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In this article, we present a novel enhancement to the a-parameterized differential transform method (PDTM) for solving
nonlinear boundary value problems. The proposed method is applied to solve the generalized Gardner equation by utilizing
genetic algorithms to obtain optimal parameter values. Our proposed approach extends the general differential transformation
method, allowing for the use of various values for the coefficient «. Our solution procedure offers a distinct advantage by
allowing the original differential transformation method to be divided into multiple steps, thereby illustrating specific solution
properties for nonlinear boundary value problems. Additionally, possible alternative solutions based on varying parameter
values are also explored and discussed. The results with those obtained through the DTM method and exact solutions are

compared to confirm the accuracy of our method and its efficiency in reaching the exact solution quickly.

1. Introduction

Several methods were used in solving nonlinear partial
differential equations, including the Adomian decomposi-
tion method, vibrational iteration method, and differential
transform method [1, 2]. The differential transform method
(DTM) is a potent approximate analytical technique for
resolving nonlinear differential equations. Consequently, it
offers a method that may be used broadly to create an
analytical solution of differential equations. Real physical
systems exhibit chaotic and nonlinear behaviour. Some-
times, it is impossible to solve the differential equations for
these systems mathematically, so one must use specific
procedures or methodologies to arrive at the analytical solu-
tions. The DTM is one of the numerical techniques that
allow us to obtain approximations of solutions to both linear
and nonlinear differential equation systems. This method’s
key benefit is that it does not require linearization and may
be used directly on nonlinear ODEs. The ease of use, accu-
racy of computations, and breadth of applications of DTM
are its well-known benefits. Another significant benefit of

this approach is its ability to drastically reduce the amount
of computational labor required while still accurately deliv-
ering the series solution with a rapid convergence rate [3].
Many methods have been developed to solve nonlinear
differential equations. One such method is the a-parame-
terized differential transform method (PDTM), which differs
from the traditional DTM by calculating the coefficients of
the Taylor polynomials differently [4]. Another variant is
the reduced differential transform method (RDTM), which
uses the DTM method and has been applied to solve two
types of nonlinear partial differential equations [5, 6]. The
generalized Gardner equation is as follows [7]:

u+ (p+pu" +yu)u +Suy, =0. (1)
With initial and boundary conditions,

u(x, ty) =f(x),t,=0,-L2x>1,
u(=L, 1) = go(t), u(L, 1) = g, (),
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where p, 3,9, and 0 are arbitrary constants, with nonlinear
terms of any order, and can take different values to derive
known models. f(x), g,(t), and g,(t) are known functions.
The parameters in equation (1) will be determined based
on plasma parameters at a later time. In the special case when
n=1,8+0,y=0, the generalized Gardner equation (1)
becomes the KdV equation; when n=1,5=0,y#0, it
becomes the mKdV equation; when n=1, f# 0,y # 0, equa-
tion (1) converts to the KdV-mKdV equation. Demiray and
Bulut utilized the extended trial equation method to obtain
exact solutions for the generalized Gardner equation [7].
Another group of researchers, new techniques for determining
new solutions of partial differential equations were created by
Ghanbari and Baleanu [8]. Mathanaranjan used the first
integral method to solve the generalized Gardner which
contains dual high-order nonlinear terms [9]. Taghizade and
Neirameh constructed travelling wave solutions involving
parameters of the Gardner equations [10]. Daghan and
Donmez studied the travelling wave solution of the Gardner
equation analytically using the two dependent expansion and
direct integration approaches [11].

GA has been widely used by researchers to solve differ-
ential equations. One such example is the work by Firouzi
et al. [12], who proposed the use of GA for estimating large
synchronous generator parameters. X. Li and M. Yin [13]
also applied GA along with other heuristic techniques to
solve the boundary value problem. S. A. Malik et al. [14]
proposed a crossbred algorithm that combined differential
evolution with artificial bee colony, which was implemented
for parameter assessment of chaotic systems. In another
study, Zeeshan and Atlas [15] utilized GA to find the best
solution of the integrodifferential equation. In this paper,
we propose a generalization of the a-parameterized differen-
tial transform method (PDTM) and finding the parameter
using genetic algorithm instead of using long steps to solve
nonlinear systems to find them, which may take a long time,
which is one of the disadvantages of the a-parameterized
differential transform method (PDTM) [4].

The structure of this paper is as follows: Section 2
provides an overview of the differential transform method,
while Section 3 provides a brief introduction to GA. Section
4 outlines the proposed method, and Section 5 demonstrates
the application of GA-MPDTM for solving a nonlinear
general Gardner equation. Finally, Section 6 contains con-
cluding remarks.

2. The Differential Transform Method

The first description is for some basic properties of the
differential transform method.

Definition: if w(x,t) is a continuously differentiated
analytical function with respect to both x and ¢ in the
corresponding domain, then the function W;(x) is defined
by [16]

Wi(x) = 1_1’ laa_; w(x, t)] : (3)
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Definition: the inverse transform of the transformed
function W,(x) can be defined as follows:

w(x, t)= OZO: W,(x)t' (4)

Then,

w(x, t) = OZO:;' [aa—;w(x, t)] £ (5)

=0 i=0

Consider the nonlinear partial differential equation
Lw(x, t) + Rw(x, t) + Nw(x, t) = g(x, t), (6)

where L = (0/0t), R is the linear, N is the nonlinear operator,
and g(x, t) is an inhomogeneous term. The recursive formula
of (5) becomes

(i+1) Wi (% £) = Gy(x) —RW,(x) -NW;(x),  (7)

where W;(x), RW,(x), NW,(x), and G;(x) are the trans-
formed functions. Table 1 enumerates the fundamental alter-
ations that the RDTM effectively carries out.

The initial condition (6) is defined as

Wo(x) =f(x). (8)

By inserting (8) into (7) and performing iterative calcu-
lations, we can derive the W;(x) values. These values can
be used to approximately solve the n-terms by taking the
inverse transformation of the sequence {W,(x)}., as

(5 )= Y W) (9)

n
=0

Consequently, the solution of (7) reads the regularity
convergence of the series w(x, t) [17]

w(x, t)= lim w,(x,1). (10)

n—~a~o

3. Genetic Algorithm

A genetic algorithm (GA) is a type of algorithms that uses
natural selection to optimize a solution. Introduced by John
Holland in 1970 [18]. GA is a simple and effective optimiza-
tion technique. The search space, which represents all
feasible solutions, comprises points where each point repre-
sents one feasible solution. The quality of each solution is
expressed as a fitness value. A fitness function is utilized to
evaluate the performance of all individuals in the popula-
tion. The GA employs three primary operations in this
population: selection, crossover, and mutation, to reach the
optimal solution. The GA usually generates a random popu-
lation of individuals at the start using a special procedure to
create a higher quality initial population. Each chromosome
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consists of N genes representing unknown coefficients to be
optimized.

The outline of the basic GAs involves these fundamental
concepts [19].

(1) Start. A random population of n chromosomes is
generated (expected solutions).

(2) Fitness Functions. The fitness of each chromosome is
evaluated using a fitness function

(i) New Population. A new population is created
through a sequence of steps

(ii) Selection (Reproduction). Select two parent (two
chromosomes) from a solution according to
their fitness

(iii) Crossover. The first is selection, where two chro-
mosomes are chosen as parents based on their
fitness level. These two individuals then undergo
a crossover operation, which combines their
genetic information to create new offspring

(iv) Mutation. Mutations are also introduced to
maintain genetic diversity and explore new
potential solutions

(v) Acceptable. Once a new offspring has been gen-
erated and evaluated, it is added to the new
population

(3) Replace. This process continues until a new popula-
tion is formed. At this point, this population replaces
the previous one, and the process continues to a con-
dition is met

(4) Termination. If the condition is satisfied, the best
solution in the current population is returned, and
the entire process can begin again from step one
for further optimization

(5) Loop. Go to step 2

4. Proposed Method (GA-MPDTM)

The main idea of the proposed method depends on using the
boundary conditions around an interval [a, b] of the nonlin-
ear differential equation in the differential transformation
method (DTM) instead of relying on the initial condition
only. If the differential equation contains the following
boundary conditions,

w(x,a) = f(x), w(x b) = g(x) (11)

The solution is divided into the following steps:

First: finding the solution by differential transformation
method (DTM) about the beginning of the interval.

™=

)
<3

(x5 0)= Y Wi(x)(t - a)’ (12)

Secondly: finding the solution by differential transforma-
tion method (DTM) around the end of the interval.

W, (x)(t - b)". (13)

M-

)l
S

B0 1) =

Third: calculation of the rate using the convexity func-
tion to get a general solution about the interval ¢ € [a, b].

Wi

x,t) = aw; (x,t) + (1 — a)w,(x, t). (14)

Once the MPDTM solution series (14) has been
obtained, it can be used as a basis for formulating the
fitness function in a genetic algorithm, which will then
be employed to search for the optimal parameters of a
nonlinear differential equation. This involves utilizing a
set of equations to define the fitness function within the
algorithm.

where n and m represent the total numbers of steps. W
represents the fitness function (mean square error).

5. Application

In this paper, the general Gardner equation (1) will be solved
by the proposed method with boundary conditions [9]:

Case 1. Let
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TaBLE 1: The transformations by using the RDTM.

Function

Transformed function

h(x, t) =w(x, t) Fv(x, )

H;(x) = W;(x) ¥ Vi(x)

h(x,t)= (xw(x ) H;(x) =aW;(x) (« is a constant)
h(x,t)=x" H;(x) =x"8(i-n)
h(x,t) = xmt”w( t) H;(x)=x"W_,(x)
hix, t) = w(x, )v(x £) = Z Vi) Wik(x) = kz Wi(x)Vik(x)
k=0 =0
s )= 2wl () = (4 1) (4 Wi = w0
h(x,t) = —w(x, 1) Hj(x) % i(%)
Then,
u(x,b) = G wl +n)(1 +an><_c+p) )
. Up(xt)= Y Up(x)(t-a)*. (20)
— k=l
.<1+tan (% C(;P(k(x—cb)ﬂz)))) . '
For m=5and a=0,
(17)
1

Using equation (12) and Table 1 when # = 1, the solution
about boundary condition (16) for equation (1) is

aU AU, 4 (x)

+[32Uk 0x

I+ Ui (x) +p

aUS(X) O’Uy(x)
+yZZU xX)Up_s(x 3 +6 53 =0.

k=0 s=0
(18)

When i=0,1,2 and c=1,k=1,v=1,y=1,p=2y+1,

‘B= _\/EY78= _y>

Uy (x) =~ ve

19777 o (—(1/2)x + (112)a— (1/2))*

U 1 V6sin ((12)x + (1/2)a - (1/2))
29)="g cos (—(1/2)x + (1/2)a— (1/2))’

Uy(x) = 1 V6(=3+2cos (—(1/2)x + (1/2)a - (1/2))*)

T cos (~(1/2)x + (1/2)a - (1/2))*

(19)

Uy (1) = —
154 = 5¢5 cos ((1/2)x + (1/2))°

\/E 480 cos 1x+1 :
2 2
1 1\’ . /1 1
+480cos (=x+ =) sin [=-x+ =
2 2 2 2
1 1\*
— 240t cos | —=x+ —
2 2
(1 1\, 11\’
+120sin ( =x+ = |t cos [ =x+ =
2 2 2 2
3 1 1
— 60t cos x+ +40t cos x+
2 2
. 1 1
+30sin (—x+ - |t* cos | =
2 2
. 1 1
—10sin [ =x+ = | t* cos —x+
2 2
s 1 1\°
+ 157 cos | —x + —
2 2
1 1\*
—2t° cos (—x+—> —15t5>>.
2 2

1
"2
1
2

>3
|
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In the same way, we find the solution about the boundary Consequently, the final solution of equation (1) via equa-
condition (17) tion (14) is as follows:

U t)y=aUp(xt)+(1-a)U,(x, t)

S 1 1 1 1\*
X, t) = U (x)(t = b)~, S — N 480c05<—x+—)
) ,; () =E) 960 cos((l/Z)x+(1/2))6< < 2772
11\’ 11
U, (x) :_1 V6 , + 480 cos (—x+ —) sin <—x+ —)
4 cos (—(1/2)x + (1/2)b - (1/2))* 2 2 2 2
1 1\*
Uy =) V6 sin (1/2)x + (12)b - (1/2)) (22) — 240t cos <§x+i)
? 8 cos (—(1/2)x + (1/2)b - (1/2))} O Lo
: 2
Uy = V6(=3+2 cos (~(1/2)x + (1/2)b - (1/2))?) + 120 sin (§x+§)t cos (5“5)
X)= .
W 48 cos (- (1/2)x+(1/2)b—(1/2))4 L N2 LG
— 602 cos [—x+ =) +403 cos [ =x+ =
272 272
(3o g) e (2 )
+30sin (=x+ = |t'cos [ =x+
272 2
1 1\, 11\’
Form=5andb=1, — 10 sin Ex+E t* cos Ex+5
s 11\ 1 1\* s
+157 cos (=x+ = | =2t cos | —x+ =] —15¢
1 1 272 272
Uyot)= o —— (\@<15+ 150¢% - 150¢> + 75¢* 1 ]
960 cos ((1/2)x) o —((1—¢x)\/6(15+ 150£2 — 150£°
1 1\3 960 cos((1/2)x)6
—15¢° + 60 sin (Ex> cos (Ex) £ 1 1\?
+75t* — 15> + 60 sin (Ex) cos (Ex) s

2! 1y?
—200sin [ =x ) cos [=x ] ¢ 3
2 2 R 1 1
—200sin [ =x ) cos [=x | ¢t
1 1 2 2
+30sin (~x ) cos (=x )t*
2 2 1 1
+ 30 sin —x Ccos [ —x
1 2
— 120 sin <5x> cos( x) £
— 120 sin < ) 0S
(1 1 ) 5
—Xx |t
2 1
+ 180 sin (2 x) cos

S~—
~
S

2
1 1 1)\?
—120( =x ) cos [ =x |t+45cos [ =x 2
2 2 2 1 1
-120 cos [ =x |t+45cos [ =x
1\* 1\ 2 2
(Ex) + 480 cos (Ex) 1\4 6
+202 cos [ =x | +480 cos
1 1\? 1\* 2 > ( >
+ 110 sin (Ex) cos <Ex> — 130 cos (ix) t (23) 1 1\4
+110sin { =x | cos —x —130 cos (=x | t
1\2 1\2 2 2
+90cos (~x ) 2 +30cos (~x ] 12 2 2
2 2 3 L\
+90cos " +30cos [=x) t
2 1\4 2
x) t+20cos (=x) £ 2 4
2 1 1 3
—105cos [ =x ) t+20cos | =x | t
2 2
1
2

4 2 (
2 1 4
- = 4 2
x| t7 =75 cos 2x t , 1 \
— 100 cos ( = —75 cos (Ex> t

— 105 cos

— 100 cos (

1)? 1\*
+ 15 cos (Ex) 2 -2 cos <§x) £ 1\2 1 \*
+15c0s (~x ) P=2cos (=x)
1\¢4 1 1 2 2
+10cos (=x ) t*+30sin (~x | cos ~x 4
2 2 2 1 4 . 1 1
+10cos ( =x ) t*+30sin | =x | cos —x
1 1\3 . 2 2 2
— 10 sin (Ex) cos <§x) t . 1 1\3 . . 1 1\? ,
—10sin (=x|cos(=x| t"+40sin (=x | cos [ =x | t
1 1\3 2 2 2 2
+40sin | =x | cos | =x
2 2

3
| o (5) e (35)
+480sin [ =x ) cos [ =x | —75¢ .
1 1\° 2 2
+ 480 sin (—x) cos (—x) — 75t .
2 2 (24)
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TaBLE 2: Compare the approximate solution by DTM and modified a-PDTM for different values &« whenn=1,c=1,k=1,v=1, y=1,p

=3,8=-v6,80=-1,t=0.5.

U U,

exact

DTM

Uexact -U
MPDTM

0.25
0.5
0.75

0.25

3.479760 x 107
9.122950 x 107
2.785476 x 107°
1.053285 x 102

1.026830 x 10~
2.645540 x 107
7.755900 x 107
2.813242 x 107

0.25
0.5
0.75

0.5

3.479760 x 107
9.122950 x 107
2.785476 x 107
1.053285 x 107>

1.844480 x 10~
4.804680 x 107
1.445552 x 107
5.386446 x 1072

0.25
0.5
0.75

0.75

3.479760 x 107
9.122950 x 107
2.785476 x 107
1.053285 x 107

2.662120 x 107
6.963820 x 107
2.115514 x 107
7.959648 x 107

The exact solution for equation (1) with the boundary
conditions ((16)-(17)) is [9]

(1) = C wl A D)

We note that in Table 2, the a-parameterized differential
transform method gives better results than classic differential
transform method and for different values for a. A genetic
algorithm was used to obtain the best value.

In Figure 1, we observe the convergence of the approx-
imate solution using MPDTM with the exact solution. The
methodology suggests starting with a standard model
structure in which certain parameters are unknown. The
aim is to determine the optimal values of these para-
meters «, p,y, 3,0, v within the context of the nonlinear
Gardner equation (1), with the goal of minimizing the
error.

Case 2. Let us have the boundary conditions [9].

d d (1/n)
u(x,a) = §.<1—tanh (W(k(x—ca)+v)>> ,

(26)

d d (1/n)
u(x,b)=ﬁ.<1—tanh (m(k(x—cb)+v)>> ,

(27)

such that b>0,8=2d,y=-3f,c=2d*/9f and p,d arbi-

trary constants.

Using the proposed method, we get

Ux,t)=aUp(x,t) + (1 -a)U,(x, 1)

1

" 1296 cosh ((1/6)x + (1/6))"*

1 1\* )
- af 216 cosh [ =x+ = | —216 sinh
6 6
1 1

11\’ 11\’
+36tpcosh (—x+ —| +6tfcosh [ —x+ —
6 6 6 6

1

—Pt—608t+-)) + -
1296 cosh ((1/6)x + (4/27))

. (0 ) ( co (e 2’

1 4\!
—216 sinh [ =x+ — ] cosh
6 27

1 4\31 4
ext —= | =x+ — .
6~ 27) 6 27
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2 :
N’ g
N =)
(a)
87 _1
>-x10 5.x107
i , |
87 _|
410 WPW 10"
3.x10% ) 1
= | g 3.x10Y
) E 1
3 2.x10%
i = 2.x10% —
1.x10%7 — |
1.x10% —
0 g
=27 0

(©

F1Gure 1: The numerical solutions using MPDTM when #n = 1, t = 0.025: (a) the exact solution, (b) the numerical solution U(x, ) with a =1,

() the exact solution, and (d) the numerical solution U(x, t) with a=0.

TaBLE 3: Compare the approximate solution by DTM and modified
a-PDTMwhenn=1,m=3,d=1,f=2,k=1,v=1,y=-6,p=0.1,

B=2,0=1,t=05.

x Uexact - UL Uexact -U
DTM MPDTM
0.1 1.349547 x 1073 1.936990 x 107°
0.2 1.341637 x 1073 2.105540 x 107¢
0.3 1.333057 x 107> 2.269560 x 107°
0.4 1.323826 x 107> 2.429040 x 10°°
0.5 1.313963 x 107> 2.583320x 107°
0.6 1.303488 x 107> 2.732380x 107¢
0.7 1.292423 x 1073 2.875940 x 107°
0.8 1.280790 x 1073 3.013740x 107°
0.9 1.268611 x 1072 3.145810x 107¢

1.255910 x 107

3.271760 x 107°

TaBLE 4: The values of the parameters used for GA.

Name Values
Population (solutions) size 100
Max generations 500
Crossover fraction 0.5
Initial population range (-10, 10)
Function tolerance le—50

The exact solution for equation (1) with the boundary
conditions ((26)—-(27)) is [9]

1/n

u(x,t) = d

=37 1 - tanh (k(x—ct)+v)

d
W27
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TaBLE 5: Optimization parameter values for solving equation (1) by GA-MPDTM.

P y B 8 o MSE

0 -6 2 1 0.881486 8.650360 x 10"
0 -0.6 0.2 0.5 0.850026 1.521751 x 1071
0.001 -6 2 1 0.849960 1.854641 x 10710
0.1 -6 1 1 0.849888 1.259790 x 10~/

0.1 -15 4 0.5 0.849326 3.260217 x 10°°

Note that in Table 3, the a-parameterized differential
transform method gives better results than classic differen-
tial transform method and for different values for a. As listed
in Table 3, the parameter values utilized in GA code are
available within the commercial software MATLAB®
R2021a.

We note that in Tables 4 and 5, the use of the genetic
algorithm helped in understanding the behavior of parame-
ters in solving a general Gardner equation where the mean
square error decreases when p—— 0 and the best value
for a-parameterized in modified differential transform
method in interval [0,1] is « — 0.8.

6. Conclusion

This paper presents a solution for the general Gardner
equation using modified a-parameterized differential trans-
form method and genetic algorithm. The proposed method
effectively generates approximate solutions for generalized
Gardner equations, which, for specific parameter selections,
reduce the numerical solutions to the exact solutions of clas-
sical Gardner. The a-parameterized differential transform
method and genetic algorithm have been utilized to approx-
imate solutions for the Gardner equation. These solutions
can be applied to physical plasmas that contain electron
acoustic waves in a nonextensive positron electron-ion con-
figuration. The findings are significant in understanding the
dynamic characteristics of solitons and shock waves within
different astrophysical plasma systems. This research provides
a more comprehensive understanding of electron acoustic sol-
itons. In addition, the obtained solutions are modified through
genetic algorithm to optimize parameters and describe their
effects on the solutions. This method can be considered a
beneficial approach for acquiring novel solutions of nonlinear
partial differential equations. These newly derived, precise
solutions may be invaluable in explaining various nonlinear
physical phenomena. Using the program MAPLE and
MATLAB, they are possible to secure the remaining compo-
nents of the equation similarly.
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