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In this study, we applied an approximate solution method for solving the boundary value problems (BVPs) with retarded
argument. The method is the consecutive substitution method. The consecutive substitution method was applied and an
approximate solution was obtained. The numerical solution and the analytical solution are compared in the table. The

solutions were found to be compatible.

1. Introduction

Boundary value problems (BVPs) with retarded arguments
are

x'(t) +a(t)x(t—7(t)) =f(t), (0<t<T), (1)

x(t)=¢(t) (A<t <0),x(T)=x(c)(0<c<T), (2)

where a(t)>0, f(£)>0, ¢(t)(Ay<t<0), and 7(t)>0
(0<t<T) are given continuous functions. Differential
equations with retarded arguments originated there in the
18th century. Until this century, there were no studies on
differential equations with retarded arguments. Studies on
differential equations with retarded arguments began after
this century, at this time initial value problems do not have
an exact formula. It was first made in the thesis of [1]. Then,
the approximation method was used successfully and
discussed in [2]. The integral equation method is the most
widely used method for the analytical solution of the BVPs
[3, 4]. For the boundary condition x(T)=x;, in problem
(1) studied for different values of 7(¢) in [5-7]. Problems
in the thesis [5] were solved with the ordinary successive
approximation method, the modified two-sided approxima-

tions method, and the modified successive approximations
method, and then converted to Padé approximations and
compared in [8-10]. The results of the successive approxi-
mation method and modified successive approximation
method were compared in [11]. In addition, the solution of
BVP for the arbitrary continuous function 7(t) in problem
(1) was investigated under the conditions specified in [12]
and approximately calculated by the CAS Wavelet method
in [13]. For problem (1), we applied the sequential substitu-
tion method. With this method, we obtained an integral
equation equivalent to BVP (1), and the solution of this
integral equation is equivalent to the solution of BVP. The
equivalent integral equation is usually a Fredholm integral
equation. In this study, we obtained a Fredholm-Volterra
integral equation for problem (1).

2. An Equivalent Integral Equation

In problem (1), if we take A(¢) =t —7(¢), then t, € [0, T] is
a point located at the left side of T such that conditions
AMty) =0 and A(t) <0(0<t<t,) are satisfied.

Where A, = [nin A(t), let us assume that A(t) is a non-

decreasing function in the interval [¢,, T| and the equation
A(t) = o has a continuously differentiable ¢ =y (o) solution
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for arbitrary [0, A(¢)]. If x*(¢) is the solution to BVP (1),
then it turns out that x*(¢) is also the solution to equation

TT_

X (1) =R(t) + tJO — za(s)x(s — 7(s))ds

Here,

E(t)=¢(0)—tj :’;:Z f(s)ds+tJC —— f(s)ds "
0 0 4
+J (t=s)f(s)ds.

0

Let 0 =s—17(s). So equation (3) can be written as

where

y TI'-c
- Py @i @

K:(0) =~ 2% a(y(0)) aty())y' (o),

K(t,0) ==(t = y(0))a(y(0))y' (0),
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or
x(t)=h(t) +tFix+tFsx+ V,x, (8)

where

A(T)
Fix= J K, (0)x(0)do,
0

)

MT)

Fix= J K,(0)x(0)do
0

is the Fredholm operator, and

D)

VAxEJ K(t, 0)x(c)d(0) (10)
0

is the Volterra operator. Problem (1) is equivalent to equa-
tion (8); it is a Fredholm-Volterra integral equation.

3. The Consecutive Substitution Method

In equation (8), if we replace x in the V,x operator with the
term on the right side of equation (8), then we obtain

x(t)=h(t)+ V h(t) + (t+ V£ )Fix + (t+ Vit )Fix + Vix.
(11)

In equation (11), if we replace x in the V3x operator with
the term on the right side of equation (8), then we obtain

x(t)=h(t)+ Vih+ Vih+ (t+ Vit + Vit)Fix
+(t+ Vy+ Vit Fix + Vix.

(12)

If this process is repeated n times, we have

x(t) = Z Vih+ <Z V3t> Fix+ (Z V3t> Fix+ Vit
i=0 i=0 i=0
(13)
If we choose h,(t) =Y, Vihand a,(t) =Y Vit
x(t) = h,,(t) +a,(t) (Fyx + Fix) + Vi*'x. (14)

Now, we can prove that the formula is correct

|[Vix| < w (neN), (15)

n!

for the operator

A(D)
VKxEJ K(t,0)x(0)d(0)(0<t<T). (16)
0
Consequently, for n which is large sufficient, we neglect
the |V}x| operator in equation (14). Then, the consecutive
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approximations are created by taking into account the
Volterra operator.

x,(t) = hy (t) + a, () (Fyx, + Fix, ). (17)

Theorem 1. Let 7(t) >0, f(t) (0<t < T) and a(t) be known
functions in problem (1) and o, =1- Fla, - Fia, + 0 also
lim A, ([KA(T)]"/n!) =0 such that

A, =1+ Il (Ol <JMT)K1 (0)do + JMC)KZ(G)da> . (18)

|, | 0 0

Thus, the limit of approximations is

%, () =hy (1) + 22 (jw)mo)hn(o)do
o moNe (19)
+J Kz(o)hn(a)da).

0

This converges to the solution of problem (1), and the
convergence speed is

KAT)"

[5a(6) = x(0) | <4,

(20)
Proof. Equation (17) with the degenerate kernel is Fredholm
integral equation. The solution of

A(T)
(1) = () + a(£) (j K, () (0)do
Ao 0 (21)
+J Kz(a)hn(a)da)

0

is the same as the solution of equation (14) and problem (1).
Then, let us try to find the solution to equation (21).

For this, we use assistant equation y(t)=h,,(t) +a,(t)
(Eiy+ Fsy)
where ¢, = F1y + F{y. Thus y(t) is like that

Y1) = (1) + a,(1),. (22)
Therefore,

Ac)
K,(o)h,(0)do
0

c, = JA(T)KI (0)h,(o)do + J

0

‘e, (JMT)KI (0)a,(@)do + JMC>K2(a)an(a)da> .

(23)

When o, =1 - Fla, — F{a, 0 is given, c, is in the form
of

€, = “in (JA(T)KI(a)hn(a)do + J/\(C)Kz(a)hn(o)da) . (24)

3
If we use equation (24) in (22) for n=1,2, --- then
A(T)
5=l + 0 ([ K0y (0)do
“n 0 (25)
A(c)
+J Kz(a)hn(o)da).
0

We obtained the approximate solution to problem (1)
with these operations. Thus, the limit of x,(¢) converges to
the solution of the problem (1). Now, let us determine the
error of equation (25), which is the approximate solution
to problem (1). Using equation (14) and equation (17), we
reached

x—x,=a,(t) (F{(x—xn) + Fi(x—x,)) + Vitle,  (26)

Assuming e is e=x-x,, then we get the Fredholm
integral equation with a degenerated kernel

e=a,(t)(Fie+ Fie) + Vi''x. (27)

It has been proven that the solution to equation (27) is
found using the following formula:

t A(T)
10 (J K, (0)Vi"'x(0)do
“n 0
" (28)
" J K,(0) V;“x(a)da> .
0

Thus, we write

le| < {1 el (Em K, (0)|do + JMC) |K2(a)|da>}

|an| 0
. ||V§’L“x(o)’|.
(29)

Then, by the hypothesis, A, =1+ (||a,|l/|a,)([2"|K,
(0)ldo + [3|K, (0)|do)
and we have

KA(T)]"
()~ <4, EX D g (ao)
U
Example. Let us consider BVP
1 5 3
X'()+tx(t—=Vt) =20 +267+ 22— 2 P12
2 (31)

() =0(-1/16 <t < 0) x(1) =xG> (o < % < 1). (32)



TaBLE 1: Values at some point in the interval [0, 1].

L x(t;) x* () e(t;)

0.000000 0.00 0.000000 0.000000
0.250000 0.6250 0.632407 0.007407
0.500000 1.00 1.068917 0.068917
1.000000 1.00 1.167506 0.167506

Using the method given above, this equation can be writ-
ten as the Fredholm-Volterra integral equation as follows:

x*(t) =2.872933230¢ — 2t* — 0.1714285714¢"
+0.2083333333t* + 0.1269841270¢°> — 0.1+°

+ tjm [3+4a 160” + 3+280_8002} (0)do
= - — X

8o V1+160

tj”z‘(\/m) | — 4o — 1602 4 L 40— 8007 (0)d
- = —40-160°+ ———|x(0)do

81Jo [ V1 + 160 }

1 (-2 ,
——J (4t -1) + (16t - 12)0 - 160

16 J,

4t — 1) + (48t — 20)0 — 800>
+ ( ) o =800 }x(a)da.

V1+160
(33)

Let

h(t) =2.872933230t — 2¢* — 0.1714285714t""
+0.2083333333t* + 0.12698412707% - 0.1+,

1 ,  3+280 8002
K,(0)=<|3+40-160"+ —————

8 V1+ 160
1 1 + 40 - 8002
K, (o)==|1-40-160"+ ——
() 8[ V1+ 160 }

K(t,0) S [(4t— 1) + (16t — 12)0 - 160°

16
L (1) + (48t —20)0 - 8002}
v1+ 160 ’

1/2
Flx= J K, (0)x(0)do,
0

(1/2)=(v/2/4)
X = J K,(0)x(0)do,

0

t—(/t12)
Viyx= —L K(t,0)x(0)d(o).
(34)

Therefore, the integral equation (33) can be written as

x*(t) = h(t) + tFix + tFix + V)x, (35)
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and this equation is equivalent to problem (31). Some values
of the solution of this equation are obtained by using the
method of the consecutive substitution method of third
which are given in Table 1, where the first approximation
is x,(t) =2.872933230¢ and analytical solution is x(t) =
—2t% + 3t.

4. Conclusion

In this article, a suitable approximation method is applied to
the solution of a differential equation with retarded argu-
ment. An equivalent integral equation was obtained to find
the solution of BVP (1). This equation is the Fredholm-
Volterra integral equation. After obtaining the integral
equation, the consecutive substitution method was applied,
and an approximate solution was obtained. The approxi-
mate solutions calculated for problem (1) are compared with
the analytical solution in Table 1 for some values of ¢. The
obtained results were found to be compatible. Calculations
related to the above-mentioned example were made using
Maple.
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