 2 + αg2
,

a5 =
2

f 2 + αg2

7

Let dΨ/dξ = z, then Eq. (6) is equivalent to the following
planar dynamical system:

Ψ = z,
z = a1Ψ − a3Ψ

3 + a5Ψ
5

8

Equation (6) can be integrated uponmultiplication byΨ to
give the following Hamiltonian:

H = 1
2Ψ

2 −
a1
2 Ψ2 + a3

4 Ψ4 −
a5
6 Ψ6, 9

which is a conserved quantity for the system (Eq. (8)).

2.2. Equilibrium Points. In this section, we seek the equilib-
rium points and plot some phase portraits for a range of
the system parameters. These equilibrium points are
obtained by setting in the system (Eq. (8)) the constraints
Ψ, z = 0, 0 . Therefore, they can be written as Ψ0, z0 = 0 ,
where Ψ0 is the zeros of the following polynomial function:

a1Ψ − a3Ψ
3 + a5Ψ

5 = 0, 10

leading to the following set of solutions:

ξ0 = 0, 0 , ξ1,2,3,4 = ± a3 ± a23 − 4a1a5
2a5

, 0 , 11

2.3. Bifurcation of Phase Portraits. Some cases can be observed
as follows:

(i) Case 1 (a23 − 4a1a5 < 0). Whatever the value of a3, the
system has a single equilibrium point 0, 0 , which
can be a saddle point when a1 < 0 and a5 < 0 or a sta-
ble equilibrium point when a1 > 0 and a5 > 0

(ii) Case 2 (a23 − 4a1a5 > 0). In this case, three equilib-
rium points are observed, and one can distinguish
two types of situations

The first one, which is obtained for a1 > 0, a3 > 0, and
a5 < 0, and one has two symmetric equilibrium points Ψ1

and Ψ2 given by Ψ1,2 = ± a3 − a23 − 4a1a5/2a5, 0 , which

are saddle points, and fixed point Ψ0 = 0, 0 which is a cen-
ter. In this case, the separatrix connects Ψ1 to Ψ2 and is
qualified as a heteroclinic orbit because two distinct unstable
equilibrium points are concerned. In fact, the heteroclinic
orbit (sometimes called a heteroclinic connection) is a path
in phase space which joins two different equilibrium points.
This separatrix separates bounded, periodic oscillatory
motions around Ψ0 from unbounded nonperiodic ones.

The second one is obtained for, a1 < 0, a3 < 0, and a5 > 0,
and the system has also 3 equilibrium points which are as
follows: the origin Ψ0 = 0, 0 which is the saddle points,

and Ψ1,2 = ± a3 + a23 − 4a1a5/2a5, 0 which are the cen-

ter points. The separatrix here connects the point Ψ0 to
itself. It is qualified as a homoclinic orbit because a single
unstable equilibrium point is involved in the connection. A
homoclinic orbit is a trajectory of a flow of a dynamical sys-
tem which joins a saddle equilibrium point to itself. This
separatrix is the boundary between confined-in-wells peri-
odic motions and cross-wells periodic motions. It is obvious
that the plots of the two cases above are not new and were
already been sketched in [28] in the context of cubic case.

(iii) Case 3. As plotted in Figures 1(a) and 1(c), obtained
for a23 − 4a1a5 > 0, a1 > 0, a3 > 0, and a5 > 0. In this
case, the system has 5 equilibrium points which
are Ψ0 = 0, 0 , corresponding to a center point,

Ψ1,2 = ± a3 + a23 − 4a1a5/2a5, 0 and Ψ3,4 =

± a3 − a23 − 4a1a5/2a5, 0 . As one can see, Ψ1,2
are stable, while the others, Ψ0 and Ψ3,4, are saddle
points. The particularity of the potential here is that
all the unstable fixed points are on the same poten-
tial level (the same holds for the stable ones). For
this case, there are two pairs of heteroclinic orbits.
The profile of the potential and the phase portrait
are depicted in Figure 1(c)

(iv) Case 4, which corresponds to the Figures 1(b) and
1(d). In this last case, one has a23 − 4a1a5 > 0, a1 < 0,
and a5 < 0, and the system has 5 equilibrium points.
The stable fixed points Ψ0 = 0, 0 and Ψ3,4 =
± a3 − a23 − 4a1a5/2a5, 0 , and unstable ones

Ψ1,2 = ± a3 + a23 − 4a1a5/2a5, 0 . In this
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configuration, homoclinic orbits as well as hetero-
clinic exist simultaneously

3. The Analytical Solutions of the 2D CQGLE

3.1. Preliminary. The exact solutions of the 2D CQGLE (1)
are found by using the Jacobi elliptic properties. Thus, by
using the energy integral Eq. (9), separating the variables,
and integrating both sides, one obtains

ξ

ξ0

dξ =
Ψ

0

dψ

2h − a1ψ2 + a3/2 ψ4 − a5/3 ψ6
, 12

which can be rewritten in the form as follows:

ξ

ξ0

dξ =
Ψ

0

dψ

−a5/3 − 6h/a5 + 3a1/a5 ψ2 − 3a3/2a5 ψ4 + ψ6
,

13

Let us factorize the high degree polynomial in integral
expression (Eq. (13)), leading to the following:

ξ

ξ0

dξ =
Ψ

0

dψ

−a5/3 ψ2 − ψ2
1 ψ2 − ψ2

2 ψ2 − ψ2
3

, 14

where ψ1 is a real number and ψ2 and ψ3 are the complex
conjugations. The solutions are obtained using the Cardan
method as follows:

ψ1 =U +V ,
ψ2 = jU + jV ψ3 = jU + jV ,

j = exp i
2π
3 ,

U = −Q + Δ

2 ,

V = −Q − Δ

2 ,

Δ =Q2 + 4
27 P

3,

Q = −
a3
2a5

a23
2a25

−
3a1
a5

−
6H
a5

,

P = −
3a23
a25

+ 3a1
a5

15

Then, one can obtain many kinds of solutions of Eq. (14)
depending on the special choices for a5 [35–37].

3.2. Case (a) a5 < 0. For this case, the exact solution of the
traveling waves is obtained by integrating Eq. (14) as follows:

ξ

ξ0

dξ =
Ψ

0

dψ

−a5/3 ψ2 − ψ2
1 ψ2 − ψ2

2 ψ2 − ψ2
3

16

The solution of this integral is obtained using the integration
tables as given in [35] (see pages 259 and 260 of the reference).

2

1

0Z

–1

–2
–3 –2 –1 0 1 2 3

𝛹

(a)

1

0Z

–1

–3 –2 –1 0 1 2 3

𝛹

(b)

0

–0.2

V
 (𝛹

)

–0.4

–3 –2 –1 0 1 2 3

𝛹

(c)

0.5

0

–0.5

–3 –2 –1 0 1 2 3

𝛹

(d)

Figure 1: Phase portrait for different values of h in (a) and (b) for five equilibrium points, and corresponding potentials in (c) and (d). In (a),
one has the heteroclinic orbit, which is the curve starting at one fixed point and ending at another fixed point predicting the existence of kink
or dark soliton as solution. In (b), one has the separatrix which appears as the combination of homoclinic and heteroclinic orbits, predicting
then the existence of a bright-dark soliton pair as solution. This last case, due to the presence of the quintic term, cannot be obtained in the
cubic case as in [28].
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Ψ ξ = ψ1
1 − B1/C1 1 + cn 2μ1 ξ − ξ0 , K1 / 1 − cn 2μ1 ξ − ξ0 , K1

,

17

C1 = ψ2ψ3,
B2
1 = ψ2

1 − ψ2
2 ψ2

1 − ψ2
3 ,

K2
1 =

C1 + B1
2 − ψ4

1
4B1C1

,

μ1 = −ν,

ν = a5
3 B1C1

18

After using the following properties of Jacobi elliptic
functions,

1 + cn 2μ1 ξ − ξ0 , K1
1 − cn 2μ1 ξ − ξ0 , K1

= cn2 μ1 ξ − ξ0 , K1
sn2 μ1 ξ − ξ0 , K1 dn2 μ1 ξ − ξ0 , K1

,

sn μ1 ξ − ξ0 + K1, K1 = cn μ1 ξ − ξ0 , K1
dn μ1 ξ − ξ0 , K1

19

one obtains the final expression

Ψ ξ = ψ1
1 − B1 sn2 μ1 ξ − ξ0 + K1, K1 /C1 sn2 μ1 ξ − ξ0 , K1

20

The exact traveling wave solution for Eq. (1) has the form

3.2.1. Special Cases

(i) When K1 = 0, in this case, the expression of Eq. (20)
can be rewritten in the form

Ψ ξ = ψ1
1 + γ1 cot2 μ3 ξ − ξ0

, 22

leading to

A x, y, t = ψ1
1 + γ1 cot2 μ3 f x − x0 + g y − y0 + ht

exp i px + st ,

23

where μ3 = −ν1, and

γ1 = 1 − ψ2
1

ψ2ψ3
,

ν1 =
a5
3 ψ2

1 − ψ2ψ3 ψ2ψ3

24

(ii) When K1 = 1, in this case, the expression of Eq. (22)
becomes

Ψ ξ = ψ1

1 − γ1 coth2 μ3 ξ − ξ0

, 25

which leads to

A x, y, t = ψ1

1 − γ1 coth2 μ3 f x − x0 + g y − y0 + ht
exp i px + st ,

26

3.3. Case (a) a5 > 0. In this, one can simplify Eq. (14) in the
form

ξ

ξ0

dξ =
Ψ

0

dψ

a5/3 ψ2
1 − ψ2 ψ2 − ψ2

2 ψ2 − ψ2
3

27

After using the same integration tables and the simplifi-
cation tables of the elliptic function as done up, one can
obtain

A x, y, t = ψ1
1 − B1 sn2 μ1 f x − x0 + g y − y0 + ht + K1, K1 /C1 sn2 μ1 f x − x0 + g y − y0 + ht , K1

exp i px + st

21

Ψ ξ = ψ1
1

1 + B1 sn2 μ2 ξ − ξ0 + K2, K2 /C1 sn2 μ2 ξ − ξ0 , K2
, 28

x, y, t = ψ1
1

1 + B1 sn2 μ2 f x − x0 + g y − y0 + ht + K2, K2 /C1 sn2 μ2 f x − x0 + g y − y0 + ht , K2
exp i px + st ,

29
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where K2
2 = −K2

1 and μ2 = ν. K1, ν, B1, and C1 are
being defined in Eq. (18).

3.3.1. Special Cases

(i) When K2 = 0, in this case, the expression of Eq. (28)
can be rewritten in the form

Ψ ξ = ψ1
1 − γ−11 cot2 μ4 ξ − ξ0

, 30

leading to

A x, y, t = ψ1
1 − γ−11 cot2 μ4 f x − x0 + g y − y0 + ht

× exp i px + st ,
31

where μ4 = −ν1.

(ii) When K2 = 1, the expression of Eq. (28) reduces to

Ψ ξ = ψ1

1 + γ−11 coth2 μ6 ξ − ξ0

, 32

leading to

A x, y, t = ψ1

1 + γ−11 coth2 μ4 f x − x0 + g y − y0 + ht

× exp i px + st ,
33

3.4. The Result: Some Graphs of Solutions. Here, some 2D
and 3D shape graphics are illustrated for some selected
solutions, for particular values of parameters. Figure 2 is
related to the case where a5 < 0 obtained by plotting solution
(Eq. (21)), which appears as a train of the combination of
pulse-dark soliton pair. However, Figure 3 is obtained for
the case a5 > 0 by plotting solution (29), which shows the
train of solution.

The pictures relating to Eqs. (26) and (33) are observed
in Figures 4 and 5. Figure 4 is the dark soliton called also
“hole solution” [38]. The holes are characterized by a local
concentration of the phase gradient and a depression of
the wave amplitude A . The one-parameter family of travel-
ing hole solutions discovered by Gradshteyn and Ryzhik
[39] has been proved to play an important role in a large
portion of nonlinear dynamical space systems, including in
a region where they are linearly unstable. Figure 5 represents
the bright-dark soliton pair, which was predicted by the
appearance of the combination of homoclinic and heterocli-
nic orbits obtained in Figure 1(b) [40]. This is why Figures 2
and 3 can be viewed here as the train of bright-dark soliton,
since Eqs. (26) and (33) are obtained for particular con-

straints on the parameters of Eqs. (21) and (29). The same
type of profile was found in [33, 41], although both solutions
are different. Then, the solutions with profile described by
Eqs. (26) and (33) can describe some complex phenomena
observed in applied sciences and engineering, like fluid
dynamics, quantum physics, particles, and nuclear physics.

4. Stability Analysis

In this section, we study the stability conditions of the modu-
lated waves governed by some solutions found in Section 3.1.
To this end, let us remember that several methods have been
used to investigate the stability of modulated waves among
which the perturbation method, known asmodulational insta-
bility (MI) [42] as well as the Vakhitov-Kolokolov stability
criterion for a single pulse soliton [43, 44].

4.1. Stability Analysis: The Vakhitov-Kolokolov Stability
Criterion. Remembering the so-called Vakhitov-Kolokolov
stability criterion, the single pulse solution of the nonlinear
Schrödinger equation and its extension is stable if its norm
defined as

N =
+∞

−∞
Ψ ξ 2 dξ 34

is an increasing function of the speed or the spectral param-
eter −s as defined in Eq. (2). For the kink or dark soliton, it
has been proved that the stability is connected to the renor-
malized norm defined as [44]

N =
+∞

−∞
Ψ2

max −Ψ ξ 2 dξ 35

Dark soliton is stable whether N is an increasing func-
tion of the speed or spectral parameter −s . For the dark
soliton defined in Eq. (26) and plotted in Figure 4, the max-
imum found is Ψmax = ψ1/ 1 − γ1, leading to the following
expression of the renormalyzed norm

N = 6
a5 ψ2

1 − ψ2ψ3 ψ2ψ3

= 3 f 2 + αg2

ψ2
1 − ψ2ψ3 ψ2ψ3

36

Eliminating f and g in the above equation by remember-
ing Eq. (15) and that f 2 + g2 = 1, one has

N = −3s + 3 Ψ2
1 − C1p

2 /2 −Ψ4
1

h ψ2
1 − ψ2ψ3 ψ2ψ3

, 37

from where it is obvious that dark soliton defined by Eq. (26)
is an increasing function of −s , with the constraint
ψ2
1 − ψ2ψ3 ψ2ψ3 > 0 and consequently is stable. For peri-

odic solutions, the method outlined in this subsection is not
adequate, and the stability will be found by the investigation
of the MI criteria.
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Figure 2: Profile of periodic solution given by Eq. (21). (a) 3D plot. (b) Projection in the ξ direction for the parameters a1 = 0 5, a3 = 1 0, and
a5 = −0 05.
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Figure 3: Profile of solution given by Eq. (34). (a) 3D plot. (b) Projection in the ξ direction for the parameters a1 = 1 0, a3 = 1 0, and
a5 = 0 15. As one can see, one has a profile nearly similar to the train of bright-dark soliton.
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Figure 4: Profile of solution given by Eq. (26). (a) 3D plot. (b) Projection in the ξ direction for the parameters a1 = −1 0, a3 = 0 8, and
a5 = 0 1. It corresponds to dark soliton predicted by the presence of heteroclinic orbits as plotted in Figure 1(b).
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4.2. Modulational Instability. In this subsection, we study the
conditions under which the propagation of modulated waves
in the network would become unstable to small perturba-
tion; to this end, it is important to mention that Eq. (1)
admits a solution in the form

A x, y, t = A0 exp i g0 − k0y ,

g0 = A2
0 − A4

0 + σ + A02c3 − A4
0c5

α

c2
,

k0 =
2 −σ + A2

0 −c3 + A2
0c5

c2

38

Letusnowfind theperturbed solution in the form[34, 41, 42]

A x, y, t = A0 + εu x, y, t exp i g0 − k0y , 39

leading by inserting it into Eq. (1) andneglecting nonlinear terms

to the following partial differential equation:

iut +
1
2 uxx +

1
2 α + ic2 uyy + k0 c2 − iα uy

+ 1 − 2A2
0 + i 2A2

0c5 − c3 A2
0 u + u 0

40

By taking the two-dimensional Fourier transform as kx,
ky, t = 1/2π ∞

−∞
∞
−∞ u x, y, t exp i kxx + kyy dxdy,

Eq. (40) leads to

iUt −
1
2 k

2
x + α + ic2

1
2 k

2
y − kyk0 U

+ 1 − 2A2
0 + i 2A2

0c5 − c3 A2
0 U +U = 0

41

Let us now express U =U1 + iU2, leading by separating
Eq. (41) into real and imaginary parts to

Let us find U1 = u01 exp −γt ,U2 = u02 exp −γt ,
which can lead Eq. (42) to
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Figure 5: Profile of solution given by Eq. (33). (a) 3D plot. (b) Projection in the ξ direction for the parameters a1 = 1 0, a3 = −2 0, and
a5 = −3/16, showing the bright-dark soliton, corresponding to the combination of homoclinic and heteroclinic orbit.

U1t −
1
2 k2x + αky ky − 2k0 U2 + −

c2
2 ky ky − 2k0 + 2 2A2

0c5 − c3 A2
0 U1 = 0,

−U2t + −
1
2 k2x + αky ky − 2k0 + 2 1 − 2A2

0 A2
0 U1 +

c2
2 ky ky − 2k0 U2 = 0

42

γ + 1
2 c2ky 2k0 − ky + 2 2A2

0c5 − c3 A2
0 −

1
2 k2x + αky ky − 2k0

2 1 − 2A2
0 A2

0 −
1
2 k2x + αky ky − 2k0 − γ −

1
2 c2ky 2k0 − ky

u01

u02
=

0
0

43
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The determinant of the matrix in Eq. (43) leads to the
following characteristic equation:

γ2 + c2ky 2k0 − ky + 2 2A2
0c5 − c3 A2

0 γ

+ 1
4 c2ky 2k0 − ky

2 + 2k0 − ky 2A2
0c5 − c3 A2

0 c2ky

+ 1
4 k2x + αky ky − 2k0

2 − 1 − 2A2
0

kx2 + αky ky − 2k0 A2
0 = 0,

44

leading to the following solution:

γ = − c2ky k0 −
ky
2 + 2A2

0c5 − c3 A2
0 ± −δ,

δ = k2x + αk2y 2A4
0 − A2

0 − αkyk0 +
1
4 k2x + αk2y

+ αk0ky αkyk0 − 4A4
0 + 2A2

0 − A4
0 2A2

0c5 − c3
2

45

The system is stable if δ > 0, and for this case, one has
λ = − c2ky k0 − ky/2 + 2A2

0c5 − c3 A2
0 ± iω, with ω = δ.

Otherwise, it is possible to have the MI in the system gov-
erned by CQGLE (Eq. (1)) for some constraints on parame-
ters kx and ky. The growth rate instability, defined by

G = c2ky k0 − ky/2 + 2A2
0c5 − c3 A2

0 + −δ, 46

and obtained for δ < 0 quantifies the rapid for the appearing of
MI. This rate is plotted in Figure 6 and justifies that the weak
MI can also appear in the stability zone due to dissipation.

5. Conclusion and Perspective

In this paper, we have studied the 2D CQGLE given by Eq.
(1) which can describe the dynamics of wave in some classes
of physical systems by applying the bifurcation theory
method of a planar dynamical system. This method is very
powerful and efficient and is used to predict the type of
solution of nonlinear partial differential (PDE) equations.
Following this technique, the PDE is transformed to ODE
from where the equilibrium points are found and phase por-
traits plotted. The phase portraits show separatrix which are
curves separating classical solutions (bounded solutions) to
nonclassical (unbounded) ones. Particularly, one has curves
passing through three equilibrium points predicting the exis-
tence of a dark-dark soliton pair. One has in addition the
curve starting from one fixed point, passing through another
fixed point, and returning to the same fixed point predicting
the existence of the pulse-dark soliton pair.

The analytical expression of the above-predicted solu-
tions is found in the form of Jacobi elliptic functions for
periodic solutions. The particular cases of these solutions
leading to localized or nonperiodic solutions are also found.
These solutions are plotted in 2D and 3D, respectively, justi-
fying that the above solutions can predict some behaviours
that can be found in some existing waveguides. These solu-
tions can be so helpful for engineers, physicists, and mathe-
maticians to justify some interesting phenomena observed in
real-life problems.

It is important to mention that we have focused in this
work on analytical results and the plotting of solutions. It
should be interesting whether one can investigate solution
degeneracy through the transmission between the orbits
for different values of the included parameters, which would
illustrate the validity of obtained solutions. The work in this
light is now under consideration and will constitute a per-
spective for our future investigations.
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Figure 6: Growth rate instability obtained for α = 0 05, c2 = 0 02, c3 = 0 025, c5 = 0 5, and σ = 0 02. (a) A0 = 0 5. (b) A0 = 1.
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