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In this paper, we consider a multivariate statistical model of accident frequencies having a variable number of parameters and
whose parameters are dependent and subject to box constraints and linear equality constraints. We design a minorization-
maximization (MM) algorithm and an accelerated MM algorithm to compute the maximum likelihood estimates of the
parameters. We illustrate, through simulations, the performance of our proposed MM algorithm and its accelerated version by
comparing them to Newton-Raphson (NR) and quasi-Newton algorithms. The results suggest that the MM algorithm and its
accelerated version are better in terms of convergence proportion and, as the number of parameters increases, they are also
better in terms of computation time.

1. Introduction

A large majority of the problems encountered in applied sta-
tistics (maximum likelihood estimation, least squares, data
fitting, machine learning, data analysis, experimental design,
clustering, and classification) involve the numerical optimi-
zation of a real-valued function LðθÞ depending on a param-
eter vector θ ∈ℝd , where d is a positive integer. Of all the
numerical optimization algorithms developed over the years,
the Newton-Raphson (NR) algorithm is the most famous
and the most widely used. This algorithm starts from an ini-
tial guess θð0Þ and iterates according to the scheme

θ m+1ð Þ = θ mð Þ − ∇2L θ mð Þ
� �h i−1

∇L θ mð Þ
� �

, ð1Þ

where ∇LðθðmÞÞ and ∇2LðθðmÞÞ are, respectively, the gradient
vector and the Hessian matrix evaluated at θðmÞ. The popu-
larity of this algorithm is explained by its fast convergence
when the starting guess θð0Þ is chosen close enough to the

maximum that is unknown in practice [1]. Unfortunately,
the source of NR algorithm’s popularity is also that of his
first flaw (its success strongly depends on the appropriate
choice of θð0Þ in a neighbourhood of the unknown solution).
The second major drawback of the NR algorithm inherited
from its mathematical formulation is that it requires the
numerical inversion of the Hessian matrix ∇2LðθðmÞÞ (a
square matrix of order d) at each iteration, which can be
very tricky if at the iteration m, the matrix ∇2LðθðmÞÞ is sin-
gular or ill-conditioned. When the NR algorithm is unsuc-
cessful, alternatives may be considered. Among them, we
can mention quasi-Newton algorithms [2] (which compute

approximations of ½∇2LðθðmÞÞ�−1 at each iteration), block-
relaxation algorithms (which divide parameters into disjoint
blocks and proceed to optimization by cycling through these
blocks) [3], and derivative-free optimization (DFO) algo-
rithms [4, 5].

In statistics, the last decades have seen the development
and the fast breakthrough of the minorization-
maximization (MM) principle for constructing
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maximization algorithms [6–8], and the expectation-
maximization (EM) algorithm [9] which is considered as a
special case of MM algorithm for statistical estimation with
incomplete data [6]. The design of MM algorithms for max-
imizing LðθÞ consists in constructing a special surrogate
function whose maximization is simpler but equivalent to
that of LðθÞ and then maximizing that surrogate function.
Since they do not need any matrix inversion, MM algo-
rithms generally outperform the NR algorithm and are con-
sidered as relevant for high-dimensional problems and for
some discrete multivariate distributions [10].

In this paper, we are interested in one of the very impor-
tant issues in statistics applied to road safety which is the sta-
tistical evaluation of road safety measures. We consider a
discrete multivariate statistical model coupling the distribu-
tions of accidents classified by level of severity on the sites
where the measure has been implemented (called treated
sites) and on the sites where the measure has not been
implemented (called control sites). This model has a con-
strained parameter vector θ of 1 + sr components where s
is the number of treated sites and r is the number of accident
severity levels. Our main purpose is to design an MM algo-
rithm for the maximum likelihood estimation of the param-
eter vector θ. Since MM algorithms may be slow to
converge, we also consider the acceleration of our proposed
MM algorithm.

The rest of this paper is structured as follows. In Section
2, we describe the model and we present the maximum like-
lihood estimation problem. In Section 3, we devise our new
MM algorithm for estimating the parameter vector θ; after-
wards, we apply an acceleration scheme in order to get the
accelerated version. In Section 4, we present the results of
the comparison of our proposed MM algorithm and its
accelerated version to NR and quasi-Newton algorithms.

2. Statistical Model and Parameter Estimation

Let us consider s ðs > 0Þ geographical sites (hereafter
referred to as treated sites) where a road safety measure
(maximum speed reduction, installation of roundabouts,
and so on) has been implemented for a certain period of
time. The accidents occurring on these sites are assumed
to be classified by level of severity in r levels (r > 0). Sup-
pose that, in order to avoid confusing the effect of the
measure with those of other factors likely to influence
the number of crashes, each treated site is paired with
another geographical site (hereafter called control site) with
the same characteristics (traffic flow, weather conditions,
and so on) as the treated site but where the measure has
not been implemented. For k = 1,⋯, s, let

Xk = X11k, X12k,⋯, X1rk, X21k, X22k,⋯, X2rkð ÞT ð2Þ

be a vector composed of 2r random variables, where for
all j = 1,⋯, r, X1jk (respectively, X2jk) is a random variable
representing the number of crashes of type j occurred on
treated site k in the period before (respectively, after) the
implementation of the measure. Also consider the non-

random vector

zk = z1k,⋯, zrkð ÞT, ð3Þ

where for all j = 1,⋯, r, zjk is a non-random variable rep-
resenting the ratio of the number of accidents of severity
level j in the “after” period to the number of accidents
of the same severity level in the “before” period on the
control site.

Different models combining accident frequencies from
the treated sites and the control sites have been proposed
in order to estimate mainly the average effect α of the mea-
sure and, secondarily, the accident risks [11–13]. Let Sr−1

= fðp1,⋯, prÞT ∈ ½0, 1�r ,∑r
j=1pj = 1g, h,i be the classical

inner product on ℝr , and nk (k = 1,⋯, s) be the total num-
ber of accidents observed at treated site k. In this paper, we
consider the statistical model proposed in [13] under the fol-
lowing assumptions:

(A1) For all k = 1,⋯, s, Xk follows the multinomial dis-
tribution Mðnk ; πkðθÞÞ, where

(A2) θ = ðα, βTÞT, α > 0, β = ðβT
1 ,⋯, βT

s Þ
T ∈ ðSr−1Þs, and

βk = ðβ1k,⋯, βrkÞT ∈ Sr−1 for all k = 1,⋯, s
(A3) πkðθÞ = ðπ11kðθÞ,⋯, π1rkðθÞ, π21kðθÞ,⋯, π2rkðθÞÞT,

π1jk θð Þ = βjk

1 + α zk, βkh i ,

π2jk θð Þ = αβjk zk, βkh i
1 + α zk, βkh i ,

j = 1,⋯, r:

ð4Þ

Model (4) has a parameter vector θ = ðα, βTÞT ∈ℝ∗
+ ×

ðSr−1Þs where α is the mean effect of the measure and for all
j = 1,⋯, r, k = 1,⋯, s, βjk is the probability that an accident
occurring on the treated site k is of severity level j. In this
paper, we are interested in estimating the unknown parameter
vector θ.

The likelihood of observed data x1,⋯, xs, where for all
k = 1,⋯, s, xk = ðx11k,⋯, x1rk, x21k,⋯, x2rkÞT, is given to
one additive constant by

L θð Þ = 〠
s

k=1
〠
r

j=1
x•jk log βjk

 !
+ x2•• log α

− 〠
s

k=1
nk log 1 + α zk, βkh ið Þ + 〠

s

k=1
x2•k log zk, βkh i,

ð5Þ

where for all k = 1,⋯, s, x•jk = x1jk + x2jk and x2•• =∑s
k=1

∑r
j=1x2jk. The maximum likelihood estimate (MLE) bθ of θ

is the solution to the following constrained maximization
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problem:

maximize L θð Þ
subject to

ð6aÞ

α > 0,

βjk > 0, j = 1,⋯, r, k = 1,⋯, s, ð6bÞ

〠
r

j=1
βjk = 1, k = 1,⋯, s: ð6cÞ

In the case s = 1, there exists a closed-form expression ofbθ [14]. However, in the general case s ≥ 1, the optimization
problem (6a), (6b), and (6c) looks impossible to solve in
closed-form and therefore calls for numerical optimization.
As stated earlier, different iterative algorithms may be used
to solve (6a), (6b), and (6c), each with strengths and weak-
nesses. The minorization-maximization (MM) strategy for
constructing optimization algorithms has been shown to
yield algorithms (then called MM algorithms) that outper-
form the classical NR and quasi-Newton algorithms [6, 8,
10]. Moreover, it can handle constraints easily. In problems
such as (6a), (6b), and (6c), it consists in defining a special
surrogate function and afterwards maximizes this latter
rather than the log-likelihood. MM algorithms are consid-
ered as relevant for high-dimensional problems and for dis-
crete multivariate distributions [10]. In the next section, we
explain the MM principle; afterwards, we devise an MM
algorithm to solve the problem (6a), (6b), and (6c).

3. An MM Algorithm for Computing the MLE

3.1. Brief Reminder of the MM Principle for Constructing
Maximization Algorithms. The MM principle for construct-
ing an iterative maximization algorithm consists of two
steps. Let θðmÞ be the iterate after m iterations. For the max-
imization problem (6a), (6b), and (6c), the first M step con-
sists in defining a minorizing function gðθjθðmÞÞ and the
secondM step consists in maximizing the surrogate function
gðθjθðmÞÞ with respect to θ rather than the log-likelihood L
ðθÞ, and the next iterate θðm+1Þ is obtained as the value in
which gðθjθðmÞÞ attains its maximum. Before going further,
let us remind the definition of a minorizing function [6].

For a given θðmÞ, a function gðθjθðmÞÞ is said to minorize
the function LðθÞ at θðmÞ provided

g θ θ mð Þ
���� �

≤ L θð Þ for allθ, ð7Þ

g θ mð Þ θ mð Þ
���� �

= L θ mð Þ
� �

: ð8Þ

We have successively Lðθðm+1ÞÞ ≥ gðθðm+1ÞjθðmÞÞ by For-
mula (7), gðθðm+1ÞjθðmÞÞ ≥ gðθðmÞjθðmÞÞ by Equation (21),
and gðθðmÞjθðmÞÞ = LðθðmÞÞ by Formula (8).

Thus, Lðθðm+1ÞÞ ≥ LðθðmÞÞ and, therefore, a maximization
MM algorithm is an ascent algorithm. This ascent property
ensures its numerical stability [6].

3.2. Design and Maximization of the Minorizing Function.
To develop our MM algorithm, we must define and maxi-
mize a minorizing function for LðθÞ. To this purpose, we
use some mathematical inequalities related to convex func-
tions presented in [6]. The following lemma gives the
expression of the minorizing function.

Lemma 1. Let θðmÞ be a value of the vector parameter θ and
g the real-valued function of θ defined by

g θ θ mð Þ
���� �

= C θ mð Þ
� �

+ 〠
s

k=1
〠
r

j=1
x•jk log βjk

 !

+ x2•• log α − 〠
s

k=1

nk 1 + α zk, βkh ið Þ
1 + α mð Þ zk, β

mð Þ
k

D E
+ 〠

s

k=1
〠
r

j=1
x2•k

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log βjk,

ð9Þ

where

C θ mð Þ
� �

= −〠
s

k=1
nk log 1 + α mð Þ zk, β

mð Þ
k

D E� �
+ 〠

s

k=1
nk

+ 〠
s

k=1
〠
r

j=1
x2•k

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log
zk, β

mð Þ
k

D E
β

mð Þ
jk

0@ 1A
ð10Þ

is an additive constant independent of θ. Then, gðθjθðmÞÞ
minorizes LðθÞ at θðmÞ.

Proof. By convexity of −log, we know that, for all a, b > 0,
−log ða/bÞ ≥ −ða/bÞ + 1. So, for all k = 1,⋯, s,

−log
1 + α zk, βkh i

1 + α mð Þ zk, β
mð Þ
k

D E
0@ 1A ≥ −

1 + α zk, βkh i
1 + α mð Þ zk, β

mð Þ
k

D E + 1:

ð11Þ

Hence,

−log 1 + α zk, βkh ið Þ
≥ −log 1 + α mð Þ zk, β

mð Þ
k

D E� �
−

1 + α zk, βkh i
1 + α mð Þ zk, β

mð Þ
k

D E + 1:

ð12Þ
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We can then write

−nk log 1 + α zk, βkh ið Þ
≥ −nk log 1 + α mð Þ zk, β

mð Þ
k

D E� �
−

nk 1 + α zk, βkh ið Þ
1 + α mð Þ zk, β

mð Þ
k

D E + nk,
ð13Þ

and, after summing on the k indexes, we get

−〠
s

k=1
nk log 1 + α zk, βkh ið Þ

≥ −〠
s

k=1
nk log 1 + α mð Þ zk, β

mð Þ
k

D E� �
− 〠

s

k=1

nk 1 + α zk, βkh ið Þ
1 + α mð Þ zk, β

mð Þ
k

D E + 〠
s

k=1
nk:

ð14Þ

By convexity of −log and by Equation (10) of [6], we also
have

log zk, βkh i = log 〠
r

j=1
zjkβjk

 !

≥ 〠
r

j=1

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log
zk, β

mð Þ
k

D E
βjk

β
mð Þ
jk

0@ 1A:

ð15Þ

Hence,

〠
s

k=1
x2•k log zk, βkh i

≥ 〠
s

k=1
〠
r

j=1
x2•k

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log
zk, β

mð Þ
k

D E
βjk

β
mð Þ
jk

0@ 1A,
ð16Þ

which is equivalent to

〠
s

k=1
x2•k log zk, βkh i

≥ 〠
s

k=1
〠
r

j=1
x2•k

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log βjk

+ 〠
s

k=1
〠
r

j=1
x2•k

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log
zk, β

mð Þ
k

D E
β

mð Þ
jk

0@ 1A:

ð17Þ

From (14), (17), and the definition of LðθÞ (see (5)), we

can write

L θð Þ ≥ 〠
s

k=1
〠
r

j=1
x•jk log βjk

 !
+ x2•• log α

− 〠
s

k=1
nk log 1 + α mð Þ zk, β

mð Þ
k

D E� �
− 〠

s

k=1

nk 1 + α zk, βkh ið Þ
1 + α mð Þ zk, β

mð Þ
k

D E + 〠
s

k=1
nk

+ 〠
s

k=1
〠
r

j=1
x2•k

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log βjk

+ 〠
s

k=1
〠
r

j=1
x2•k

zjkβ
mð Þ
jk

zk, β
mð Þ
k

D E log
zk, β

mð Þ
k

D E
β

mð Þ
jk

0@ 1A,

ð18Þ

which means that LðθÞ ≥ gðθjθðmÞÞ where gðθjθðmÞÞ is
defined by (9). Moreover, we have gðθðmÞjθðmÞÞ = LðθðmÞÞ.
We can then conclude that gðθjθðmÞÞ minorizes LðθÞ at
θðmÞ.

Figure 1 gives an example of representation of LðθÞ and
gðθjθðmÞÞ where s = 1, r = 2, and θ = ðα, β11, β21ÞT. Since
β21 = 1 − β11, LðθÞ and gðθjθðmÞÞ are considered as func-
tions of two variables α > 0 and β11 such that 0 < β11 < 1.

To finalize the design of our MM algorithm, we need to
deal with the constraints (6b) and (6c). In [6], the authors
recommend to extend function gðθjθðmÞÞ under a new form
that takes into account the inequality constraints; after-
wards, equality constraints will be enforced during the opti-
mization of the extended form of gðθjθðmÞÞ. Their method is
based on the logarithmic barrier method for handling
inequality constraints. For q inequality constraints of the
form viðθÞ ≥ 0, i = 1,⋯, q, the extension of gðθjθðmÞÞ pre-
sented in Equation (23) of [6] is an additive value composed

1

2

3 0.2
0.4

0.6
0.8

−600

−400

−200

𝛼
𝛽11

g (𝜃|𝜃(m))
L (𝜃)

Figure 1: Illustration of the log-likelihood for s = 1 and r = 2 and its
minorization at point ðαðmÞ, βðmÞ

11 Þ = ð1,0:5Þ.
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of linear combinations of log viðθÞ. In this paper, the form of
inequality constraint (6b) implies that the extension of gðθ
jθðmÞÞ will be composed of linear combinations of log α
and log βjk. So the log-likelihood LðθÞ defined in Equation
(5) already contains the logarithmic barrier (it diverges to
negative infinity if any of the parameters α or βjk tends to
zero). Thus, as the authors of [6] themselves recognize, if
the initial point θð0Þ satisfies inequality constraints (6b), then
the presence of the terms log α and log βjk in the expression

of LðθÞ prevents αðm+1Þ ≤ 0 and βðm+1Þ
jk ≤ 0 from occurring.

Now, knowing θðmÞ, we just have to maximize gðθjθðmÞÞ
under the equality constraints (6c) to obtain the next iterate
θðm+1Þ.

Theorem 2. Let θðmÞ be the estimate of the parameter vector
θ after m steps of our proposed MM algorithm. Then, the
components of the next iterate θðm+1Þ are given by

α m+1ð Þ =
x2••

∑s
k=1 nk zk, β

m+1ð Þ
k

D E� �
/ 1 + α mð Þ zk, β

mð Þ
k

D E� �� �� � ,
ð19Þ

and for all k = 1,⋯, s, j = 1,⋯, r,

β
m+1ð Þ
jk =

x•jk + x2•kz jkβ
mð Þ
jk

� �
/ zk, β

mð Þ
k

D E� �
nk + x2•k + nkα

m+1ð Þ zjk − zk, β
m+1ð Þ
k

D E� �� �
/ 1 + α mð Þ zk, β

mð Þ
k

D E� �� � :
ð20Þ

Proof. If θðmÞ is the estimate of θ after m steps, then the next
iterate denoted by θðm+1Þ is obtained as

θ m+1ð Þ = argmaxθg θ θ mð Þ
���� �

ð21Þ

under equality constraints (6c). Solving problem (21) is
equivalent to looking for the stationary point of the Lagrang-
ian

~L θ, λð Þ = g θ θ mð Þ
���� �

+ 〠
s

k=1
λk 1 − 〠

r

j=1
βjk

 !
, ð22Þ

where λ = ðλ1,⋯, λsÞ is a vector of s Lagrange’s multi-
pliers and g is defined by Equation (9). Setting ∂~Lðθ, λÞ/∂α
and ∂~Lðθ, λÞ/∂βjk to zero, we get

x2••
α

− 〠
s

k=1

nk zk, βkh i
1 + α mð Þ zk, β

mð Þ
k

D E = 0, ð23aÞ

x•jk
βjk

−
nkαzjk

1 + α mð Þ zk, β
mð Þ
k

D E +
x2•k
βjk

z jkβ
mð Þ
jk

zk, β
mð Þ
k

D E − λk

= 0, k = 1,⋯, s, j = 1,⋯, r:

ð23bÞ

Multiplying (23a) by α and (23b) by βjk, one gets

x2•• − α〠
s

k=1

nk zk, βkh i
1 + α mð Þ zk, β

mð Þ
k

D E = 0, ð24aÞ

x•jk −
nkαzjkβjk

1 + α mð Þ zk, β
mð Þ
k

D E +
x2•kzjkβ

mð Þ
jk

zk, β
mð Þ
k

D E − λkβjk

= 0, k = 1,⋯, s, j = 1,⋯, r:

ð24bÞ

For all k = 1,⋯, s, summing on the index j in Equation
(24b) and noting that ∑r

j=1βjk = 1 and ∑r
j=1x•jk = nk lead to

nk −
nkα zk, βkh i

1 + α mð Þ zk, β
mð Þ
k

D E +
x2•k zk, β

mð Þ
k

D E
zk, β

mð Þ
k

D E − λk = 0: ð25Þ

Hence,

λk = nk + x2•k −
nkα zk, βkh i

1 + α mð Þ zk, β
mð Þ
k

D E : ð26Þ

Combination of (24b) and (26) leads to

nk + x2•k +
nkα zjk − zk, βkh iÀ Á
1 + α mð Þ zk, β

mð Þ
k

D E
0@ 1Aβjk = x•jk +

x2•kzjkβ
mð Þ
jk

zk, β
mð Þ
k

D E :

ð27Þ

Thus, the solution θ to (21) satisfies

α =
x2••

∑s
k=1 nk zk, βkh ið Þ/ 1 + α mð Þ zk, β

mð Þ
k

D E� �� �� � , ð28Þ

and for all k = 1,⋯, s, j = 1,⋯, r,

βjk =
x•jk + x2•kzjkβ

mð Þ
jk

� �
/ zk, β

mð Þ
k

D E� �
nk + x2•k + nkα zjk − zk, βkh iÀ ÁÀ Á

/ 1 + α mð Þ zk, β
mð Þ
k

D E� �� � :
ð29Þ

The updates αðm+1Þ and βðm+1Þ
jk are obtained by replacing

α by αðm+1Þ, βk by β
ðm+1Þ
k , and βjk by β

ðm+1Þ
jk in Equations (28)

and (29).

Remark 3. The updates in Formulas (19) and (20) are ideal
but impossible to apply in practice since (a) the computation

of αðm+1Þ depends on the unknown βðm+1Þ
jk and vice versa and

(b) in Equation (20), the computation of each βðm+1Þ
jk

depends on βðm+1Þ
k and vice versa. To circumvent these diffi-

culties, we can replace βðm+1Þ
k by βðmÞ

k on the right side of
Equations (19) and (20).
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3.3. The Proposed MM Algorithm. Our proposed MM algo-

rithm is Algorithm 1. It starts from θð0Þ = ðαð0Þ, ðβð0ÞÞTÞ
T
,

where αð0Þ > 0 and βð0Þ = ððβð0Þ
1 ÞT,⋯, ðβð0Þ

s ÞTÞ
T
are randomly

set such that for all k = 1,⋯, s, βð0Þ
k = ðβð0Þ

1k ,⋯, βð0Þ
rk Þ

T
∈ Sr−1.

At the ðm + 1Þ-iteration, the update αðm+1Þ is computed from
αðmÞ and βðmÞ using Formula (28) and Remark 3; afterwards,
βðm+1Þ is updated from αðm+1Þ, αðmÞ, and βðmÞ using Formula
(29) and Remark 3. This process is repeated until a conver-

gence criterion is satisfied. Since the βðm+1Þ
jk are computed

from αðm+1Þ, our MM algorithm (Algorithm 1) is thus a
cyclic MM algorithm [6].

3.4. Acceleration of the MM Algorithm. In many statistical
estimation problems, MM algorithms may need a great num-
ber of iterations and converge very slowly. In consequence,
different acceleration schemes have been developed [15–17].

To the best of our knowledge, the acceleration schemes
developed in [16] are among the most popular, and they will
be also considered in this paper. The authors of [16] pre-
sented a new class of iterative methods, called SQUAREM
(squared iterative methods for EM acceleration), for acceler-
ating the expectation-minimization (EM) algorithm and
state that SQUAREM may be also used to accelerate MM
algorithms.

Let F be the MM map of Algorithm 1, i.e., the function
from ℝ∗

+ × ðSr−1Þs to itself defined by

F θð Þ = a, bT1 ,⋯, bTs
� �T

, ð30Þ

where

a =
x2••

∑s
k=1 nk zk, βkh ið Þ/ 1 + α zk, βkh ið Þð Þ , ð31Þ

and for all k = 1,⋯, s, bk = ðb1k,⋯, brkÞT, where for all j = 1,
⋯, r,

bjk =
x•jk + x2•kzjkβjk

� �
/ zk, βkh i

� �
nk + x2•k + nka zjk − zk, βkh iÀ ÁÀ Á

/ 1 + α zk, βkh ið ÞÀ Á :
ð32Þ

Knowing iterate θðmÞ, the SQUAREM consists in comput-
ing the next iterate θðm+1Þ as

θ m+1ð Þ = θ mð Þ − 2γu + γ2v, ð33Þ

where u = FðθðmÞÞ − θðmÞ, v = F ∘ FðθðmÞÞ − 2FðθðmÞÞ − θðmÞ,
and γ is a scalar steplength. Varadhan and Roland [16]
described three choices for the steplength, but, in many
numerical experiments (see, for example, [16, 17]), the ste-
plength

γ = −
uk k
vk k ð34Þ

gives a faster convergence. As in [16, 17], the accelerated MM
algorithm with steplength (34) (the third choice of steplength
proposed by [16]) will be denoted SqS3. The SqS3 algorithm is
given hereafter (see Algorithm 2).

Note that lines 7 to 9 of Algorithm 2 allow to correct the
new iterate θðm+1Þ by performing a simple step of the non-
accelerated MM if θðm+1Þ does not belong to the constrained
parameter space ℝ∗

+ × ðSr−1Þs.

4. Simulation Study

We compare, in R software [18], our MM algorithm and its
accelerated version SqS3 to the NR algorithm (package
nleqslv [19]) and quasi-Newton BFGS algorithm (package
alabama [20]). The design of the simulation study is inspired
from [21, 22].

4.1. Data Generation. We have generated the data under
assumptions (A1), (A2), and (A3), where the true parameter

vector denoted by θ0 = ðα0, ðβ0
1Þ

T,⋯, ðβ0
s Þ

TÞT has taken five
values defined as follows:

Input: ε > 0, x1, ... xs and z1, ..., zs
Output: MLE bθ
1 Initialize m = 0 and θð0Þ = ðαð0Þ, ðβð0Þ

1 ÞT,⋯, ðβð0Þ
s ÞTÞ

T
where αð0Þ > 0 and for all k = 1,⋯, s, βð0Þ

k = ðβð0Þ
1k ,⋯, βð0Þ

rk Þ
T
∈ Sr−1;

2 repeat

3 αðm+1Þ = x2••/ð∑s
k=1ððnkhzk, βðmÞ

k iÞ/ð1 + αðmÞhzk, βðmÞ
k iÞÞÞ;

4 For all k = 1,⋯, s, update βðm+1Þ
k = ðβðm+1Þ

1k ,⋯, βðm+1Þ
rk ÞT, where for all j = 1,⋯, r,

βðm+1Þ
jk = ðx•jk + ðx2•kzjkβðmÞ

jk /hzk, βðmÞ
k iÞÞ/ðnk + x2•k + ðnkαðm+1Þðzjk − hzk, βðmÞ

k iÞ/ð1 + αðmÞhzk, βðmÞ
k iÞÞÞ ;

5 Set θðm+1Þ = ðαðm+1Þ, ðβðm+1Þ
1 ÞT,⋯, ðβðm+1Þ

s ÞTÞ
T
and m⟵m + 1

6 untiljLðθðmÞÞ − Lðθðm−1ÞÞj < ε

7 Set bθ ⟵ θðmÞ.

Algorithm 1: MM algorithm for computing the MLE bθ:
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Scenario 1. s = 2, r = 2,

α0 = 0:8,

β0
1 = 0:65,0:35ð ÞT,

β0
2 = 0:25,0:75ð ÞT:

ð35Þ

Scenario 2. s = 5, r = 3,

α0 = 1,

β0
1 = 0:80,0:15,0:05ð ÞT,

β0
2 = 0:10,0:30,0:60ð ÞT,

β0
3 = 0:35,0:30,0:35ð ÞT,

β0
4 = 0:70,0:20,0:10ð ÞT,

β0
5 = 0:30,0:40,0:30ð ÞT:

ð36Þ

Scenario 3. s = 10, r = 3,

α0 = 1,

β0
k = 0:40,0:15,0:45ð ÞT, k ∈ 1, 3, 5, 9f g,

β0
k = 0:55,0:25,0:20ð ÞT, k ∈ 2, 4, 7f g,

β0
k = 0:20,0:30,0:50ð ÞT, k ∈ 6, 8, 10f g:

ð37Þ

Scenario 4. s = 10, r = 5,

α0 = 1,

β0
k = 0:40,0:10,0:05,0:25,0:20ð ÞT, k ∈ 1, 3, 5, 9f g,

β0
k = 0:30,0:15,0:10,0:25,0:20ð ÞT, k ∈ 2, 4, 7f g,

β0
k = 0:20,⋯, 0:20|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

5

0BB@
1CCA

T

, k ∈ 6, 8, 10f g:

ð38Þ

Scenario 5. s = 20, r = 5,

α0 = 1:2,

β0
k = 0:65,0:15,0:05,0:05,0:10ð ÞT, k ∈ 1, 3, 5, 9, 11,13,15,19f g,

β0
k = 0:30,0:20,0:25,0:10,0:15ð ÞT, k ∈ 2, 4, 7,12,14,17f g,

β0
k = 0:20,⋯, 0:20|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

5

0BB@
1CCA

T

, k ∈ 6, 8, 10,16,18,20f g:

ð39Þ

For all k = 1,⋯, s, we have given nk two values: n = 50

and n = 5000. The starting guess θð0Þ = ðαð0Þ, ðβð0ÞÞTÞ
T

is
randomly generated as follows: αð0Þ is a random observa-
tion of the uniform distribution U½0:1 ; 5� and for all k = 1,
⋯, s, βð0Þ

k = ðβð0Þ
1k ,⋯, βð0Þ

rk Þ
T
is randomly generated using the

formula

β
0ð Þ
k =

1
∑r

j=1uj
u1,⋯, urð ÞT, ð40Þ

where for all j = 1,⋯, r, uj is a random observation from the
uniform distribution on ½0:05,0:95�.
4.2. Results. For the different scenarios and values of n, the
average values obtained over 1000 replications are given by
Tables 1–5. In these tables, convergence proportion refers
to the percentage of convergence over 1000 replications,
CPU (central processing unit) times are given in seconds,
and time ratios are obtained by dividing the CPU time of
each algorithm by that of the MM algorithm (which explains
why the time ratio of MM is always equal to 1). The mean
square error (MSE) linked to an estimate bθ is

Input:F, ε > 0, x1, ... xs and z1, ..., zs
Output: MLE bθ
1 Initialize m = 0 and θð0Þ = ðαð0Þ, ðβð0Þ

1 ÞT,⋯, ðβð0Þ
s ÞTÞ

T
where αð0Þ > 0 and for all k = 1,⋯, s, βð0Þ

k = ðβð0Þ
1k ,⋯, βð0Þ

rk Þ
T
∈ Sr−1;

2 repeat
3 u = FðθðmÞÞ − θðmÞ;
4 v = F ∘ FðθðmÞÞ − 2FðθðmÞÞ − θðmÞ;
5 γ = −kuk/kvk;
6 θðm+1Þ = θðmÞ − 2γu + γ2v;
7 ifθðm+1Þ ∉ℝ∗

+ × ðSr−1Þsthen
8 θðm+1Þ = FðθðmÞÞ;
9 end
10 m⟵m + 1;
11 untiljLðθðmÞÞ − Lðθðm−1ÞÞj < ε

12 Set bθ ⟵ θðmÞ.

Algorithm 2: Accelerated MM algorithm (SqS3) for computing the MLE bθ .
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MSE bθ θ0
��� �

=
1

1 + sr
bα − α0
À Á2 + 〠

s

k=1
〠
r

j=1

bβ jk − β0
jk

� �2 !
:

ð41Þ

To avoid overloading the tables, the estimate bθ has been
included for Scenario 1 only (see Table 1).

In Tables 1–5, we can notice that the estimated values,
the standard deviation, the log-likelihoods, and the MSE
are globally the same for all algorithms except BFGS when
n = 5000. Regarding the convergence proportions, our pro-
posed MM algorithm and its accelerated version SqS3 always
have a 100% convergence proportion while the convergence
proportion of NR is close but strictly lower than 100%. The
convergence proportion of BFGS varies between 4.1% and

Table 1: Results for Scenario 1 (s = 2 and r = 2). Values in brackets are standard deviations.

MM SqS3 NR BFGS

n = 50

α 0.826 (0.176) 0.826 (0.176) 0.826 (0.176) 0.824 (0.174)

β11 0.649 (0.068) 0.649 (0.068) 0.649 (0.068) 0.648 (0.068)

β21 0.351 (0.068) 0.351 (0.068) 0.351 (0.068) 0.352 (0.068)

β12 0.247 (0.062) 0.247 (0.062) 0.247 (0.062) 0.246 (0.061)

β22 0.753 (0.062) 0.753 (0.062) 0.753 (0.062) 0.754 (0.061)

Convergence proportion (%) 100 100 99.5 76.1

Iterations 24 (4.1) 7 (1) 5.5 (1.5) 13 (0.1)

CPU time (secs) 0.004 0.002 0.002 0.087

Time ratio 1.00 0.51 0.62 23.63

Log-likelihood -126.66 -126.66 -126.67 -126.71

MSE 9:7e − 03 9:7e − 03 9:7e − 03 9:5e − 03

n = 5000

α 0.800 (0.016) 0.800 (0.016) 0.800 (0.016) 0.800 (0.030)

β11 0.650 (0.007) 0.650 (0.007) 0.650 (0.007) 0.650 (0.010)

β21 0.350 (0.007) 0.350 (0.007) 0.350 (0.007) 0.350 (0.010)

β12 0.250 (0.006) 0.250 (0.006) 0.250 (0.006) 0.250 (0.009)

β22 0.750 (0.006) 0.750 (0.006) 0.750 (0.006) 0.750 (0.009)

Convergence proportion (%) 100 100 99.7 77.3

Iterations 31.2 (4.3) 8.2 (1) 5.7 (1.4) 16 (0.5)

CPU time (secs) 0.006 0.003 0.003 0.165

Time ratio 1.00 0.45 0.50 26.25

Log-likelihood -12832.34 -12832.34 -12832.39 -12838.15

MSE 8:6e − 05 8:6e − 05 8:6e − 05 2:4e − 04

Table 2: Results for Scenario 2 (s = 5 and r = 3). Values in brackets are standard deviations.

MM SqS3 NR BFGS

n = 50

Convergence proportion (%) 100 100 99.6 50.4

Iterations 29.3 (4.2) 7.8 (0.8) 8.1 (3) 14 (0.1)

CPU time (secs) 0.007 0.003 0.015 0.283

Time ratio 1.00 0.47 2.14 39.93

Log-likelihood -391.24 -391.24 -391.21 -391.6

MSE 4:3e − 03 4:3e − 03 4:3e − 03 4:2e − 03

n = 5000

Convergence proportion (%) 100 100 99.7 53.3

Iterations 38.2 (4.1) 9.1 (0.8) 8.4 (2.9) 18.3 (3.4)

CPU time (secs) 0.009 0.004 0.016 0.533

Time ratio 1.00 0.43 1.80 59.55

Log-likelihood -39181.57 -39181.57 -39181.5 -39942.08

MSE 4:3e − 05 4:3e − 05 4:3e − 05 1:1e − 02
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Table 3: Results for Scenario 3 (s = 10 and r = 3). Values in brackets are standard deviations.

MM SqS3 NR BFGS

n = 50

Convergence proportion (%) 100 100 99.7 28

Iterations 30.2 (3.9) 7.9 (0.7) 8.6 (2.5) 14 (0.2)

CPU time (secs) 0.009 0.004 0.043 0.426

Time ratio 1.00 0.50 4.90 48.60

Log-likelihood -831.26 -831.26 -831.27 -831.07

MSE 4:1e − 03 4:1e − 03 4:1e − 03 4:1e − 03

n = 5000

Convergence proportion (%) 100 100 99.6 30.9

Iterations 39.5 (3.6) 9.2 (0.8) 8.8 (2.3) 16 (6.4)

CPU time (secs) 0.012 0.005 0.045 0.669

Time ratio 1.00 0.41 3.70 55.22

Log-likelihood -84027.58 -84027.58 -84027.15 -88978.38

MSE 4:2e − 05 4:2e − 05 4:2e − 05 2:4e − 02

Table 4: Results for Scenario 4 (s = 10 and r = 5). Values in brackets are standard deviations.

MM SqS3 NR BFGS

n = 50

Convergence proportion (%) 100 100 98.9 21.1

Iterations 32.8 (3.9) 8.3 (0.8) 11.4 (4) 13.8 (0.5)

CPU time (secs) 0.010 0.004 0.089 0.454

Time ratio 1.00 0.46 9.33 47.45

Log-likelihood -1046.83 -1046.83 -1046.88 -1047.3

MSE 2:9e − 03 2:9e − 03 2:9e − 03 3e − 03

n = 5000

Convergence proportion (%) 100 100 99.4 24.8

Iterations 43.9 (4.1) 9.9 (0.9) 11.5 (3.9) 15.8 (5.5)

CPU time (secs) 0.014 0.006 0.090 0.576

Time ratio 1.00 0.41 6.32 40.50

Log-likelihood -104802.55 -104802.55 -104800.93 -108716.18

MSE 3e − 05 3e − 05 3e − 05 1:1e − 02

Table 5: Results for Scenario 5 (s = 20 and r = 5). Values in brackets are standard deviations.

MM SqS3 NR BFGS

n = 50

Convergence proportion (%) 100 100 97.9 4.1

Iterations 34.9 (3.5) 8.4 (0.7) 14.3 (4.9) 14 (0)

CPU time (secs) 0.017 0.007 0.338 1.162

Time ratio 1.00 0.42 19.54 67.25

Log-likelihood -2045.46 -2045.46 -2045.65 -2046.96

MSE 2:7e − 03 2:7e − 03 2:7e − 03 2:8e − 03

n = 5000

Convergence proportion (%) 100 100 96.8 16.2

Iterations 46.3 (3.6) 10.1 (0.8) 14.9 (5.2) 6.6 (7.2)

CPU time (secs) 0.018 0.006 0.347 0.582

Time ratio 1.00 0.35 19.25 32.31

Log-likelihood -203353.48 -203353.48 -203355.72 -245597.55

MSE 2:8e − 05 2:8e − 05 2:8e − 05 4:5e − 02
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77.3% and decreases when the number of parameters
increases.

For all the algorithms, we notice a decrease of the MSE
when n increases from 50 to 5000 which suggests a good fitting
between the true and estimated values when n increases. When
n = 5000, the MSE of BFGS is greater than those of the other
algorithmswhich suggests a convergence of BFGS to bad values.

As far as the CPU times are concerned, we notice that,
except for Scenario 1, the computation time of NR algorithm
is greater than that of the MM algorithm (more than 2 times
for n = 50 and more than 1.8 times for n = 5000 in Table 2,
more than 3 times in Table 3, more than 6 times in
Table 4, and more than 19 times in Table 5). The proposed
MM algorithm is 23 to 67 times faster than BFGS.

The performance of the MM is even better with accelera-
tion. Indeed, the CPU time ratio of SqS3 is between 0.35 and
0.51. The percentage of computation time reduction yielded
by the acceleration varies between 49% and 65% (since ð1 −
0:51Þ × 100% = 49% and ð1 − 0:35Þ × 100% = 65%).

5. Conclusion

In this paper, we built a minorization-maximization (MM)
algorithm to compute, under box constraints and linear
equality constraints, the maximum likelihood estimates of
the parameters of a multivariate statistical model used in
the analysis of accident frequencies. This statistical model
is composed of several multinomial distributions whose
parameters are dependent. Since MM algorithms are gener-
ally considered as slow to converge, we have also proposed
an accelerated version of our MM algorithm using a square
iterative acceleration scheme developed in [16]. Using simu-
lated data, we have proven that our proposed MM algorithm
and its accelerated version are better than Newton-Raphson
(NR) and quasi-newton BFGS algorithms in terms of con-
vergence proportion and computation time.

Data Availability

This research uses simulated data and the data generation
process is described in the paper.
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