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We intend to analyze the consequence of considering thermal radiation on time-dependent flow of the Casson fluid due to an
exponentially accelerated inclined surface along with thermal as well as solutal convective boundary conditions. Fundamental
equations governing an isotropic incompressible radiative Casson fluid flow are defined through a set of linear partial
differential equations, and exact solutions are derived by using the Laplace transform approach. The numerical findings,
obtained using MATLAB software, are presented in graphical and tabular representations based on the obtained analytical
solutions of the fundamental equations. This investigation shows that the increment in thermal radiation results in the
increment in fluid velocity and temperature distribution including thermal and momentum boundary layer thicknesses. Most
interestingly, increasing the mass transfer coefficient results in an increment in the species concentration, velocity profiles, and
mass transfer rate. However, the fluid velocity diminishes near the plate upon the increase in plate inclination. The scientific
community will benefit greatly from this work since the findings can serve as benchmark solutions using numerical approaches
to solve fully nonlinear flow governing problems.

1. Introduction

The discipline of thermal science dealing with the produc-
tion, conversion, utilization, and exchanging of energy in
thermal form between physical and mechanical systems is
known as heat transfer. In other words, it is a process of
thermal energy transfer from one location to the other due
to the temperature difference. Analogy to this process that
concerns with the transport of mass from the highly concen-
trated area to the lowly concentrated area is known as mass
transfer. Nowadays, studies on the heat-mass transport prin-
ciples with an inclusion of non-Newtonian fluid flow have
been widely taking the place around the world because of
their many utilities in our day-to-day experiences. Heat
and mass transfer problems form an integral aspect of most
scientific and engineering applications which can be medi-
cal, physical, chemical, and biological aspects. The escalating

interaction of computer-assisted and experimental research
methods can be guided or directed to new findings. These
new results approve realistic representations and their phys-
ical interpretation and augment their formerly restricted
applications significantly. Most lately, Riaz et al. [1] dis-
cussed an examination of mass and heat transfer effects with
Maxwell’s fluid flow near a plate assumed to vertical. DPL
model of mass-heat transfer in small channels has been
investigated by Endalew and Sarkar [2], Endalew et al. [3],
and Sarkar et al. [4].

In addition, industrial and space technology applications
heavily rely on the inclusion of thermal radiation in heat
transfer calculations. Physically speaking, radiation is the
energy emission in the form of ionizing, energetic, moving
subatomic particles. An everyday illustration of thermal
radiation is the infrared radiation that an electric heater or
radiator emits. It is commonly known that electromagnetic
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waves are used to transfer heat in this manner. Temperature
differences between the surfaces and the range frequency of
the energy being delivered and received can be used to visu-
alize this form of heat transfer. For instance, sunlight con-
tains energy from the visible, ultraviolet, and infrared
spectrum. Research on the effects of thermal radiation on
turbulent fluid flow across a slanted plate has been covered
in Ref. [5–8]. Sobamowo et al. [9] have investigated the
impact of heat radiation on fluid flow of the non-
Newtonian type.

The Casson fluid is a word used to describe a piece of
non-Newtonian fluid with changing viscosity. Due to the
presence of varying viscosity in this kind of fluid, viscous
force dominates the system. Paints, various polymer solu-
tions, blood, honey, and other substances are examples of
this fluid that are frequently used. Nandeppanavar [10] stud-
ied the flow of the Casson fluid over a plate in motion. Zaib
et al. [11] investigated non-Newtonian Casson fluid flow
through a permeable plate including heat transfer character-
istics. The Casson fluid flow on the surface of the plate is
investigated by Hayat et al. [12]. The effect of a Casson fluid
entity on fluid flow has been extensively performed by
Hussanan et al. [13]. The examination of the Casson fluid flow
across the surface which is stretching has been discussed by
Sheikh et al. [14]. Ahmad et al. [15] proposed an innovative
method for simulating a Casson fluid using fractional deriva-
tive more recently. A Casson fluid flow was analyzed via sim-
ilarity analysis to convert fundamental equations and partial
differential equations into linear ordinary differential equa-
tions [16]. Additionally, studies describing theflowof theCas-
son fluid in different geometric configurations are carried out
by Sarkar and Endalew [17, 18], Hamid et al. [19], Das et al.
[20], Amjad et al. [21], Sarkar et al. [22], and so on.

As evident from the previous studies, the majority of
researchers have taken either oscillating or linearly accelerat-
ing plates into consideration in their research. On the other
hand, the idea of an exponentially accelerating plate has
many wonderful uses in science and engineering. As a result,
the flow over an exponential plate is considered in this
research. A thermally inclined plate with simultaneous
chemical reaction and thermal radiation has been used to
perform mass and heat transfer impacts on time-varying
flow that has been studied by Pattnaik et al. [23]. Addition-
ally, numerous situations are included, and the fluid flow
caused by an exponentially accelerating plate is examined
in Refs. [24, 25].

Boundary conditions at the plate’s wall, viz., thermal
boundary condition and solutal boundary condition, are
additional crucial mechanisms that can be very helpful in
the research of mass-heat transfer fields. Many real-world
scenarios have assumed that the movement of mass and heat
from a body’s surface is proportional to the surrounding sur-
face temperature and the concentration of the surrounding
walls. As a result, conjugate convective flow is another name
for fluid flow. Using thermal and convective boundary con-
ditions, Nandeppanavar et al. [26] investigated the Casson
fluid flow with heat and mass transfer over a moving plate.
Awais et al. [27] explored Newtonian heating and conjugate
parameters for concentration on non-Newtonian fluid flows

caused by a stretched surface. Rajesh [28] studied the effects
of a thermal convective boundary condition and an impul-
sively launched infinite vertical plate on fluid flow. Solutions
of mixed convective flow problems via numerically and ana-
lytically are obtained by Qasim et al. [29].

We believe that no research has been done on the time-
dependent radiative Casson fluid flow caused by an expo-
nentially accelerating inclined plate in the presence of ther-
mal and solutal convective boundary conditions based on
our rigorous examination of the aforementioned studies.
By investigating the impact of convective boundary condi-
tions on the time-dependent, incompressible, isotropic
radiative Casson fluid flow brought on by an exponentially
accelerating slanted vertical plate, this paper seeks to fill the
knowledge gap. A solutal convective boundary condition
for species concentration is additionally proposed in this
scenario. Using the set of linear partial differential equa-
tions, the fluid flow model is constructed. The Laplace
transformmethod is used for converting these equations into
ordinary differential equations, which are then solved analyt-
ically. Closed-form solutions have been calculated for the
fluid temperature, velocity, and species concentration. Utiliz-
ing graphs and tables, several mechanical variables affecting
the features of fluid flow are examined, discovered, and
debated. The scientific community will benefit from the find-
ings of this work, which can also be used as a point of refer-
ence against which for the use of numerical techniques to
address fully nonlinear governing problems.

2. Formulation of the Problem

This work considers the unsteady isotropic incompressible
radiative Casson fluid flow across a tilted exponentially
accelerating plate. Also, thermal and solutal convective
boundary conditions are presumed here. Additionally, it is
expected that the x′- and y′-axes are oriented vertically
and horizontally, respectively. Furthermore, a random incli-
nation of the plate by the angle α is asumed to be in the
direction of flow. The temperature of the fluid and mass dis-
tribution far away from the plate are specified as T∞ and C∞,
respectively. The plate is held stationary at t ′ = 0 and then at
time t ′ > 0; then, it begins to move by the velocity q = qo
exp ða′t ′Þ in self-plane with a constant velocity of qo. Fur-
thermore, the relationship between temperature and concen-
tration levels and time is linear. The nature of the problem is
represented in Figure 1.

“For an isotropic and incompressible Casson fluid flow,
the rheological equation can be obtained from” (Ref.
[30–32]) and expressed as follows:

τi,j =
2 μb +

Pyffiffiffiffiffiffi
2π

p
� �

ei,j asπc < π,

2 μb +
Pyffiffiffiffiffiffiffi2πc

p
� �

ei,j asπc > π:

8>>><>>>: ð1Þ

From the above, τi,j represents stress tensor components,
ei,j specifies fluid deformation rate, π symbolizes self-
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product of strain tensor rate, πc denotes critical value of the
strain tensor’s rate as a function of itself, Py represents yield
stress, and μb is a dynamic plastic viscosity.

We know that π = ei,jei,j. As a result, the fluid exhibits a
solid behavior when subjected to shear stresses that are
lower than yield stresses, whereas it starts moving as yield
stress smaller than shear stress.

The governing equations and initial and boundary condi-
tions are therefore given, together with the aforementioned
physical assumptions as follows (see Refs. [13, 27, 32]):

∂q
∂t ′

− ν 1 + 1
β

� �
∂2q
∂y′2

= g cos αð Þ βC C − C∞ð Þ + βT T − T∞ð Þ½ �,

ð2Þ

ρCp
∂T
∂t ′

+ ∂qr
∂y′

= κ
∂2T
∂y′2

, ð3Þ

∂C
∂t ′

=Dm
∂2C
∂y′2

: ð4Þ

Mathematically, equations (2), (3), and (4) are called
momentum, heat or diffusion, and mass or concentration
equations, respectively.

The initial and boundary conditions are as follows [33]:

q y′, 0
� �

= 0, C y′, 0
� �

= C∞, T y′, 0
� �

= T∞,∀y′, ð5aÞ

q 0, t ′
� �

= qo exp a′t ′
� �� �

,
∂T 0, t ′
� �
∂y′

= −hf T 0, t ′
� �

,
∂C 0, t ′
� �
∂y′

= −kf C 0, t ′
� �

,

ð5bÞ

q ∞,t ′
� �

⟶ 0,T ∞,t ′
� �

⟶ T∞,C ∞,t ′
� �

⟶ C∞ at t ′ > 0:

ð5cÞ

The Rosseland approximation for radiation heat flow is
considered since an optically thick fluid is being taken into
account (see Refs. [34, 35]) and written as follows:

qr = −
4σ
c∗

∂T4

∂y′
, ð6Þ

where c∗ defines the constant of absorption and σ symbol-
izes the constant of Stefan-Boltzmann.

It is thought that there is relatively low temperature
change throughout the fluid movement. Thus, T4 can be
expressed as fluid temperature distribution in the flow sys-
tem. We are left with the following equation after perform-
ing the expansion of the Taylor series of T ′4 about T∞′
and discarding its highest order:

T4 ≅ 4TT3
∞ − 3T4

∞: ð7Þ

Substitute equations (6) and (7) in (3) to get

ρCp
∂T
∂t ′

= κ 1 + 16σT∞
3c∗κ

� �
∂2T
∂y′2

: ð8Þ

To reduce aforementioned equations to dimensionless,
the following dimensionless physical quantities and parame-
ters have been assumed:

t = t ′q2o
ν

, y = y′qo
ν

, u = q
qo

, Gr = νgβT T∞ð Þ
q3o

, γ =
hf ν

qo
,

Gm = νgβC C∞ð Þ
q3o

, θ = T − T∞
T∞

, a = a′ν2
q2o

, η =
kf ν

qo
,

ϕ = C − C∞
C∞

, R = 16σT3
∞

c∗κ
, Pr =

μCp

κ
, Sc = ν

D
:

9>>>>>>>>>=>>>>>>>>>;
ð9Þ

Figure 1: Geometrical representation of the problem.
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Therefore, the reduced dimensionless form of equations
(2), (4), and (8) is as follows:

∂u
∂t

= 1 + 1
β

� �
∂2u
∂y2

+ cos αð ÞGrθ + cos αð ÞGmϕ, ð10Þ

Pr
∂θ
∂t

= 1 + Rð Þ ∂
2θ

∂y2
, ð11Þ

Sc ∂ϕ
∂t

= ∂2ϕ
∂y2

, ð12Þ

with the following dimensionless initial and boundary con-
ditions:

u y, 0ð Þ = θ y, 0ð Þ = ϕ y, 0ð Þ = 0,∀y, ð13aÞ

u 0, tð Þ = eat , ∂θ 0, tð Þ
∂y

= −γ 1 + θ 0, tð Þð Þ, ∂ϕ 0, tð Þ
∂y

= −η 1 + ϕ 0, tð Þð Þ,

ð13bÞ

u ∞,tð Þ⟶ 0,θ ∞,tð Þ⟶ 0,ϕ ∞,tð Þ⟶ 0 at t > 0: ð13cÞ

3. Solution Method

A time function is converted into a frequency function using
the Laplace transform mathematical approach. If we trans-
form both sides of a differential equation, we can often solve
the resulting equations with algebraic methods. The method
entails to apply the Laplace transform on the time-
dependent partial differential equations to transform them
into time-independent but frequency-dependent ordinary
differential equations in the Laplace domain, which are then
transformed into algebraic equations. The final analytical
solution is obtained by inverting the analytical solutions
obtained in the Laplacian frequency domain into a final
solution in temporal and spatial coordinates. That is here,
the exact solutions of governing equations (10)-(12) with
initial and boundary conditions ((13a)-(13c)) are evaluated
by the well-known Laplace transform method. Therefore,
first, we take the Laplace transform on both sides of all equa-
tions (10)-(12). Then, we use the initial conditions (13a) and
make some rearrangement; the following transformed ordi-
nary differential equations (ODEs) are obtained:

d2û
dy2

= λ1 su −Grbθ cos α −Gmbϕ cos α
� �

, ð14Þ

d2bθ
dy2

= sλbθ , ð15Þ

d2bϕ
dy2

= Scsbϕ , ð16Þ

where λ = Pr/ð1 + RÞ and λ1 = β/ð1 + βÞ.

The boundary conditions can be transformed as follows
using a similar method:

û = 1
s − a

, d
bθ
dy

= −γ bθ + 1
s

� �
, d
bϕ
dy

= −η bϕ + 1
s

� �
, ð17aÞ

û ∞,sð Þ⟶ 0,bθ ∞,sð Þ⟶ 0,bϕ ∞,sð Þ⟶ 0: ð17bÞ
In order to get the Laplace domain solutions for mass

and temperature fields, let us first solve equations (16) and
(15) along with their boundary conditions. As a result, the
solutions are provided as follows:

bϕ = a2
s

ffiffi
s

p
− a2

À Á e−y ffiffiffiffiffisSc
p

, ð18Þ

bθ = b1
s

ffiffi
s

p
− b1

À Á e−y ffiffiffisλp
: ð19Þ

Equations (17a), (18), and (19) can then be used to solve
equation (14), yielding the following fluid velocity solution:

û = e−y
ffiffiffiffiffi
sλ1

p

s − a
+ λ1a2a3
s2

ffiffi
s

p
− a2

À Á e−y
ffiffiffiffiffi
sλ1

p
− e−y

ffiffiffi
sλ

p� �
+ λ1b1b2
s2

ffiffi
s

p
− b1

À Á e−y
ffiffiffiffiffi
sλ1

p
− e−y

ffiffiffiffiffi
sSc

p� �
,

ð20Þ

where a2 = γ/
ffiffiffi
λ

p
, a3 = Grcosα/ðλ − λ1Þ, b1 = η/

ffiffiffiffiffi
Sc

p
, and

b2 = Gmcosα/ðSc − b1Þ.
The solutions for dimensionless velocity, distribution of

temperature, and species concentration in dense structure
are shown below, respectively. This is done by employing
the Laplace inverse on equations ((18)-(20)) and then utiliz-
ing the straight-forward technique to generate an inverse
Laplace transform with an exponential form and associated
with error functions presented by Hetnarski [36, 37].

u =H1 y, t, a, λ1ð Þ + λ1a3
a22

H2 y
ffiffiffiffiffi
λ1

p
, t, a2

� �
−H2 y

ffiffiffi
λ

p
, t, a2

� �h i
−
λ1a3
a2

H3 y
ffiffiffiffiffi
λ1

p
, t

� �
−H3 y

ffiffiffi
λ

p
, t

� �h i
− λ1a3 H4 y

ffiffiffiffiffi
λ1

p
, t

� �
−H4 y

ffiffiffi
λ

p
, t

� �h i
+ λ1b2

b21
H2 y

ffiffiffiffiffi
λ1

p
, t, b1

� �
−H2 y

ffiffiffiffiffi
Sc

p
, t, b1

� �h i
−
λ1b2
b1

H3 y
ffiffiffiffiffi
λ1

p
, t

� �
−H3 y

ffiffiffiffiffi
Sc

p
, t

� �h i
− λ1b2 H4 y

ffiffiffiffiffi
λ1

p
, t

� �
−H4 y

ffiffiffiffiffi
Sc

p
, t

� �h i
:

ð21Þ

Likewise, the nondimensional temperature and concen-
tration can be revealed as follows:

θ =H2 y
ffiffiffi
λ

p
, t, a2

� �
, ð22Þ
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ϕ =H2 y
ffiffiffiffiffi
Sc

p
, t, b1

� �
: ð23Þ

The following definitions apply to the dummy functions
H1, H2, H3, and H4, respectively:

H1 a, t, b, cð Þ = ebt

2 ea
ffiffi
b

p
erf c a

2

ffiffi
c
t

r
+

ffiffiffiffi
bt
c

r !"

+ e−a
ffiffi
b

p
erf c a

2

ffiffi
c
t

r
−

ffiffiffiffi
bt
c

r !#
,

H2 a, t, bð Þ = e b2t−abð Þ erf c a

2
ffiffi
t

p − b
ffiffi
t

p� �
− erf c a

2
ffiffi
t

p
� �

,

H3 a, tð Þ = 2
ffiffiffi
t
π

r
e−a

2/4t − a erf c a

2
ffiffi
t

p
� �

,

H4 a, tð Þ = a2

2 + t
� �

erf c a

2
ffiffi
t

p
� �

− a

ffiffiffi
t
π

r
e−a

2/4t ,

H5 a, tð Þ = erf c a

2
ffiffi
t

p
� �

: ð24Þ

4. Surface-Based Dimensionless Coefficients

A few surface-based dimensionless coefficients that may be
essential in the investigation of viscous fluid dynamics are
skin friction, Sherwood’s number, and Nusselt’s number.
Equations (21) through (23), which determine these surface
coefficients in this instance, are then used to explicitly artic-
ulate and analyze them as follows:

4.1. Skin Friction Coefficient. It is denoted by the symbol τ,
which is a dimensionless quantity that is caused by the
motion fluid acting on the plate’s surface. This amount is
calculated using equation (21) and is stated as follows:

τ = − 1 + 1
β

� �
∂u y, tð Þ

∂y

����
y=0

= 1
λ1

P1 a, t, λ1ð Þ + a3

ffiffiffiffiffi
λ1

p
−

ffiffiffi
λ

p

a2

 !
P2 a2, tð Þ − 1½ �

+ 2a3P3 λ1, t, λð Þ + b2

ffiffiffiffiffi
λ1

p
−

ffiffiffiffiffi
Sc

p

b1

 !
P2 b1, tð Þ − 1½ �

+ 2b2P3 λ1, t, Scð Þ + 1
λ1

ffiffiffiffiffi
λ1
πt

r
:

ð25Þ

4.2. Nusselt Number. The surface coefficient, abbreviated as
Nu, is a dimensionless quantity that explains the heat trans-
fer rate at the surface of the plate. It is calculated from equa-
tion (22) and provided as follows:

Nu = −
∂θ y, tð Þ

∂y

����
y=0

= a2
ffiffiffi
λ

p
P2 a2, tð Þ: ð26Þ

4.3. Sherwood Number. The mass transfer rate at the plate
wall is controlled by a nondimensional variable known as
the Sherwood number, abbreviated Sh. It is presented as fol-
lows and comes from equation (23):

Sh = −
∂ϕ y, tð Þ

∂y

����
y=0

= b1
ffiffiffiffiffi
Sc

p
P2 b1, tð Þ: ð27Þ

The functions P1, P2, and P3 are defined as follows:

P1 a, t, bð Þ = eat
ffiffiffi
a

p
1 − erf c

ffiffiffiffi
at
b

r ! !
+

ffiffiffiffiffi
b
πt

r
e−

at
b

" #
,

P2 a, tð Þ = ea
2t 2 − erf c a

ffiffi
t

p� �� �
,

P3 a, t, bð Þ =
ffiffiffiffi
bt
π

r
−

ffiffiffiffi
at
π

r
:

ð28Þ

5. Restricting Scenarios of the Problem

In this occasion, the Laplace transform is employed to gen-
erate more general analytical results. Therefore, the restrict-
ing scenarios of the present investigation are provided below
and explored in detail.

5.1. Newtonian Fluid Case. When we set β⟶∞, equation
(21) is reduced to the usual Newtonian fluid. Then, its solu-
tion can be expressed as follows:

u y, tð Þ =H1 y, t, a, λ1ð Þ + a3
a22

H2 y, t, a2ð Þ −H2 y
ffiffiffi
λ

p
, t, a2

� �h i
−
a3
a2

H3 y, tð Þ −H3 y
ffiffiffi
λ

p
, t

� �h i
− a3 H4 y, tð Þ −H4 y

ffiffiffi
λ

p
, t

� �h i
+ b2
b21

H2 y, t, b1ð Þ −H2 y
ffiffiffiffiffi
Sc

p
, t, b1

� �h i
−
b2
b1

H3 y, tð Þ −H3 y
ffiffiffiffiffi
Sc

p
, t

� �h i
− b2 H4 y, tð Þ −H4 y

ffiffiffiffiffi
Sc

p
, t

� �h i
:

ð29Þ

The shearing stress for this case can be evaluated as well
as follows:

τ = −
∂u y, tð Þ

∂y

����
y=0

= P1 a, t, 1ð Þ + a3
1 −

ffiffiffi
λ

p

a2

 !
P2 a2, tð Þ − 1½ �

+ 2a3P3 1, t, λð Þ + b2
1 −

ffiffiffiffiffi
Sc

p

b1

 !
P2 b1, tð Þ − 1½ �

+ 2b2P3 1, t, Scð Þ +
ffiffiffiffiffi
1
πt

r
:

ð30Þ
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5.2. Absence of Natural Convection. Equation (21) becomes
simpler when the free convection terms are removed, i.e.,
Gr = Gm = 0.

u y, tð Þ =H1 y, t, a, λ1ð Þ: ð31Þ

Similar to this, reduced skin friction with omitting of free
convection term is provided as follows:

τ = − 1 + 1
β

� �
∂u y, tð Þ

∂y

����
y=0

= 1
λ1

P1 a, t, λ1ð Þ +
ffiffiffiffiffi
λ1
πt

r" #
: ð32Þ

5.3. Flow over an Accelerating Plate. If we make a = 0 in
equation (21), the flow problem is naturally reduced into
fluid flow due to an impulsively accelerating plate. In this
line, the solution of velocity is stated as follows:

u y, tð Þ =H5 y
ffiffiffiffiffi
λ1

p
, t

� �
+ λ1a3

a22
H2 y

ffiffiffiffiffi
λ1

p
, t, a2

� �
−H2 y

ffiffiffi
λ

p
, t, a2

� �h i
−
λ1a3
a2

H3 y
ffiffiffiffiffi
λ1

p
, t

� �
−H3 y

ffiffiffi
λ

p
, t

� �h i
− λ1a3 H4 y

ffiffiffiffiffi
λ1

p
, t

� �
−H4 y

ffiffiffi
λ

p
, t

� �h i
+ λ1b2

b21
H2 y

ffiffiffiffiffi
λ1

p
, t, b1

� �
−H2 y

ffiffiffiffiffi
Sc

p
, t, b1

� �h i
−
λ1b2
b1

H3 y
ffiffiffiffiffi
λ1

p
, t

� �
−H3 y

ffiffiffiffiffi
Sc

p
, t

� �h i
− λ1b2 H4 y

ffiffiffiffiffi
λ1

p
, t

� �
−H4 y

ffiffiffiffiffi
Sc

p
, t

� �h i
:

ð33Þ

In this case, the skin friction can be expressed as follows:

τ = − 1 + 1
β

� �
∂u y, tð Þ

∂y

����
y=0

= 1
λ1

P1 0, t, λ1ð Þ + a3

ffiffiffiffiffi
λ1

p
−

ffiffiffi
λ

p

a2

 !
P2 a2, tð Þ − 1½ �

+ 2a3P3 λ1, t, λð Þ + b2

ffiffiffiffiffi
λ1

p
−

ffiffiffiffiffi
Sc

p

b1

 !
P2 b1, tð Þ − 1½ �

+ 2b2P3 λ1, t, Scð Þ + 1
λ1
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Using a graphical presentation and tabular format,
numerical findings generated from analytical solutions of
the most important equations governing fluid flow are given
and discussed. We have employed MATLAB software to
generate graphics and tables for numerical values of different
physical parameters.

6. Validation of the Result

As it is known, the current result of the problem should be
compared with the existing publication/experimental results
in order to validate novel findings of this research work. In

this line, when we avoid the free/natural convective terms
and inclination angle, that is, α = Gr = Gm = 0 from the solu-
tion of momentum/velocity equation, the momentum/veloc-
ity equation is the same as provided in by Hussanan et al.
[13]. The solutions of both investigations (the current and
previously published [13]) meet with excellent confirmation.
Thus, the validation of the present finding is checked and
confirmed.

7. Results and Discussion

In the current research, exact closed-form solutions to the
basic equations governing the flow of radiative Casson fluid
caused by an exponentially accelerating inclined plate are
found by utilizing the Laplace transform method. Then, in
order to validate the behaviors of the Casson fluid flow
under various conditions, numerical values obtained from
analytical expressions that determine the solution of the gov-
erning equations characterizing the fluid flow are described
through figures and tables. If not otherwise indicated, the
appropriate values for the significant physical entities in this
case are to be allocated as Gr = Gm = R = 1, γ = η = 0:6, α =
π/3, Pr = 0:71, t = 1, Sc = 0:6, β = 2, and a = 0:1. A common
trend has been perceived in all the velocity profiles for all
values of flow parameters. It can be seen that the velocity
profiles first increase uniformly near the surface, attain a
maximum value, and then decrease uniformly throughout
the boundary layer which eventually tends asymptotically
to the zero velocity at the free stream. This trend is due to
the fact that the plate starts moving from rest with an initial
velocity which varies exponentially with time, and hence,
due to no slip between the walls of the plate and the fluid,
a fluid flow is generated near the plate. Thus, a boundary
layer is also formed in the direction of the movement of
the plate. Away from the plate fluid flow is impacted by
the resting free stream. All this contribute to the nature of
the fluid flow profiles as could be seen in the following fig-
ures. Therefore, mathematically, all such fluid flows are rep-
resented by complementary error functions whose graph
rightfully resembles the fluid flow characteristics.

In this analysis, the free or natural convective aspect has
been assumed and buoyant forces are induced into the fluid
and discussed in detail. It should be emphasized that these
forces result from density variations brought on by fluid
temperature and concentration variations. This is due to
the nature of buoyancy forces, specifically the thermal and
solutal buoyant forces, which are connected to thermal and
solutal Grashof numbers, through direct proportion. Thus,
a rise in the Grashof number implies a rise in the buoyant
forces which dominates other physical entities influencing
the fluid flow characteristics. This in turn significantly
enhances the fluid flow. Additionally, the effects of viscous
force on the fluid are diminished due to the dominance of
buoyant forces. As a result, when the Grashof numbers rise,
the fluid velocity and the thickness of the momentum
boundary layer increase, as depicted in Figures 2 and 3.

Figure 4 shows the influence of plate inclination on a
Casson fluid velocity including the thickness of its boundary
layer. Here, with an increment in the inclination angle of the
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plate, the mean velocity of the Casson fluid is reduced. This
is due to the presence of high frictional force on the plate’s
surface as well as an augmented impact of buoyancy force.
It is widely known that the force of friction exerting on a

fluid dramatically expands across the domain of fluid flow
as the plate is inclined along the flow route by any arbitrary
angle. Due to this physical reality, boundary layer thickness
and fluid velocity are reduced (see Figure 4). Figure 5
explores one method by which the parameter of the Casson
fluid influences the velocity of fluid. To replicate blood flow
in narrow arteries, the Casson fluid model, a non-Newtonian
fluid with a yield stress, is widely utilized. “The mathematical
simulation of low-shear rate blood flow in constricted arter-
ies has frequently used the Casson fluid model. The Casson
fluid, a shear-thinning fluid, is supposed to have infinite vis-
cosity at zero shear rates, zero viscosity at an infinite shear
rate, and yield stress below which there is no flow” [31]. It
should be emphasized that in the analysis of the Casson fluid
flow, the viscous force has a significant impact on the fluid
flow. However, as this parameter is raised, the viscous force
diminishes. The velocity of the fluid and, hence, the momen-
tum boundary layer thickness increase in size as the Casson
fluid parameter rises.

It is noted that the Prandtl number physically expresses
the ratio of the thermal diffusivity of a fluid to the viscous/
frictional force acting on it. According to this justification,
the fluid can become viscous force-dominated as the Prandtl
number increases. In this line, as seen in Figure 6, the fluid
velocity falls down as the Prandtl number grows up. Here,
the values of Pr is considered for different fluids as Pr =
0:54 for noble gases with hydrogen, Pr = 0:71 for dry air,
Pr = 0:91 for different gases, and Pr = 1:38 for ammonia.
However, as indicated in Figure 7, as the Prandtl number
rises, the temperature distribution falls. The reason for this
is that thermal diffusivity and Prandtl’s number have an
inverse relationship. These two graphs demonstrate that as
the value of Prandtl’s number rises, the widths of the ther-
mal and momentum boundary layers narrow down. The
Schmidt number can be explained using similar arguments.
Figures 8 and 9 demonstrate how it affects species concen-
tration and fluid velocity. These data demonstrate that fluid
velocity and fluid temperature distribution decrease both as
the value Schmidt number increases. Thus, the thicknesses
of the momentum boundary layer and the solutal boundary
layer also decrease as solutal diffusion decreases.
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Figure 2: Thermal Grashof number impact on fluid velocity.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

u

y

Gm = 1, 3, 6, 9

Figure 3: Solutal Grashof number effect on fluid velocity.
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Figure 4: Plate inclination impact on fluid velocity.
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Figure 5: Effects of the Casson fluid parameter on fluid velocity.
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Newtonian heating refers to the process of heat exchange
in which internal resistance is minimal in comparison to the
plate’s wall or surface resistance. That is why there has been
a greater change in surface temperature. As a result, when
Newtonian heating increases, the temporal distribution at
the surface increases. In this line, increasing temperature
also results in increased fluid acceleration, which causes an
increment in velocity profiles including thickness of
momentum boundary layer. With the aid of this idea, one
may comprehend how the supplied system’s velocity profile
and temperature distribution increase when this parameter
rises, as seen in Figures 10 and 11.

The surface of mass in transit and the product of the
varying driving force concentration can be used to calculate
the mass transfer coefficient. Anyone can deduce the
straight-forward relation of conjugate parameter, concentra-
tion, and mass transfer coefficient from this expression. As a
result, as this parameter rises, the species concentration and
hence the thickness of the solutal boundary layer rise, while
the fluid velocity and thickness of the boundary layer due to
momentum decrease (see Figures 12 and 13).
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Figure 7: Influences of the Prandtl number on fluid temperature.
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Figure 6: Impacts of the Prandtl number on fluid velocity.
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Figure 8: Influences of the Schmidt number on fluid velocity.
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Figure 9: Influences of the Schmidt number on species concentration.
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Figure 10: Newtonian heating impact on fluid velocity.
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Figures 14 and 15 show how thermal radiation affects
temperature and dimensionless fluid velocity. Based on what
is known about thermal science, thermal radiation is defined
as energy emission in the form of moving subatomic parti-
cles or electromagnetic waves. Obviously, the temperature
affects how much energy is released. The little amount of
heat absorption is necessary when thermal radiation is trans-
ferred from one surface to another. Due to the presence of
heat conduction or convection, the surface may also permit
heat to escape to the surroundings. Therefore, fluid temper-
ature can be thought of as a function of thermal radiation.
As the thermal radiation parameter rises, the fluid velocity
and temperature distribution do as well.

Thermal radiation influences on dimensionless fluid
velocity including temperature have been illustrated in
Figures 14 and 15. According to what is known about ther-
mal science, thermal radiation is defined as energy emission
in the form of moving subatomic particles or electromag-
netic waves. Obviously, the temperature affects how much
energy is released. The little amount of heat absorption is
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Figure 11: Newtonian heating effect on fluid temperature.
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Figure 12: Impacts of mass transfer coefficient on velocity.
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Figure 13: Impacts of mass transfer coefficient on concentration.
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Figure 14: Thermal radiation effect on fluid velocity.
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Figure 15: Thermal radiation effect on fluid temperature.
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necessary when thermal radiation propagates from one sur-
face to another. Furthermore, because of the heat transfer by
other means such as conduction or convection, the surface
may permit heat to diffuse in its adjacent neighborhood
depending on the ambient temperature. In light of this, fluid
temperature can be thought of as a factor in thermal radia-
tion. Due to the increased thermal radiation parameter, the
fluid velocity and temperature distribution both rise. In this
instance, the thermal and momentum boundary layer thick-
nesses expand together with the thermal radiation entity.

7.1. Analysis of Surface-Based Dimensionless Coefficients.
Shearing stress numerical variations for numerous funda-
mental physical entities are shown in Table 1. As it is shown
in this table, as a, α, and Pr increase, shearing stress also
increases. However, it decreases as t, Gr, Gm, R, β, Sc, η,
and γ grow. The most intriguing element in this situation
is that when plate inclination increases, shearing stress or
local skin friction reduces because of the significant friction
created close to the plate’s surface. Table 2 illustrates the
effects of many significant physical parameter on heat trans-
fer coefficient and mass transfer coefficient values. It is obvi-
ous that an increment in R, γ, and t results in a rise of the
Nusselt number, whereas an increment in Pr results in a dec-
rement in the Nusselt number, similar to how an increase in
Sc, η, and t results in an increment of Sherwood’s number.

8. Conclusion

In this study, convective boundaries, viz., solutal and ther-
mal boundary conditions, as well as the effects of heat and
mass in transit, have been investigated in relation to radia-
tive Casson fluid flow due to an exponentially accelerated
slanted plate. The partial differential equations (PDEs) rep-
resenting the flow problems are converted into ordinary

Table 1: Shearing stress variations.

a t Gr Gm R α β Pr Sc η γ τ

0.1 0.4 1 1 1 π/3 2 0.71 0.6 0.6 0.6 0.4371

0.2 0.4 1 1 1 π/3 2 0.71 0.6 0.6 0.6 0.5243

0.1 0.5 1 1 1 π/3 2 0.71 0.6 0.6 0.6 0.4124

0.1 0.6 1 1 1 π/3 2 0.71 0.6 0.6 0.6 0.3643

0.1 0.4 2 1 1 π/3 2 0.71 0.6 0.6 0.6 0.1804

0.1 0.4 3 1 1 π/3 2 0.71 0.6 0.6 0.6 0.0520

0.1 0.4 1 2 1 π/3 2 0.71 0.6 0.6 0.6 0.3799

0.1 0.4 1 3 1 π/3 2 0.71 0.6 0.6 0.6 0.3228

0.1 0.4 1 1 2 π/3 2 0.71 0.6 0.6 0.6 0.2896

0.1 0.4 1 1 3 π/3 2 0.71 0.6 0.6 0.6 0.1183

0.1 0.4 1 1 1 π/6 2 0.71 0.6 0.6 0.6 0.2073

0.1 0.4 1 1 1 π/4 2 0.71 0.6 0.6 0.6 0.3071

0.1 0.4 1 1 1 π/3 3 0.71 0.6 0.6 0.6 0.4155

0.1 0.4 1 1 1 π/3 4 0.71 0.6 0.6 0.6 0.4030

0.1 0.4 1 1 1 π/3 2 0.81 0.6 0.6 0.6 0.4705

0.1 0.4 1 1 1 π/3 2 0.91 0.6 0.6 0.6 0.4959

0.1 0.4 1 1 1 π/3 2 0.71 0.7 0.6 0.6 0.7743

0.1 0.4 1 1 1 π/3 2 0.71 0.8 0.6 0.6 0.4359

0.1 0.4 1 1 1 π/3 2 0.71 0.6 0.7 0.6 0.3987

0.1 0.4 1 1 1 π/3 2 0.71 0.6 0.8 0.6 0.3635

0.1 0.4 1 1 1 π/3 2 0.71 0.6 0.6 0.7 0.3545

0.1 0.4 1 1 1 π/3 2 0.71 0.6 0.6 0.8 0.2501

Table 2: Mass and heat transfer rate variations.

R Pr γ Sc η t Nu Sh
1 0.71 0.6 — — 0.4 1.4809 —

2 0.71 0.6 — — 0.4 1.9279 —

1 0.8 0.6 — — 0.4 1.3707 —

1 1 0.6 — — 0.4 1.2421 —

1 0.71 0.7 — — 0.4 2.0750 —

1 0.71 0.8 — — 0.4 2.9127 —

— — — 0.6 0.6 0.4 — 0.4038

— — — 0.8 0.6 0.4 — 1.1530

— — — 0.6 0.7 0.4 — 1.5343

— — — 0.6 0.8 0.4 — 2.0155

1 0.71 0.6 0.6 0.6 0.5 1.6797 1.2646

1 0.71 0.6 0.6 0.6 0.6 1.9074 1.3793
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differential equations (ODEs) applying the Laplace trans-
form. Following that, analytically determined closed-form
solutions for fluid velocity, temperature, and concentration
are produced. In graphs and tabular form, physical elements
controlling the fluid flow behaviors are thoroughly exam-
ined. The following are the investigation’s main findings:

(i) Increasing the plate inclination decreases fluid
velocity while increasing skin friction

(ii) Local skin friction decreases when buoyant forces
are exerted on the supplied fluid expand, but the
Casson fluid velocity increases

(iii) Shearing stress rises as the Prandtl number rises,
whereas the distribution of temperature, speed,
and rate of heat transfer declines as the number
rises

(iv) In contrast to shearing stress reduction, thermal
radiation increases fluid velocity, heat transfer rate,
and temperature

(v) Increased Casson fluid parameter results in
increased velocity profiles and decreased local skin
friction

(vi) Temperature and fluid velocity both rise with
increasing mass transfer and Newtonian heating
coefficients

(vii) With an increase of Newtonian heating and mass
transfer coefficients, the shearing stress drops down
while the Nusselt and Sherwood numbers rise up

This model can be extended to complex flows involving
nonlinear partial differential equations. That is, we propose
to extend this problem to the nonlinear case wherein the
obtained solutions to the present linear case will be used as
benchmark solutions to validate the approximate solutions
obtained by the numerical methods to the proposed nonlin-
ear case. We also propose to consider the effects of other
physical entities such as fluid rotation, forced convection,
and permeability of the medium in the future which are
not considered in the present case. It is also advised that this
investigation be expanded in further work by including
terms for magnetic field, viscous dissipation, and Joule heat-
ing in the momentum and energy equation. Numerous tech-
nical and scientific applications make use of the magnetic
field, viscous dissipation, and Joule heating terminology.

Nomenclature

R: Thermal radiation
Gr: Thermal Grashof number
q: Fluid velocity (m/s)
C: Fluid concentration (kmol/m3)
ν: Viscosity (kinematic) (m2/s)
βT : Volumetric heat expansion (1/K)
g: Gravitational acceleration (m/s2)
qr : Radiative heat flux (W/m2)
kf : Mass transfer coefficient (kg/m2 s)

qo: Constant velocity of the wall (m/s)
α: Inclination angle of the plate
a′: Dimensional accelerating parameter
θ: Dimensionless temperature
τ: Local skin friction
Sh: Sherwood number
γ: Newtonian heating parameter
t: Nondimensional time
β: Casson nanofluid parameter
Gm: Solutal Grashof number
T : Fluid temperature (K)
Pr : Prandtl number
ρ: Fluid density (kg/m3)
βC : Volumetric mass expansion (m3/kg)
κ: Thermal conductivity (W/mK)
Cp: Specific heat capacity (J/kgK)
hf : Heat transfer coefficient (W/m2 K)
μ: Dynamic viscosity (kg/ms)
Dm: Mass diffusivity
t ′: Dimensional time (s)
ϕ: Dimensionless concentration
Nu: Nusselt number
a: Accelerating parameter
η: Conjugate parameter for concentration
Sc: Schmidt number.
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The data used to support the findings of this study are
included within the article. The data generated using
MATLAB code is already presented in the tables and figures
that are included in Results andDiscussion of themanuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. B. Riaz, A. Atangana, and N. Iftikhar, “Heat and mass
transfer in Maxwell fluid in view of local and non-local differ-
ential operators,” Journal of Thermal Analysis and Calorime-
try, vol. 143, no. 6, pp. 4313–4329, 2021.

[2] M. F. Endalew and S. Sarkar, “Temporal analysis of dual
phase-lag double-diffusive MHD flow within a porous micro-
channel with chemical reaction,” Heat Transfer-Asian
Research, vol. 48, no. 4, pp. 1292–1317, 2019.

[3] M. F. Endalew, S. Sarkar, G. S. Seth, and O. D. Makinde, “Dual-
phase-lag heat transfer model in hydromagnetic second grade
flow through a microchannel filled with porous material: a
time-bound analysis,” Revue des Composites et des Materiaux
Avances, vol. 28, no. 2, pp. 173–194, 2018.

[4] S. Sarkar, M. F. Endalew, and O. D. Makinde, “Study of MHD
second grade flow through a porous microchannel under the
dual-phase-lag heat and mass transfer model,” Journal of
Applied and Computational Mechanics, vol. 5, no. 4, pp. 763–
778, 2019.

[5] M. F. Endalew and A. Nayak, “Thermal radiation and inclined
magnetic field effects on MHD flow past a linearly accelerated

11Journal of Applied Mathematics



inclined plate in a porous medium with variable temperature,”
Heat Transfer-Asian Research, vol. 48, no. 1, pp. 42–61, 2019.

[6] M. F. Endalew, A. Nayak, and S. Sarkar, “Flow past an oscillat-
ing slanted plate under the effects of inclined magnetic field,
radiation, chemical reaction, and time-varying temperature
and concentration,” International Journal of Fluid Mechanics
Research, vol. 47, no. 3, pp. 247–261, 2020.

[7] M. F. Endalew and S. Sarkar, “Incidences of aligned magnetic
field on unsteady MHD flow past a parabolic accelerated
inclined plate in a porous medium,” Heat Transfer, vol. 50,
no. 6, pp. 5865–5884, 2021.

[8] S. Das, B. Tarafdar, and R. N. Jana, “Hall effects on unsteady
MHD rotating flow past a periodically accelerated porous plate
with slippage,” European Journal of Mechanics - B/Fluids,
vol. 72, pp. 135–143, 2018.

[9] M. Sobamowo, A. Yinusa, and O. Makinde, “A study on the
effects of inclined magnetic field, flow medium porosity and
thermal radiation on free convection of Casson nanofluid over
a vertical plate,” World Scientific News, vol. 138, no. 1, pp. 1–
64, 2019.

[10] M. M. Nandeppanavar, “Melting heat transfer analysis of non-
Newtonian Casson fluid due to moving plate,” Engineering
Computations, vol. 35, no. 3, pp. 1301–1313, 2018.

[11] A. Zaib, K. Bhattacharyya, M. S. Uddin, and S. Shafie, “Dual
solutions of non-Newtonian Casson fluid flow and heat trans-
fer over an exponentially permeable shrinking sheet with vis-
cous dissipation,” Modelling and Simulation in Engineering,
vol. 2016, Article ID 6968371, 8 pages, 2016.

[12] T. Hayat, S. Asad, and A. Alsaedi, “Flow of Casson fluid with
nanoparticles,” Applied Mathematics and Mechanics, vol. 37,
no. 4, pp. 459–470, 2016.

[13] A. Hussanan, M. Z. Salleh, R. M. Tahar, and I. Khan,
“Unsteady boundary layer flow and heat transfer of a Casson
fluid past an oscillating vertical plate with Newtonian heating,”
PLoS One, vol. 9, no. 10, article e108763, 2014.

[14] N. A. Sheikh, D. L. C. Ching, I. Khan, D. Kumar, and K. S.
Nisar, “A new model of fractional Casson fluid based on gen-
eralized Fick's and Fourier's laws together with heat and mass
transfer,” Alexandria Engineering Journal, vol. 59, no. 5,
pp. 2865–2876, 2020.

[15] K. Ahmad, Z. Wahid, and Z. Hanouf, “Heat transfer analysis
for Casson fluid flow over stretching sheet with Newtonian
heating and viscous dissipation,” Journal of Physics: Confer-
ence Series, vol. 1127, no. 1, article 012028, 2019.

[16] E. M. Arthur, I. Y. Seini, and L. B. Bortteir, “Analysis of Casson
fluid flow over a vertical porous surface with chemical reaction
in the presence of magnetic field,” Journal of Applied Mathe-
matics and Physics, vol. 3, no. 6, pp. 713–723, 2015.

[17] S. Sarkar and M. F. Endalew, “Effects of melting process on the
hydromagnetic wedge flow of a Casson nanofluid in a porous
medium,” Boundary Value Problems, vol. 2019, no. 1, 2019.

[18] M. F. Endalew and S. Sarkar, “A numerical study of forced
convection casson nanofluid flow past a wedge with melting
process,” in ASME International Mechanical Engineering Con-
gress and Exposition, p. IMECE2020-23276, Portland, Oregon,
2020.

[19] M. Hamid, M. Usman, Z. Khan, R. Haq, and W. Wang, “Heat
transfer and flow analysis of Casson fluid enclosed in a par-
tially heated trapezoidal cavity,” International Communica-
tions in Heat and Mass Transfer, vol. 108, article 104284,
2019.

[20] S. Das, A. Banu, and R. Jana, “Delineating impacts of non-
uniform wall temperature and concentration on time-
dependent radiation-convection of Casson fluid undermagnetic
field and chemical reaction,” World Journal of Engineering,
vol. 18, no. 5, pp. 780–795, 2021.

[21] M. Amjad, I. Zehra, S. Nadeem, and N. Abbas, “Thermal anal-
ysis of Casson micropolar nanofluid flow over a permeable
curved stretching surface under the stagnation region,” Journal
of Thermal Analysis and Calorimetry, vol. 143, no. 3, pp. 2485–
2497, 2021.

[22] S. Sarkar, R. N. Jana, and S. Das, “Time-dependent entropy
analysis in magnetized Cu-Al2O3/ethylene glycol hybrid
nanofluid flow due to a vibrating vertical plate,” Fluid Mechan-
ics Research, vol. 47, no. 5, pp. 419–443, 2020.

[23] J. R. Pattnaik, G. C. Dash, and S. Singh, “Radiation and mass
transfer effects on MHD flow through porous medium past
an exponentially accelerated inclined plate with variable tem-
perature,” Ain Shams Engineering Journal, vol. 8, no. 1,
pp. 67–75, 2017.

[24] R. Muthucumaraswamy, K. Sathappan, and R. Natarajan,
“Heat transfer effects on flow past an exponentially accelerated
vertical plate with variable temperature,” Theoretical and
Applied Mechanics, vol. 35, no. 4, pp. 323–331, 2008.

[25] A. Singh and N. Kumar, “Free-convection flow past an expo-
nentially accelerated vertical plate,”Astrophysics and Space Sci-
ence, vol. 98, no. 2, pp. 245–248, 1984.

[26] M. M. Nandeppanavar, M. C. Kemparaju, and N. Raveendra,
“Double-diffusive free convective flow of Casson fluid due to
a moving vertical plate with non-linear thermal radiation,”
Journal of Engineering, vol. 18, no. 1, 2021.

[27] M. Awais, T. Hayat, M. Nawaz, and A. Alsaedi, “Newtonian
heating, thermal-diffusion and diffusion-thermo effects in an
axisymmetric flow of a Jeffery fluid over a stretching surface,”
Brazilian Journal of Chemical Engineering, vol. 32, no. 2,
pp. 555–561, 2015.

[28] V. Rajesh, “Effects of mass transfer on flow past an impulsively
started infinite vertical plate with Newtonian heating and
chemical reaction,” Journal of Engineering Physics and Ther-
mophysics, vol. 85, no. 1, pp. 221–228, 2012.

[29] M. Qasim, N. Riaz, D. Lu, and M. I. Afridi, “Mixed convection
flow over a stretching sheet of variable thickness: analytical
and numerical solutions of self-similar equations,” Heat
Transfer, vol. 49, no. 6, pp. 3882–3899, 2020.

[30] S. K. Nandy, “Analytical solution of MHD stagnation-point
flow and heat transfer of Casson fluid over a stretching sheet
with partial slip,” ISRN Thermodynamics, vol. 2013, Article
ID 108264, 9 pages, 2013.

[31] S. Mukhopadhyay, P. R. De, K. Bhattacharyya, and G. Layek,
“Casson fluid flow over an unsteady stretching surface,” Ain
Shams Engineering Journal, vol. 4, no. 4, pp. 933–938, 2013.

[32] M. F. Endalew, “Analytical study of heat and mass transfer
effects on unsteady Casson fluid flow over an oscillating plate
with thermal and solutal boundary conditions,”Heat Transfer,
vol. 50, no. 6, pp. 6285–6299, 2021.

[33] M. F. Endalew, S. Sarkar, and G. S. Seth, “Convective and
dissipative temporal flow of Casson nanofluid past a tilted
plate in a porous medium with Navier’s slip and slanted mag-
netic field,” International Journal, vol. 12, no. 6, pp. 43–64,
2021.

[34] A. Hussanan, I. Khan, and S. Shafie, “An exact analysis of heat
and mass transfer past a vertical plate with Newtonian

12 Journal of Applied Mathematics



heating,” Journal of Applied Mathematics, vol. 2013, Article ID
434571, 9 pages, 2013.

[35] R. Siegel, Thermal Radiation Heat Transfer, CRC Press, 2001.

[36] R. B. Hetnarski, “An algorithm for generating some inverse
Laplace transforms of exponential form,” Zeitschrift für ange-
wandte Mathematik und Physik ZAMP, vol. 26, no. 2,
pp. 249–253, 1975.

[37] R. Hetnarski, “On inverting the Laplace transforms connected
with the error function,” Applicationes Mathematicae, vol. 4,
no. 7, pp. 399–405, 1963.

13Journal of Applied Mathematics


	Modeling and Analysis of Unsteady Casson Fluid Flow due to an Exponentially Accelerating Plate with Thermal and Solutal Convective Boundary Conditions
	1. Introduction
	2. Formulation of the Problem
	3. Solution Method
	4. Surface-Based Dimensionless Coefficients
	4.1. Skin Friction Coefficient
	4.2. Nusselt Number
	4.3. Sherwood Number

	5. Restricting Scenarios of the Problem
	5.1. Newtonian Fluid Case
	5.2. Absence of Natural Convection
	5.3. Flow over an Accelerating Plate

	6. Validation of the Result
	7. Results and Discussion
	7.1. Analysis of Surface-Based Dimensionless Coefficients

	8. Conclusion
	Nomenclature
	Data Availability
	Conflicts of Interest



