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The purpose of this study is to analyze the impact of control strategies, namely, insecticide spray, roguing of a diseased tomato
plant, and protective netting to protect tomato plant from tomato yellow leaf curl virus disease (TYLCVD). For this, we
formulate and analyze a simple deterministic model for the transmission dynamics of TYLCVD that incorporates these control
strategies. We initially take into account the constant control case, we calculate the basic reproduction number, and we
investigate the existence and stability of the disease-free and endemic equilibria. We use the Kamgang-Sallet stability to ensure
that the disease-free equilibrium point is globally asymptotically stable when the reproduction number R0 is less than one.
This indicates that TYLCVD dies out independent of the initial size of the tomato population. For R0 < 1, the disease-free
equilibrium becomes unstable, and the endemic equilibrium is globally asymptotically stable. This indicates that TYLCVD
propagates. In the nonconstant control case, we use Pontryagin’s maximum principle to derive the necessary conditions for the
optimal control of the disease. Our findings show that all the combined efforts of two out of three strategies can significantly
reduce the power of infectivity of the disease except the combination of the use of insecticide spray and rouging infected
tomato plants. Besides our numerical simulations show, the implementation of the combination of roguing diseased plants and
protective netting has a similar effect in minimizing or eliminating TYLCV as the use of all strategies. Hence, as resources are
always in scarce, we recommend policymakers to adapt the combination of the use of roguing diseased tomato plants and
protective netting to eradicate the disease.

1. Introduction

Tomato (Solanum lycopersicum L.) is one of the most popu-
lar and widely grown vegetables in the world. However, it is
highly destructed by tomato yellow leaf curl virus (TYLCV)
disease [1, 2]. This disease is mainly transmitted by an insect
vector called whitefly Bemisia tabaci (B. tabaci) of biotype B
(Gennadius) (Hemiptera: Aleyrodidae) in a circulative and
persistent manner [3]. The vector damages tomato plant
directly by feeding on phloem, excreting honeydew, and
causing phytotoxic disorders [4]. With increased popula-
tions, they secrete large quantities of honeydew. The vector
favors the growth of sooty mold on leaf surfaces and reduces
the photosynthetic efficiency of the plants [5]. The honey-
dew also contaminates the marketable part of the plant,

reducing its market value. Additionally, in severe infesta-
tions, the leaves turn yellow and are dropped off from its
leaves [3].

The first report on TYLCV infection in tomato was from
Israel and other countries in the Middle East in the 1930s.
And since then, the virus has further emerged [5]. In Africa,
The TYLC disease was first seen in Sudan in 1965; but the
causal agent was identified as TYLCV in 1997 [6, 7]. In Ethi-
opia, at Melka-Werner, about 90% of tomato plant showed
leaf curl virus symptoms with reduced size, suspected to be
caused by TYLCV [8]. However, only recently occurrence
of Begomovirus associated with the TYLC disease was
reported for the first time from Melkasa [9].

The whitefly vector feeds on an infected host plant and
acquires the virus. Viral transmission can occur within
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hours and may continue for the life span of the vector.
Acquisition and transmission thresholds were found to be
between 15 and 30min, and a single B. tabaci whitefly can
accumulate 600 million TYLCV genomes [3]. From the site
of inoculation, viral DNA is first mainly transported to
strongly sink organs, such as root and shoot apices, flowers,
and fruit, and then moves to leaves [10]. Similarly to other
plant viruses, TYLCV moves in the existing host transport
routes such as plasmodesmata and phloem, along with car-
bohydrates [11]. About 11-13 days after inoculation, maxi-
mum amount of viral DNA and capsid or coat protein
(CP) accumulates in the youngest tissues of shoots and
roots. Four to seven days later, unique symptoms appear
for the first time [10]. As the systemic infection proceeds
in the growing plant, the virus is accumulated in the
strongest sink tissues. The level of viral double-stranded
DNA (dsDNA) and newly generated single-stranded DNA
(ssDNA), as well as CP, further increases in young organs
up to several weeks postinoculation. The infection then
gradually spreads to older organs of the host and remains
strictly confined to the vascular system [11].

Mathematical modeling has been playing an important
role in better understanding the epidemiological patterns.
It provides deeper insight into the underlying mechanisms
for the spread of emerging and reemerging infectious dis-
eases and the suggested effective control strategies [12]. Holt
et al. [13] on their paper entitled “An epidemiological model
incorporating vector population dynamics applied to
African Cassava Mosaic Virus Disease” illustrated the
African cassava mosaic virus occurrence in cassava which
is transmitted by a cassava-specific whitefly strain, which
was later seen in Uganda. The virus also propagates rou-
tinely from stem cuttings. The use of uninfected cutting tools
and roguing of infected plants are among the control alter-
natives. Utilization of uninfected cutting tools would be
more effective if the infected cuttings transmit disease,
whereas roguing would be more important in a largely
vector-driven epidemic.

In a later paper, Holt et al. [14] developed an epidemio-
logical model, a susceptible-exposed-infective- (SEI-) type
epidemic model for the host plant and a susceptible-infec-
tive- (SI-) type for the insect vector population. It represents
the incidence of TYLCV in tomato plant, mainly relying on
the immigration of vectors from alternative hosts which act
as a reservoir of both the virus and vector. This is because,
unlike the cassava, the tomato was only an occasional host
for this whitefly and is spilledover from other perennials
and weedy plants driven by vector and virus dynamics.
They considered different strategies to reduce the spread
of TYLCV and studied the sensitivity analysis of their
results to the parameters to explore different disease man-
agement options. In this context, the authors asked, “What
the best method to control the disease is?” Because most
of the vector lifespan occurs on other hosts. The authors
adapted a model framework [15] to explain the transmis-
sion process of the disease. Since the tomato crop was a
sink for whiteflies and TLCV, interventions that reduce
vector immigration and their survival were predicted to
be most effective.

Alemneh et al. [16] proposed and examined an ecoepide-
miological deterministic model for the transmission dynamics
of maize streak virus (MSV) disease in the maize plant. Their
model depicted that increased parameters namely the infec-
tion and predation rates made an increment of the basic repro-
duction number that leads to the increment of the number of
infected maize population. Hence, the authors suggested that
to intervene in MSV disease, endeavors should be exerted to
reduce the contact of infected maize and susceptible leafhop-
per. In addition to this, MSV-infected maize should be treated
using insecticide chemicals. This enabled us to bring down the
infection rate of leafhoppers, and it should be administered
before the reach of the leafhopper or uprooting it. Moreover,
infected maize should be burnt from the field.

Nowadays, many sophisticated metaheuristics have been
initiated to solve the most complex problems by transform-
ing them into problems of optimization. For instance,
Farman et al. [17] used an evolutionary Pade approximation
(EPA) scheme for the treatment of nonlinear epidemiologi-
cal hepatitis-B model, instead of numerical methods. Thus,
they showed that as compared to a nonstandard finite differ-
ence discretization (NSFD) numerical scheme, EPA scheme
is more reliable and significant in approximations of state
variables that are highly accurate to the governing equations.
Naik et al. [18] proposed and examined a nonlinear
fractional order SEIR model for the transmission of HIV
epidemics. For such nonlinear fractional-order model, they
inspired the application of the homotopy analysis method
(HAM) to solve highly nonlinear fractional-order problems,
describing biological phenomena. They also gave a research
direction to use another approximate solution technique
such as fractional-order derivatives with Alangana-Gomez,
Atangana-Baleanu, Caputo-Fabrizio, and fractal-fractional,
to get a nonlinear fractional-order SEIR epidemic model.

Optimal control theory has found wide-range of the
applications in biological and ecological problems [19]. Par-
ticularly, there have been various studies of epidemiological
models where optimal control methods have been applied.
Berhe et al. [20] formulated a deterministic model to study
the effects of implementing continuous controls on the dys-
entery epidemic model. It examined the cost-effectiveness of
the optimal control measures of the disease. They took three
control parameters, namely, treatment, sanitation, and edu-
cational campaign as a preventive strategy. As a result, they
found that the disease can probably be eradicated by
implementing continuous controls in a short period of time.
However, utilizing a combination of sanitation of the envi-
ronment and educational campaign was found to be the
most cost-effective control strategy. Okosun and Makinde
[21] derived and analyzed a deterministic model for the
transmission of childhood disease, incorporating optimal
control parameters and investigated the cost-effectiveness
of the controls, to identify the most effective strategy. They
considered control parameters, such as improvement of
hygiene due to health educational campaign, improvement
of treatment of the infected children, and reduction in the
loss of disease immunity due to the improvement of vaccina-
tion and treatment efficacy. Thus, utilization of these control
strategies has declined the disease from the community.
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Similar results are also obtained if educational cam-
paigns as preventive measure and treatment of infected
children were used. However, as resources are scarced, the
authors proposed that policymakers likely should focus on
optimal provision of prevention and treatment being cost-
effective. Bokil et al. [22] investigated and analyzed optimal
control of a vectored plant disease model for crops with con-
tinuous replanting. They considered two plant-vector-virus
models which take into account frequency replanting and
abundance replanting strategies to study the African cassava
mosaic virus. They compared the two models with respect to
replanting strategies through a combination of mathematical
analysis, parameter sensitivity, and optimal control of the
disease dynamism. They used optimal control theory to
investigate the effects of roguing and insecticide to maximize
the healthy plants to be harvested. The simulation results of
their models suggested that various optimal control strate-
gies were suitable for the different replanting practices. Hugo
et al. [23] studied optimal control and cost-effectiveness
analysis of the TYLCV disease epidemic model. Their model
was an extended work of [14]. The authors incorporated the
time-dependent control to the tomato plants and vector
populations in analyzing the cost-effectiveness of the control
strategies. Thus, they suggested that the use of the combined
protective netting and removal of the infected plant is the
cost-effective optimal control strategy. It was sufficient to
combat the epidemic of the tomato disease with limited
resources. A preprint of our paper has previously been pub-
lished [24].

The major advantage of these early models was to pro-
vide a suitable control strategy through the transmission
threshold criterion, which is based on the reproductive
capacity of the parasite, R0. To wind up, this paper is focused
on optimal control strategies analysis of the tomato yellow
leaf curl virus disease model, which is adopted from the
African cassava mosaic virus disease’s model [13] with the
inclusion of exposed class into tomato plant population
and incorporate three-time dependent controls, representing
the interventions.

The organization of the paper is as follows. In Section 2,
we presented a model consisting of ordinary differential
equations that describe the transmission dynamics of tomato
yellow leaf curl virus disease and the underlying assump-
tions. Section 3 is devoted to the stability analysis of the
model. Section 4 is contained by numerical simulations.
Our conclusions are given in Section 5.

2. Mathematical Model

The model that is considered here is a small modification of
the model for plant-virus transmission considered in [13]. It
is a standard model of SEI type for tomato plants and SI for
whiteflies Bemisia tabaci B-type insect vector.

The model subdivides the total tomato plant population
into the following subclasses: healthy or susceptible (Sp),
latently infected (Ep) and infective (Ip), K is the carrying
capacity of the tomato farm. Thus, the total population size
of tomato plant is Np = Sp + Ep + Ip. The total insect vector

(whitefly Bemisia tabaci B-type) population is subdivided
in respect to tomato plant into susceptible (virus-free) (Sv)
and infective vector (Iv). The latent period in the vector
between the acquisition of the TYLCV and the ability to
transmit the virus is roughly 30min [25]. Thus, it is assumed
to be negligible, i.e., no latent subclass was defined for the
whitefly vector in our model. The whiteflies remain infective
for their lifetime. Hence, the total population size of the vec-
tor (whitefly) is Nv = Sv + Iv.

The net replanting rate of tomato plants is rSpð1 − Sp +
Ep + Ip/KÞ where r is the rate replanting healthy tomato.
This is because, the model assumed that healthy tomatoes
responded proportionately inverse to the extended intraspe-
cific pressure for the healthy, exposed, and infected tomato
plants. Replanting tomato is restricted by maximum tomato
plant availability and the harvesting of healthy, exposed, and
infected tomato plant reflects the continual turnover of the
tomato plant population. The tomato fruit is either har-
vested or removed at a rate of g or move to the exposed stage
by inoculating through contact with infective whiteflies at a
rate of βp. Moreover, all stages of tomatoes are assumed to

be harvested or removed at the same constant rate. Thus, it
is assumed that the force of infection at time t is given by
βpIvðtÞSpðtÞ. Latently infected tomato plants propagate to

the infectious stage at a rate of a, corresponding to a mean
latent period in a tomato plant population of 1/a. Here, it
is assumed that the infective tomatoes remain infected for-
ever. Loss of tomatoes due to nature- and disease-related
reduction is rated as b.

The population of whiteflies is assumed to be generated
at a rate of cðSv + IvÞð1 − Sv + Iv/mðSp + IpÞÞ, where c is the
vector birth rate and m is the rate of vector maximum abun-
dance. Besides, we assumed that the vector does not immi-
grate to other hosts in the case of low tomato plant
abundance. The vector dies either from natural causes at a
rate of e or propagates to the infective class by acquiring
tomato yellow leaf curl virus through contacts with infected
tomatoes at a rate of βvIpðtÞSvðtÞ, where βv is the rate of
virus acquisition by a susceptible vector (whitefly) during a
single visit to an infectious tomato plant. The protections
target mainly the following: (i) insecticide on tomato plant
population: minimizes the inoculation efficiency of the vec-
tor, i.e., it reduces to βp; (ii) roguing diseased tomato plants:
good practice for reducing the source of primary infection,
i.e., reduced to g; (iii) protective netting, prevent the entry
of whitefly vectors, B. tabaci, into tomato plots, i.e., reduced
to βp and βv. This is because the only way of controlling
TYLCV is by controlling the vector [5]. Thus, the efforts
made on these three intervention mechanisms enable to
control the tomato infections due to TYLCV.

Suppose that the control function like u1ðtÞ represents
insecticide spray with efficacy q, u2ðtÞ represents roguing
diseased tomato plants, and u3ðtÞ represents protective net-
ting at any time t. Besides, controlling u1, u2, and u3 are
assumed to be bounded and integrable functions.

It is further assumed that the transmission of the virus
by the whitefly vectors is by circulative and persistent mode
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[5]. Moreover, it is also assumed that infective whiteflies stay
infective for life.

Based on the above assumptions, the following vector-
plant dynamical system is formulated:

dSp
dt

= rSp 1 −
Sp + Ep + Ip

K

� �
− 1 − u3 tð Þð ÞβpIvSp − gSp,

dEp

dt
= 1 − u3 tð Þð ÞβpIvSp − a + gð ÞEp,

dIp
dt

= aEp − g + b + u2 tð Þð ÞIp,

dSv
dt

= c Sv + Ivð Þ 1 − Sv + Iv
m Sp + Ip
À Á

 !
− βvIpSv − qu1 tð Þ + eð ÞSv,

dIv
dt

= βvIpSv − qu1 tð Þ + eð ÞIv,
ð1Þ

with initial conditions

Sp 0ð Þ ≥ 0, Ep 0ð Þ ≥ 0, Ip 0ð Þ ≥ 0, Sv 0ð Þ ≥ 0, Iv 0ð Þ
≥ 0, 0 < ui < 1, i = 1, 2, 3:

ð2Þ

3. Stability Analysis of Free Disease
Equilibrium Point

In this section, we study the positivity and boundedness of
the solution and the stability of the disease-free equilibrium
of model system 1. As the variables in model system 1 repre-
sent tomato and whitefly population densities, positivity
indicates survival of the population, and boundedness may
be interpreted as a natural restriction to growth as a result
of limited resources. The stability of the disease-free equilib-
rium point tells us TYLCV disease dies out from the
population.

3.1. Positivity and Boundedness of Solution. For the TYLCV
transmission model (1) to be biologically meaningful, it is
important to prove that all solutions with nonnegative initial
data will remain nonnegative for all the time as is presented
in [26].

Theorem 1. Let SpðtÞ ≥ 0, EpðtÞ ≥ 0, IpðtÞ ≥ 0, SvðtÞ ≥ 0 and
IvðtÞ ≥ 0. The solutions Sp, Ep, Ip, Sv, Iv of the system of differ-
ential Equation (1) are positive for all t ≥ 0. Besides, the
region Ω is positively invariant and all solutions starting in
Ω approach, enter, or stay in Ω.

Proof. By adding the first four equations in the system (1),
we found that the rate at which the total population of
tomato plant changes is given by the following:

dNp

dt
= rSp 1 −

Sp + Ep + Ip
K

� �
− g Sp + Ep + Ip
À Á

− bIp: ð3Þ

Since Np = Sp + Ep + Ip and Sp ≤Np, we have

dNp

dt
≤ rNp 1 −

Np

K

� �
− gNp, t ≥ 0: ð4Þ

Thus,

Np ≤ K
r − g
r

� �
, t ≥ 0: ð5Þ

Similarly, by adding the last three equations of system
(1), we obtain that the rate at which the total population of
whitefly vector changes is given by the following:

dNv tð Þ
dt

= c Sv + Ivð Þ 1 − Sv + Iv
m Sp + Ip
À Á

 !
− e Sv + Ivð Þ: ð6Þ

Since Nv = Sv + Iv and K > Sp + Ip, then Equation (6) can
be written as

dNv tð Þ
dt

≥ cNp 1 − Nv

mK

� �
− eNv, t ≥ 0: ð7Þ

If we factorize Equation (7), then we can obtain

dNv tð Þ
dt

≥ c − eð ÞNv 1 − Nv

mK c − eð Þ/cð Þ
� �

− eNv, t ≥ 0: ð8Þ

Thus,

Nv ≤mK
c − e
c

� �
, t ≥ 0: ð9Þ

The region Ω =Ωp ×Ωv with

Ωp = Sp, Ep, Ip
À Á

∈R3
+ : Sp + Ep + Ip ≤ K 1 − g

r

� �n o
,

Ωv = Sv, Ivð Þ ∈R2
+ : Sv + Iv ≤mK 1 − e

c

� �n o
:

ð10Þ

This implies that all solutions of tomato plants popula-
tion are only confined in the feasible region Ωp, and all solu-
tions of the whiteflies population are confined in Ωv.

Therefore, the biological feasibility of system (1) is stud-
ied in the following region:

Ω = Sp, Ep, Ip, Sv , Iv
À Á

∈ R5
+ : Np ≤ K

r − g
r

� �
;Nv ≤mK

c − e
c

� �n o
:

ð11Þ

Thus, Ω is positively invariant. This means that solu-
tions of the model system with positive initial data remain
positive for all time t ≥ 0 and are bound in the region Ω.
Therefore, the model is mathematically and epidemiologi-
cally well-posed.
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3.2. Analysis of the Model with Constant Controls. In this
section, it is assumed that the control parameters are con-
stant and determine the basic reproductive number, the
steady states, and their stability.

3.2.1. Local and Global Stability. The disease-free equilib-
rium of the tomato yellow leaf curl virus disease model (1)
exists and is given by

E0 = K 1 − g
r

� �
, 0, 0,mK 1 − qu1 + e

c

� �
1 − g

r

� �
, 0

� �
: ð12Þ

The basic reproduction number, R0, is calculated by
using the next-generation matrix [27]. To obtain R0 for
model (1), let the vector of the disease states

x = Ep, Ip, Iv
À ÁT

: ð13Þ

Then, the model (1) can be written as

dx
dt = F xð Þ −V xð Þ: ð14Þ

where

F xð Þ =
1 − u3ð ÞβpIvSp

0
βvIpSv

0
BB@

1
CCA,

V xð Þ =
a + gð ÞEp

g + b + u2ð ÞIp − aEp

qu1 + eð ÞIv

0
BB@

1
CCA:

ð15Þ

Calculate the Jacobian matrix (F and V) of F and V by
derivating with respect to the infected classes ðEp, Ip, IvÞ at
the disease-free equilibrium point E0. This gives

F=

0 0 βpK 1 − u3ð Þ 1 − g
r

� �
0 0 0
0 βvmK 1 − e + qu1

c

� �
1 − g

r

� �
0

0
BBB@

1
CCCA,

V =
a + g 0 0
−a g + b + u2 0
0 0 qu1 + e

0
BB@

1
CCA:

ð16Þ

Thus

V−1 =

1
a + g

0 0

a
a + gð Þ b + g + u2ð Þ

1
b + g + u2

0

0 0 1
e + qu1

0
BBBBBBBB@

1
CCCCCCCCA
,

ð17Þ

So that

The basic reproduction number, R0 = ρðFV−1Þ, for the
model (1) is

R0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βpβvamK2 r − gð Þ2 1 − u3ð Þ c − qu1 − eð Þ

cr2 a + gð Þ g + b + u2ð Þ qu1 + eð Þ

s
: ð19Þ

Theorem 2 below follows from Theorem 2 of [28].

Theorem 2. The disease-free equilibrium (DFE) E0 of Equa-
tion (1) is locally asymptotically stable if R0 < 1 and unstable
when R0 > 1.

The epidemiological implication of Theorem 2 is that the
transmission of TYLCV can be controlled by having R0 < 1
if the initial total numbers of the subpopulations involved in
Equation (1) are in the basin of attraction of E0. To ensure
that eliminating the disease is independent of the initial size
of the subpopulation, the disease-free equilibrium must be
globally asymptotically stable when R0 < 1. This is what
we are checking next.

Theorem 3. The DFE E0 of Equation (1) is globally asymp-
totically stable (GAS) for R0 < 1.

FV−1 =

0 0
βpK 1 − u3ð Þ r − gð Þ

r e + qu1ð Þ
0 0 0

βvamK c − qu1 − eð Þ r − gð Þ
cr a + gð Þ b + g + u2ð Þ

βvmK r − gð Þ c − qu1 − eð Þ
cr b + g + u2ð Þ 0

0
BBBBB@

1
CCCCCA: ð18Þ
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Proof. To prove the theorem, we use the Kamgang-Sallet stabil-
ity theorem in [29]. Let X = ðX1, X2Þ with X1 = ðSp, SvÞ ∈ℝ2

and X2 = ðEp, Ip, IvÞ ∈ℝ3. Then, the system (1) can be
written as

_X1 = A1 Xð Þ X1 − X∗
1ð Þ + A12 Xð ÞX2,

_X2 = A2 Xð ÞX2,
ð20Þ

where

X∗
1 = K 1 − g

r

� �
,mK 1 − qu1 + e

c

� �
1 − g

r

� �� �
,

A1 Xð Þ =
− r − gð Þ 0

−m 1 − qu1 + e
c

� �2
− c − qu1 − eð Þ

0
@

1
A,

A12 Xð Þ =
−
rSp
K

−
rSp
K

− 1 − u3ð ÞβpSp

0 −βvSv +
c
m

Sv + Iv
Sp + Ip

 !2

c 1 − 2Sv
m Sp + Ip
À Á

 !
−

2Iv
m Sp + Ip
À Á

0
BBBB@

1
CCCCA,

A2 Xð Þ =
− a + gð Þ 0 1 − u3ð ÞβpSp

a − g + b + u2ð Þ 0
0 βvSv − qu1 + eð Þ

0
BB@

1
CCA:

ð21Þ

We show that the five sufficient conditions of the
Kamgang-Sallet theorem are satisfied as follows:

(1) The system (1) is a dynamical system on Ω. This is
proved in Theorem 1.

(2) The equilibrium X∗
1 is GAS for the subsystem _X1 =

A1ðX1, 0ÞðX1 − X∗
1 Þ. This is obvious from the struc-

ture of the involved matrix.

(3) As can be seen from the elements, the matrix A2ðXÞ
is Metzler (i.e., all the off-diagonal elements are non-
negative) and irreducible for any given X ∈Ω.

(4) There exists an upper-bound matrix �A2 for the set

M = A2 Xð Þ: X ∈Ω: ð22Þ

More precisely,

A2 Xð Þ =
− a + gð Þ 0 1 − u3ð ÞβpK 1 − g

r

� �
a − g + b + u2ð Þ 0

0 βvmK 1 − g
r

� �
1 − qu1 + e

c

� �
− qu1 + eð Þ

0
BBBB@

1
CCCCA

ð23Þ

is an upper bound of M.

(5) For R0 < 1 in Equation (19),

α �A2 Xð ÞÀ Á
=max Re λð Þ: λ is an eigenvalue of �A2

È É
≤ 0:
ð24Þ

Thus, all eigenvalues of A are negative for R0 < 1 in
Equation (19).

Hence, by the Kamgang-Sallet stability theorem, the
disease-free equilibrium is globally asymptotically stable for
R0 < 1.

For any initial data, Theorem 3 implies that any solution
of the system (1) converges to the DFE when R0 < 1. In
addition, the theorem implies that the model is without
backward bifurcation for R0 < 1. In this case, the classical
approach making R0 < 1 to eliminate TYLCV disease from
the farm is sufficient.

Next, we want to check that the system (1) has at least
one endemic equilibrium (EE) point for R0 > 1. Let

E∗ = S∗p , E∗
p , I∗p , S∗v , I∗v

� �
ð25Þ

be an EE of system (1). By setting the right-hand side of (1)
equal to zero, we obtain

S∗∗p = K
2 1 − g

r

� �
−
g + b + u2 + a

2a Ip +
M
2 ,

E∗∗
p = g + b + u2

a
Ip,

S∗∗v = m qu1 + eð Þ c − qu1 − eð Þ
c βvIp + qu1 + e
À Á K

2 1 − g
r

� �
+ a − g − b − u2

2a Ip +
M
2

� �
,

I∗∗v = m c − qu1 − eð Þβv

c βvIp + qu1 + e
À Á K

2 1 − g
r

� �
+ a − g − b − u2

2a Ip +
M
2

� �
Ip,

ð26Þ

where

M =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 1 − g

r

� �
−
g + b + u2

a
Ip

� �2
−
4K a + gð Þ g + b + u2ð Þ

ar
Ip

s
:

ð27Þ

It can be shown that the equilibria of the model satisfy
the following polynomial

f Ip
À Á

= c4I
4
p + c3I

3
p + c2I

2
p + c1Ip + c0, ð28Þ

where

c4 = B2
3 − A1A4, c3 = 2B2B3 − A1A4 − A2A3,
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c2 = B2
2 + 2B1B2 − A1A2 − K 1 − g

r

� �
A4 + A2K 1 − g

r

� �h i
,

c1 = 2B1B2 − A1 + A2ð Þ K 1 − g
r

� �h i2
, c0 = B2

1 − 4 K 1 − g
r

� �h i4
, A1

= −
2 g + b + u2ð Þ

a
K 1 − g

r

� �
,

A2 =
g + b + u2

a

� �2
,A3 = −

K
a

2 g + b + u2 + að Þ
a

1 − g
r

� ��

+ a + gð Þ g + b + u2ð Þ
r

�
, A4 =

g + b + u2 + a
a

,

B1 =
4
R2
0
K 1 − g

r

� �
K 1 − g

r

� �
− 2

h i
, B3

= a2 − g + b + u2ð Þ2 − g + b + u2 + að Þa
a2

,

B2 =
4
R2
0
K 1 − g

r

� �
K 1 − g

r

� � βv

qu1 + e
+ 2 g + b + u2ð Þ

a
+ 2 g + b + u2 + að Þ

a

� �

+ a + gð Þ g + b + u2ð ÞK
ar

:

ð29Þ

Theorem 4. When R0 > 1, the model (1) has at least one
endemic equilibrium, which is locally asymptotically stable
for R0 close to one.

The stability of the EE is guaranteed by using the center
manifold theorem in [30].

3.3. Sensitivity Analysis of Model Parameters. Sensitivity
analysis assists to build confidence in the model by studying
the uncertainty associated with parameters in the model.
This is because many parameters in the system dynamic
models characterize quantities that are very difficult or even
impossible to measure accurately in the real world. It helps
to comprehend the dynamics of the system under study. In
general, sensitivity analysis is carried out to establish which
input parameters contribute most to output variability [31].

Now let us carry out the sensitivity analysis in order to
identify the parameters that have a high impact on the basic
reproductive number (R0).

Definition 5. The normalized sensitivity index of a variable,
R0, that depends differentiably on a parameter, p, is
defined as

σ
R0
p = ∂R0

∂p
p
R0

: ð30Þ

3.3.1. Sensitivity Indices of Basic Reproductive Number.
Here, the sensitivity of R0 to every parameter of the
model is derived. Hence, the sensitivity index of R0 with
respect to K and is equal to 1. It is equal to 0.5 with
respect to m, βp, and βv. The rest of the parameters are
the following:

σR0
r = −

g
g − r

, σR0
e = ce

2 e + qu1ð Þ e − c + qu1ð Þ , σ
R0
g

= g 2 ab + 2grð Þ + a + bð Þ g + rð Þð
2 a + gð Þ b + gð Þ g − rð Þ ,

σR0
a = g

2 a + gð Þ , σ
R0
c = −

e + qu1
2 e − c + qu1ð Þ , σ

R0
u1

= cqu1
2 e + qu1ð Þ e − c + qu1ð Þ ,

σR0
b = −

b
2 b + gð Þ , σ

R0
u2
= u2
2 u2 − 1ð Þ , σ

R0
u3
= u3
2 u3 − 1ð Þ : ð31Þ

Since most of the expressions for sensitivity indices are
complex, the sensitivity indices are evaluated at the base-
line parameter values given in Table 1. The sensitivity
index of R0 with respect to r, for example, is as follows:

r
R0

∂R0
∂r

= −
g

g − r
= −

0:0121
0:0121 − 0:01 = −5:7619: ð32Þ

The detail sensitivity indices of R0, resulting from the
evaluation of the eight different parameters of the model,
are shown below.

The parameters are arranged from most sensitive to
least. The most sensitive parameters are the rate of replant-
ing of healthy tomato, the rate at which tomato fruits are
either harvested or removed, the carrying capacity of tomato
farm, the rate of vectors’ maximum abundance, the rate of
inoculation of the healthy tomato plant, and the rate of virus
acquisition by susceptible vectors. The least sensitive param-
eter is the loss rate of tomatoes due to infection. The param-
eters that reduce R0 can be used as control parameters.

3.4. Interpretation of Sensitivity Indices. The sensitivity indi-
ces of the basic reproductive number with respect to the
main parameters are found in Table 2. The parameters with
the most important that have positive indices are βp, βv , r, K ,
m, c, and a, and those with negative indices are g, e, and b.
The results show that when the inoculation of the healthy
tomato plant rate and virus acquisition rate by susceptible
vectors increases, the basic reproduction number increases
as a result of TYLCV disease propagated since the infected
plants and infective vectors are both infectious. When the
rate of replanting of a healthy tomato and whitefly vector
birth rate is increased, more tomato plants and whitefly vec-
tors are exposed to TYLCV, and these increase their proba-
bility of catching the virus and contribute to the spread of
the disease. The propagation rate from the exposed class to
the infectious class increases the number of infectious
tomato plants and vectors. These contribute to the disease
spread. On the other hand, tomato fruit harvested or
removed and death rate of vectors are reduced to the size
of tomato plant population and whitefly vector population.

4. Analysis of Optimal Control

Let xðtÞ represent the tomato plant population to be pro-
tected via insecticides, cultural techniques, and virus-
resistant cultivars; insecticides reduce the number and
movement of the whitefly vector. Cultural techniques (rogu-
ing, avoidance, crop residue disposal) reduce the amount of
secondary spread within a tomatoes’ field. Virus-resistant
cultivars reduce the loosed ones, due to infections by
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TYLCV [32]. Thus, the aim of this study is to minimize the
multiple objective cost functional J , considering the costs of
control methods of exposed and infected tomato plants.

If q is the efficacy of insecticide spray, c1 and c2 are cost
factors due to the size of the infectious tomato plants and
whiteflies population; p1, p2, and p3 represent the weight
attached on the cost control methods, and then the cost rate
at which TYLCV disease is controlled at any time t can be
given by the following:

f x, u, tð Þ = c1Ip tð Þ + c2Iv tð Þ + 1
2 p1qu

2
1 tð Þ + p2u

2
2 tð Þ + p3u

2
3 tð ÞÂ Ã

,

ð33Þ

where x = ðIp, IvÞ, u = ðu1, u2, u3Þ. Since the implementation
of any intervention has decreased costs, it is customary to
take a nonlinear cost function. Hence, the simplest nonlinear
function (the quadratic) in modeling the cost of the inter-
ventions is used.

Therefore, an optimal control u∗ = ðu∗1 , u∗2 , u∗3 Þ searches
the following:

J u∗ð Þ =min J uð Þ: u ∈Uf g, ð34Þ

where U = fðu1, u2, u3Þ ∈ L1ð0, TÞ ∣ ui is Lebesguemeasurable,
0 ≤ uiðtÞ ≤ 1, t ∈ ½0, T�, for i = 1, 2, 3g is the set of admissible
controls.

To sum up, the optimal control problem has the follow-
ing form:

min
u

J u1, u2, u3ð Þ =
ðT
0
f x, u, tð Þdt,

subject to dx
dt = F x, u, tð Þ, x 0ð Þ = x0, x ≥ 0,

0 ≤ ui tð Þ ≤ 1∀t ∈ 0, T½ �, i = 1, 2, 3:

ð35Þ

4.1. Pontryagin’s Maximum Principle. Since our model has
no terminal constraints, it is a normal optimal control prob-
lem, and hence, the Hamiltonian takes the following form:

H x, u, tð Þ = f x, u, tð Þ + 〠
5

i=1
λi tð ÞFi x, u, tð Þ, ð36Þ

where Fiðx, u, tÞ is the right-hand side of the differential
equations of the ith state variable. By using Pontryagin’s
Maximum Principle and the existence of results obtained
for optimal control, we obtain:

There exists an optimal control u∗1 , u∗2 , u∗3 and
corresponding solution, x = ½S∗p , E∗

p , I∗p , S∗v , I∗v �, that mini-
mizes Jðu1, u2, u3Þ over Ω. Furthermore, there exist adjoint
functions λi, i = 1, 2, 3, 4, 5 such that

dλ1
dt

= λ1 rSp 1 −
Sp + Ep + Ip

K

� �
− 1 − u3 tð Þð ÞβpIvSp − gSp

� �
,

dλ2
dt

= λ2 1 − u3 tð Þð ÞβpIvSp − a + gð ÞEp

� �
,

dλ3
dt

= λ3 aEp − g + b + u2ð ÞIp
À Á

,

dλ4
dt

= λ4 c Sv + Ivð Þ 1 − Sv + Iv
m Sp + Ip
À Á

 !
− βvIpSv − qu1 tð ÞSv − eSv

 !
,

dλ5
dt

= λ5 βvIpSv − qu1 tð ÞIv − eIv
À Á

,

ð37Þ

with transversality condition

λi Tð Þ = 0 for i = 1, 2, 3, 4, 5: ð38Þ

By using Pontryagin’s maximum principle and the exis-
tence result for the optimal control (Makinde et al. [33]), we
arrive at the following theorem:

Table 1: Model parameters and values used in the simulation.

Parameters Standard values Reference sources

r 0.121 day−1 [14]

K 1000 Assumed

e 0.0286 day−1 Estimated

c 0.50 day−1 [14]

g 0.01 day−1 Estimated

a 0.075 day−1 Estimated

m 1500 plant−1 Assumed

b 0.003 day−1 [14]

q 0.75 Assumed

c1 $10 Assumed

c2 $5 Assumed

p1 $0.006 Assumed

p2 $0.003 Assumed

p3 $0.005 Assumed

βp 0.01 vector−1day−1 [14]

βv 0.0003 plant−1day−1 [14]
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The optimal control, u∗1 , u
∗
2 , u

∗
3 , thatminimizes Jðu1, u2, u3Þ

over Ω is expressed as

u∗1 = min 1, max 0, Ivλ5 + λ4Svð Þq
p1q

� �� �
,

u∗2 = min 1, max 0,
λ3Ip
p2

� �� �
,

u∗3 = min 1, max 0,
λ2 − λ1ð ÞβpSpIv

p3

� �� �
:

ð39Þ

Proof (Fleming et al. [34]). Provide the existence of optimal
control due to the convexity of integrand with respect to
(u1, u2, u3), a priori boundedness of the state solutions,
and the Lipschitz property of the state system with respect
to the state variables. Employing Pontryagin’s maximum
principle, we have

dλi
dt = −

∂H
∂xi

, ð40Þ

where λi, i = 1, 2, 3, 4, 5. Therefore, the adjoint function
with each state variable is calculated as follows:

H x, u, tð Þ = f x, u, tð Þ + λ1
dSp
dt + λ2

dEp

dt + λ3
dIp
dt

+ λ4
dSv
dt + λ5

dIv
dt :

ð41Þ

Applying Pontryagin’s maximum principle, the Hamil-
tonian equation can be written as follows:

H = c1Ip tð Þ + c2Iv tð Þ + 1
2 p1qu

2
1 tð Þ + p2u

2
2 tð Þ + p3u

2
3 tð ÞÀ Á

+ λ1 rSp 1 −
Sp + Ep + Ip

K

� �
− 1 − u3 tð Þð ÞβpIvSp − gSp

� �

+ λ2 1 − u3 tð Þð ÞβpIvSp − a + gð ÞEp

� �
+ λ3 aEp − g + b + u2 tð Þð ÞIp

À Á
+ λ4 c Sv + Ivð Þ 1 − Sv + Iv

m Sp + Ip
À Á

 !
− βvIpSv − qu1 tð ÞSv − eSv

 !

+ λ5 βvIpSv − qu1 tð Þ − eð ÞIv
À Á

:

ð42Þ

Considering the existence of adjoint functions λi, i = 1, 2,
3, 4, 5 satisfying

dλ1
dt = −

∂H
∂Sp

= λ1 r
Ep + Ip + Sp

K
− 1

� �
− βpIv u3 − 1ð Þ + rSp

K

� �
+ βpIvλ2 u3 − 1ð Þ − λ4

c Sv + Ivð Þ2
m Sp + Ip
À Á2 ,

dλ2
dt = −

∂H
∂Ep

= λ2 a + gð Þ − λ3a +
λ1rSp
K

,

dλ3
dt = −

∂H
∂Ip

= λ3 b + g + u2ð Þ − c1 − βvλ5Sv +
λ1Spr

K
+ λ4 βvSv −

c Sv + Ivð Þ2
m Sp + Ip
À Á2

 !
,

dλ4
dt = −

∂H
∂Sv

= λ4 e − c + qu1 + βvIp +
2c Sv + Ivð Þ
m Sp + Ip
À Á

 !
− λ5βvIp,

dλ5
dt = −

∂H
∂Iv

= λ4
c Iv + Svð Þ
m Ip + Sp
À Á − 1

 !
+ c Iv + Svð Þ
m Ip + Sp
À Á − c2 + λ5 e + qu1ð Þ + βpSp u3 − 1ð Þ λ2 − λ1ð Þ:

ð43Þ

with transversality condition λiðTÞ = 0, i = 1, 2, 3, 4, 5 for the
control set ui, hence

∂H
∂ui

= 0, where i = 1, 2, 3⇒ the optimality condition, ð44Þ

computed at the optimal control pair and respective corre-
sponding states, which leads to the stated adjoint systems (37)
and (38), [35]. By taking into account the optimality conditions,

Table 2: Sensitivity indices of R0:

Parameters Parameter description Sensitivity index

r Rate of replanting of healthy tomato +ve

g Rates at tomato fruits are harvested or removed -ve

K Carrying capacity of tomato farm +ve

u1 Optimal control due to insecticide spray -ve

u2 Optimal control due to roguing diseased tomato plants -ve

u3 Optimal control due to protective netting -ve

m Rate of vectors’ maximum abundance +ve

βp Rate of inoculation of healthy tomato plant +ve

βv Rate of virus acquisition by susceptible vectors +ve

b Loss rate of tomatoes due to infection -ve

a Propagation rate from exposed plant to infected plant +ve
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∂H
∂u1

= 0, ∂H
∂u2

= 0, ∂H
∂u3

= 0, ð45Þ

and to determine the values for u∗1 , u
∗
2 , u

∗
3 , subject to the con-

straints, the characterizations (39) can be obtained,

∂H
∂u1

= p1qu1 − Ivλ5q − λ4Svq⇒
∂H
∂u1

����
u1=u∗1

= p1qu
∗
1 − Ivλ5q − λ4Svq = 0,

u∗1 =
Ivλ5 + λ4Svð Þq

p1q
⇔ u∗1 = min 1, max 0, Ivλ5 + λ4Svð Þq

p1q

� �� �
,

∂H
∂u2

= p2u2 − Ipλ3 ⇒
∂H
∂u2

����
u2=u∗2

= p2u
∗
2 − Ipλ3 = 0,

u∗2 =
λ3Ip
p2

⇔ u∗2 = min 1, max 0,
λ3Ip
p2

� �� �
,

∂H
∂u3

= p3u3 + βpIvλ1Sp − βpIvλ2Sp ⇒
∂H
∂u3

����
u3=u∗3

= p3u
∗
3 + βpIvλ1Sp − βpIvλ2Sp = 0,

u∗3 =
λ2 − λ1ð ÞβpSpIv

p3
⇔ u∗3 = min 1, max 0,

λ2 − λ1ð ÞβpSpIv
p3

� �� �
:

ð46Þ

5. Numerical Simulation

Simulations are carried out to determine the behavior of the
system (1). For this purpose, the parameter values listed in
Table 1 were used. Most parameter values were taken
directly from [14], and the rest were estimated from the data
found in [5, 36]. The estimated parameters were calculated
as follows. Since the life span of whiteflies is 20-50 days,
the death rate was calculated as per the inverse of the average life
span, i.e., e = 1/ðð20 + 50Þ/2Þ = 1/35 = 0:0286day−1. Depend-
ing on cultivars, tomato fruits could be made ready to harvest
at about 75 to 90 days after transplanting [36], and tomato
fruits’ are harvested or removed at the rate of g, which can
be calculated as g = 1/ð75 + 90Þ/2 = 0:0121day−1. Since the
exposed period of the tomato plant is 10-14 days [5], the prop-
agation rate from exposed plant to infected plant is calculated
as per a = 1/ð10 + 14Þ/2 = 0:0833day−1.

The main objective of this study is to examine the impact
of control strategies such as insecticides, cultural practices,
and virus-resistant cultivars on the transmission of TYLCV.
In order to support the analytical results, graphical represen-
tations of various strategies are visualized to determine their
impact whenever the controls are applied to the system [14].

5.1. Optimal Control Effect on the Model. Now it is time to
look at the effect of different optimal control strategies on
the propagation of TYLCV disease. It is well known that
there is no single management option to control the disease.
This makes the management of TYLCV challenging and
costly [5]. A combination of management options is neces-
sary to successfully manage the disease and limit the losses
of tomato fruits’ production [5]. For instance, a combination
of cultural and chemical uses is required [32]. Therefore, the
following optimal control strategies on the propagation of

TYLCV disease in the tomato plant population are numeri-
cally investigated below.

(i) Strategy I: combination of the use of insecticide
spray and virus-resistant cultivars

(ii) Strategy II: combination of the use of roguing dis-
eased tomato plants and virus-resistant cultivars

(iii) Strategy III: combination of the use of insecticide
spray and roguing diseased tomato plants

(iv) Strategy IV: combination of the use of insecticide
spray, roguing diseased tomato plants, and virus-
resistant cultivars

The optimal control is obtained by solving the optimality
system (38), (39), and (43). An iterative scheme is used for
solving the optimality system. Thus, the state equations are
solved with an assumption for the controls over the simu-
lated time using the fourth-order Runge-Kutta scheme.
Because of the transversality conditions (43), the adjoint
equations are solved by a backward fourth-order Runge-
Kutta scheme using the current iteration solutions of the
state equation. Then, the controls are updated by using a
convex combination of the previous controls and the value
taken from the characterizations (46). Generally, it can be
written as ucurrent × ð1 − αkÞ + uprevious × αk where k is the
current iteration and 0 < α < 1 [19]. This process is repeated,
and the iterations are also stopped if the values of the
unknown variables in the previous iterations are very close
in contrast to the iterations [19].

We assume that p1 > p3 > p2. This assumption is based
on the facts that the cost associated with u1, u2, and u3 which
is the cost of spraying insecticides is applied five times per
season; and the use of roguing diseased tomato plants
mainly labors cost [32] and the cost associated with the pro-
tective netting. Thus, c1 = 1, c2 = 0:025, p1 = 0:006, p2 = 0:003,
and p3 = 0:005 are chosen and used as parameter values in
Table 1. The initial state variables are chosen as Spð0Þ = 384,
Epð0Þ = 17, Ipð0Þ = 69, Svð0Þ = 768, and Ivð0Þ = 138.

5.1.1. Strategy I: Combination of the Use of Insecticide Spray
and Virus-Resistant Cultivars. The insecticide spray control
u1 and virus-resistant cultivars control u3 are used to opti-
mize the objective function J while roguing diseased tomato
plant control strategy u2 is set to zero.

Figure 1 shows that the number of healthy tomato plants
is increased gradually while the infected tomato plant popu-
lation decreased with time in the presence of the control. On
the other hand, without control, the number of infected
tomatoes escalates while the healthy tomato plant popula-
tion is reduced. This is logical, because insecticide spray
and virus-resistant cultivars help to reduce the incidence of
TYLCV disease.

Figure 2 depicted that without control, both susceptible
and infected insect vectors increase, but in the presence of
control strategies, the insect vector population is decreased.
This is because we assume that the tomato plant is the only
host for the insect vector and thus suffers from lack of food.
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This is justifiable because the virus-resistant cultivars
resisted not to be infected, and insecticide spray is effective
against the TYLCV infection.

5.1.2. Strategy II: Combination of the Use of Roguing
Diseased Tomato Plants and Virus-Resistant Cultivars. The
combination of the use of roguing diseased tomato plants

u2 and virus-resistant cultivar control u3 strategies is used
to optimize the objective function J , while the insecticide
spray control strategy u1 is set to zero.

Figure 3(a) illustrates that the healthy tomato plant
increases with time as the control is used and decreased to
zero without the use of control. On the other hand,
Figure 3(b) shows the escalation of infected tomato plants
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Figure 2: The impact of insecticide spray and virus-resistant cultivars on (a) susceptible whitefly vector and (b) infective whitefly vector.
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Figure 1: The impact of insecticide spray and virus-resistant cultivars on (a) healthy tomato plant and (b) infected tomato plant.
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without control and the deescalation of infected tomato
plants to some threshold with the use of control. This
implies that a combination of the use of insecticide spray
and roguing tomato plant control reduced the tomato yellow
leaf curl virus disease to some threshold.

Figure 4 depicts that the number of susceptible and
infected whitefly vector population is increased in the
absence of control. However, according to Figures 4(a) and

4(b), both the susceptible and infective whitefly vectors
increased. Even though the infected whitefly vectors increase
slightly in the case of control, this may be attributed to rogu-
ing infected tomato plants, decreasing the amount of sec-
ondary spread of the disease within a farm when
incidences of the disease are low. However, if there are
higher rates of infection (>10%), roguing may not be suc-
cessful. In this study, for the simulation purpose, the number
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of infected tomato plants greater than 17% is considered.
Besides, virus-resistant cultivars reduced losses that occurred
due to the infection of TYLCV but do not act against
whiteflies.

5.1.3. Strategy III: Combination of Use of Insecticide Spray
and Roguing Diseased Tomato Plants. The objective function
J is optimized using insecticide spray control u1 and roguing

diseased tomato plants control u2 while virus-resistant culti-
vars control u3 is set to zero.

The results in Figure 5(a) represented that without the
healthy tomato plant, the population decreased with time.
Figure 5(b) reveals that the infected tomato plant gradually
increased without control. It is decreased with time, provid-
ing that the control is utilized. This implies that the use of
insecticide spray against the spread of tomato yellow leaf
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Figure 6: The impact of insecticide spray and roguing diseased tomato plant on (a) susceptible whitefly vector and (b) infective whitefly
vector.
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Figure 5: The impact of insecticide spray and roguing diseased tomato plant on (a) healthy tomato plant and (b) infected tomato plant.
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curl virus may be less efficient as it is used to hinder the
foundation of the vector B. tabaci within the crop to protect
plants from direct devastation.

According to Figure 6, the susceptible and infected white-
fly vector populations escalate without control, whereas in the
case of control, virus-transmitting whitefly also increased, but
at a decreasing rate. This indicates that controlling virus-

transmitting whitefly vectors using insecticide spray and rogu-
ing diseased tomato plant is hard [37].

5.1.4. Strategy IV: Combination of the Use of Insecticide
Spray, Roguing Diseased Tomato Plants, and Virus-
Resistant Cultivars. All the three controls u1, u2 and u3 are
used to optimize the objective function J .
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Figure 7: The impact of insecticide spray, roguing diseased tomato plant, and virus-resistance cultivars on (a) healthy tomato plant and (b)
infected tomato plant.
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Figure 8: The impact of insecticide spray, roguing diseased tomato plant, and virus-resistant cultivars on (a) susceptible whitefly vector and
(b) infective whitefly vector.
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It is observed in Figure 7(a) that the control strategies
resulted in an escalation of a healthy tomato plant popula-
tion in the presence of control strategies. It dropped off to
zero without control. Figure 7(b) portrays a significant
decrease in the numbers of infected tomato plants in the case
of control. It is dramatically increased in the absence of con-
trol. This implies that a combination of insecticide spray,
rouging diseased tomato plant, and virus-resistant cultivars
declined TYLCV disease.

Figures 8(a) and 8(b) explain that with the application of
control, the susceptible and infected whitefly vectors are
decreased significantly in the case of control usage, whereas
it is increased in the case of no control.

6. Conclusion

In this paper, a simple deterministic model for the transmis-
sion of TYLCV disease that incorporates the strategies of the
use of insecticide spray, roguing the diseased tomato plants,
and virus-resistance cultivars is used. It performs optimal
control analysis of the model. The basic reproduction num-
ber is calculated, and the existence of local and global stabil-
ity of equilibria is analyzed. We initially take into account
the constant control case, we calculate the basic reproduc-
tion number, and we investigate the existence and stability
of the disease-free and endemic equilibria. We use the
Kamgang-Sallet stability to ensure that the disease-free equi-
librium point is globally asymptotically stable when the
reproduction number R0 is less than one. This indicates that
TYLCVD dies out independent of the initial size of the
tomato population. For R0 < 1, the disease-free equilibrium
becomes unstable, and the endemic equilibrium is globally
asymptotically stable. This indicates that TYLCVD spreads.
The sensitivity analysis of the basic reproduction number
shows that TYLCV disease has a positive relationship with
the rate of harvested or removed tomato fruits, inoculation
of healthy tomato plants, and virus acquisition by suscepti-
ble vectors. Thus, these parameters are those that have to
be targeted mostly by policymakers to combat the TYLCV
disease. Hence, the optimal control analysis of the model is
made, using Pontryagin’s maximum principle. From the
simulation results, it can be concluded that all the combined
efforts of the two out of the three strategies are listed as
insecticide spray, rouging diseased tomato plants, and virus
resistance cultivars. These can significantly reduce the dis-
ease, except the strategic combination of the use of insecti-
cide spray and rouging infected tomato plants. Since the
strategic combination of the use of roguing diseased tomato
plants and virus-resistance cultivars has a similar effect as
the strategic combination of the use of all strategies, we rec-
ommend that policymakers ought to adopt the combination
of the use of the combination of roguing diseased tomato
plants and virus-resistance cultivars as a strategy.

Data Availability

The parameter values and initial values to support this study
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