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Lung cancer is the biggest cause of cancermortality worldwide and amajor impediment to extending life expectancy. In comparison to
other cancers, it has a relatively poor survival rate. In this paper, we have developed a mathematical model for lung cancer based on
biological phenomena using nonlinear ordinary differential equations and analyzed it both analytically and numerically. According to
the findings, CD8+ T cells and dendritic cells have a role in tumor cell variety. Surgery and chemotherapy have been used as treatment
options, and we have observed that three doses of chemotherapy after surgery had the greatest results after examining several
treatment options. During the treatment period, the cycle of each chemotherapy has been taken every 4 weeks, and the first dose
has been taken after 28 days of surgery. Finally, we have evaluated the various starting dates for the best treatment choice and
discovered that the patient who begins treatment sooner has a better probability of surviving.

1. Introduction

More than AIDS, TB, and malaria combined, cancer kills
one out of every six people on the planet. It is now the
world’s second biggest cause of mortality, particularly in
nations with a high or extremely high Human Development
Index (HDI) [1]. Because of rising life expectancy and epide-
miological and demographic shifts, the number of new cases
and fatalities continues to climb. By 2030, SDG 3.4 asks for a
one-third decrease in noncommunicable disease (NCD) related
premature mortality. Unfortunately, improvement in cancer
has lagged behind advances in other NCDs. There were an
estimated 18.1 million new cancer diagnoses and 9.6 million
cancer deaths in 2018. The incidence rate of cancer was
48.4%, 21.0%, 23.4%, 5.8%, and 1.4% in Asia, the Americas,
Europe, Africa, and Oceania, respectively [2].

Among all cancer types, lung cancer is one of the main
causes of cancer mortality, accounting for over 25% of all can-
cer fatalities which kills more people than colon, breast, and
prostate cancers combined [3]. In 2018, lung cancer was one
of the most diagnosed malignancies in very high HDI and
medium HDI countries among men [1]. This type of cancer
was found to be prevalent in 13.1 percent of men and 2% of

females in Bangladesh during the previous five years [4].
According to the World Health Organization, the overall
number of cancer patients in Bangladesh was 150,781 in
2018, with 108,137 deaths. Lung cancer afflicted 8.2 percent
of the cancer patients, with a mortality rate of 11%. WHO said
that the number of cases of lung cancer in 2012was 10,851 and
12,374 in 2018, and 26,738 cases are expected in 2040. Com-
pared to breast cancer, lung cancer will be a more dangerous
kind of cancer in 2040 [5].

For investigating cancer dynamics, many studies have
been done. A mathematical model of cancer progression was
devised by de Pillis et al. [6]. They used a combination of
chemotherapy and activated antitumor cell transfer (TIL
injections) and activation protein injections (IL-2 injections)
to treat the patients. In order to comprehend the dynamics
of immune-mediated tumor rejection, de Pillis et al. [7] also
provided a novel mathematical model that depicts tumor-
immune interactions, concentrating on the function of
natural killer (NK) and CD8+ T cells in tumor surveillance.
Trisilowati et al. [8] proposed a mathematical model in which
they have taken natural killer, cytotoxic T lymphocytes, and
dendritic cells as immune cells and employed dendritic cells
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to treat patients. Motivated by both of them, Unni and
Seshaiyer [9] develop a mathematical model in which he dis-
cussed the interactions between tumor cells and immune cells
including CD8+ T cells, natural killer cells, and dendritic cells
combined with drug delivery to these cell sites.

Kirschner and Tsygvintsev [10] presented a new form of
tumor therapy and built a mathematical model that predicted
tumor immune responses. This therapeutic method employs
elements of the host to increase the immune response in the
hopes of allowing the tumor to be cleared. After that work,
Kirschner and Panetta [11] use mathematical modeling to
describe the interplay between tumor cells, immune-effector
cells, and IL-2. Both short-term tumor growth fluctuations
and long-term tumor relapse might be explained by these
efforts. The researchers next looked at how adoptive cellular
immunotherapy affected the mouse and defined the situations
under which the tumor may be destroyed.

Decker et al. [12] looked through the literature to find and
characterize the turning points in immunotherapy’s approval
as a legitimate therapeutic option for neoplastic malignancy.
In mice and dogs, they also concentrate on research milestones
and the establishment of essential model systems. By following
this work, Waldman et al. [13] gave a thorough historical and
biological overview of the development and clinical application
of cancer immunotherapeutic, emphasizing the fundamental
importance of T lymphocyte regulation and highlighting clini-
cal trials that demonstrate therapeutic efficacy and side effects
associated with each drug class. Also, an overview of what is
currently known about systemic immunity in cancer was pro-
vided by Hiam-Galvez et al. [14].

Kartono [15] created a mathematical model that illustrates
how interleukin-2 (IL-2), interferon-alpha, and tumor-
infiltrating lymphocytes (TIL) affect the dynamics of tumor
cells. McLane et al. [16] discussed the understanding of the biol-
ogy of Tex cells, including the developmental pathways, tran-
scriptional and epigenetic characteristics, and intrinsic and
extrinsic factors affecting cell exhaustion. Philip and Schietinger
[17] discussed the present state of knowledge on the factors that
affect T cells’ receptivity to and resistance to immunotherapy,
and they highlighted unanswered research topics.

The study by Casiraghi et al. [18] was conducted in a single
center and used patients who had been treated over the previous
20 years. It was up to date with all the current staging systems
and used a multimodality approach to reduce group heteroge-
neity and better identify potential prognostic factors for the best
patient selection. Using SCLC patients who had chemotherapy,
Liang et al. [19] aimed to create a predictive nomogram in their
study. Chao et al. [20] conducted an investigation and devel-
oped a prediction algorithm to find people who might benefit
from surgery. By concentrating primarily on complex muta-
tions that comprise both a common mutation and an unusual
mutation, Li et al. [21] retrospectively examined 18 patients
with NSCLC who had complex EGFR mutations.

However, there are several models that explain the effects
of various immune cells on tumor cells, but only a few models
that investigate the effects of dendritic cells on tumor cells.
Also, they did not discuss surgery as a treatment option, but
we are using both surgery and chemotherapy for our treat-

ment. Additionally, previous authors did not explain the ideal
moment to begin this period of treatment. In this regard, our
work differs from that of the earlier authors since we devel-
oped a mathematical model on non-small-cell lung cancer
that includes chemotherapy and surgery into account as possi-
ble treatment options and demonstrated the combined impact
of these treatment approaches. Moreover, we have recom-
mended the best treatment strategy out of all possible combi-
nations of surgery and various chemotherapy dosages. Finally,
we have suggested a time frame within which a patient should
begin receiving treatment in order to improve his prognosis.

2. Formulation of the Mathematical Model for
Lung Cancer

Lung cancer is a cancer that starts in the lungs. When a person
has lung cancer, they have abnormal cells that cluster together
to form a tumor. Unlike normal cells, cancer cells grow with-
out order or control, destroying the healthy lung tissue around
them. These types of tumors are called malignant tumors.

Tumor cells grow logistically and interact to damage the
CD8+ T cells while dendritic cells are being activated to
mature for the presence of tumor cells. So, a mathematical
model is developed based on the Lotka-Volterra and the
logistic model. Here, the model consists of three variables
such as tumor cells, CD8+ T cells, and dendritic cells, which
are denoted by TðtÞ, CðtÞ, and DðtÞ, respectively.

When tumor cells interact with CD8+ T cells, some
tumor cells are killed by CD8+ T cells. Again, in the contact
of tumor cells and dendritic cells, dendritic cells destroy
some tumor cells. The following nonlinear differential equa-
tions are written based on the aforementioned information:

dT
dt

= αT 1 − βTð Þ − γT − ϕCT , ð1Þ

where the term αTð1 − βTÞ represents the logistic growth of
tumor, γ is the constant destroying rate of tumor cells
because of dendritic cells, and the rate at which CD8+ T cells
kill tumor cells is ϕ.

The interacting impact of tumor cells on CD8+ T cells is
some of CD8+ T cells are killed by tumor cells. Moreover,
because of contact between dendritic cells and tumor cells,
some CD8+ T cells are excited. This can be written mathe-
matically as follows:

dC
dt

= νT − ηCT − κC: ð2Þ

Here, the activation rate of CD8+ T cells owing to contact
between dendritic cells and tumor cells is indicated by con-
stant rate ν, η is the inactivation rate of CD8+ T cells by tumor
cells, and κ is the natural death rate of CD8+ T cells.

Dendritic cells are immature initially, generated by
hematopoietic bone marrow progenitor cells. They are
found throughout the body under normal circumstances.
Because of contacting tumor cells, they become activated
matured cells. Then, by activating CD8+ T cells, some
dendritic cells become inactive.
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dD
dt

= μ + σDT − ρCD − ωD: ð3Þ

The sources of generating dendritic cells are denomi-
nated by μ, the rate of recruitment of dendritic cells by
tumor cells is σ, ρ is the rate at which dendritic cells are inac-
tivated by CD8+ T cells, and natural death rate of dendritic
cells is betokened by ω.

2.1. Mathematical Analysis

2.1.1. Positivity and Boundedness

Lemma 1. Considering Tð0Þ > 0, C > 0, and Dð0Þ > 0, it must
be proved that TðtÞ, CðtÞ, and DðtÞ will be positive for all t
∈ ½0, T1� in R3

+ where T1 > 0.

Proof. Taking all parameters of the system and all initial
values to be positive, we have to prove that TðtÞ, CðtÞ, and
DðtÞ will be positive for all t ∈ ½0, T� in R3

+.
From equation (1), we have

dT
dt

= αT 1 − βTð Þ − γT − ϕCT ⇒ dT
dt

= T α − αβT − γ − ϕCð Þ⇒ 1
T
dT
dt

= α − αβT − γ − ϕC:

ð4Þ

Integrating both sides of the above equation, we obtain

T tð Þ = eαt−αβ
Ð
Tdt−γt−ϕ

Ð
Cdt > 0: ð5Þ

Therefore, TðtÞ > 0.
Equation (2) is given as follows:

dC
dt

= νT − ηCT − κC⇒ dC
dt

> −ηCT − κCC tð Þ > e−κt−η
Ð
Tdt > 0:

ð6Þ

So, CðtÞ > 0.
Again, from equation (3), we already have,

dD
dt

= μ + σDT − ρCD − ωD⇒ dD
dt

> σDT − ρCD − ωDD tð Þ

> e
Ð
Tdt−ωt−ρ

Ð
Cdt > 0:

ð7Þ

So, DðtÞ > 0.
Hence, it can be said that TðtÞ, CðtÞ, and DðtÞ will be

positive for all t ∈ ½0, T� in R3
+.

Lemma 2. All solutions ðTðtÞ, CðtÞ,DðtÞÞ of the system
are bounded.

Proof. The constraints used in this system are positive. We
define the function

P tð Þ = T tð Þ + C tð Þ +D tð Þ: ð8Þ

The derivative of this equation is

dP
dt

= dT
dt

+ dC
dt

+ dD
dt

⇒ dP
dt

= αT 1 − βTð Þ − γT − ϕCT

+ νT − ηCT − κC + μ + σDT − ρCD − ωD⇒ dP
dt

+ μ1P = αT 1 − βTð Þ − γT − ϕCT + νT − ηCT

− κC + μ + σDT − ρCD − ωD + μ1 T + C +Dð Þ:
ð9Þ

Now we are taking a function of gðx, y, zÞ as follows:

g x, y, zð Þ = αx 1 − βxð Þ − γx − ϕxy + νx − ηyx − κy + μ

+ σzx − ρyz − ωz + μ1 x + y + zð Þ,
ð10Þ

where ðx, y, zÞ is the critical point.
Now, let D = 3gxxgyygzz − gxxg

2
yz − g2xygzz − g2zxgyy.

Substituting gxx = −2αβ, gyy = 0, gzz = 0, gxy = −ϕ − η,
gyz = −ρ, and gzx = −σ, we obtain

D = 2αβρ2 > 0: ð11Þ

Since D > 0 and gxx < 0 with gyy = 0, gzz = 0, gðx, y, zÞ
has a local maximum. So, considering the maximum value
M, equation (9) implies that

dP
dt

+ μ1P ≤M: ð12Þ

Taking the limit supremum, we obtain

lim
t⟶∞

sup P tð Þ ≤ M
μ1

: ð13Þ

All solutions (TðtÞ, CðtÞ, and DðtÞ) of the system are
bounded.

2.1.2. Existence and Uniqueness of the Solution

Lemma 3. For all nonnegative initial conditions, the solutions
of the system exist, and they are also unique at the same time
for all time t > 0.

Proof. For the existence and uniqueness of a solution indi-
cated by the proposed theorem [22], the Lipschitz criteria
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have been chosen as the standard. It must be shown that
the system’s partial derivative exists and is continuous to
qualify for our model to work. Consider

f T , C,Dð Þ = dT
dt

= αT 1 − βTð Þ − γT − ϕCT ,

g T , C,Dð Þ = dC
dt

= νT − ηCT − κC,

h T , C,Dð Þ = dD
dt

= μ + σDT − ρCD − ωD:

ð14Þ

The partial derivatives of f , g, and h with respect to
compartments T , C, and D are calculated as follows using
the system’s equation described above:

∂f
∂T

= −γ − ϕC − α βT − 1ð Þ − αβT , ∂f
∂T

����
����

= −γ − ϕC − α βT − 1ð Þ − αβT ≤
M
μ1

<∞,

∂f
∂C

= −ϕT , ∂f
∂C

����
���� = ϕT ≤

M
μ1

<∞,
∂f
∂D

= 0, ∂f
∂D

����
���� = 0 ≤ M

μ1
<∞: ð15Þ

Again,

∂g
∂T

= ν − ηC, ∂g
∂T

����
���� = −ν + ηC ≤

M
μ1

<∞,

∂g
∂C

= −κ − ηT , ∂g
∂C

����
���� = κ + ηT ≤

M
μ1

<∞,

∂g
∂D

= 0, ∂g
∂D

����
���� = 0 ≤ M

μ1
<∞:

ð16Þ

Lastly,

∂h
∂T

= σD, ∂h
∂T

����
���� = σD ≤

M
μ1

<∞,

∂h
∂C

= −ρD, ∂h
∂C

����
���� = ρD ≤

M
μ1

<∞,

∂h
∂D

= σT − ω − ρC, ∂h
∂D

����
���� = −σT + ω + ρC ≤

M
μ1

<∞:

ð17Þ

The associated theorem establishes that T , C, and D
are locally continuous in R+

3 and have a unique solution
since all partial derivatives exist and are continuous.

2.1.3. Equilibrium Analysis. By solving the following equa-
tions below, we can obtain equilibrium point

αT 1 − βTð Þ − γT − ϕCT = 0, ð18Þ

νT − ηCT − κC = 0, ð19Þ

μ + σDT − ρCD − ωD = 0: ð20Þ
Solving equations (18)-(20), we get two equilibrium

points E0ð0, 0, μ/ωÞ and E1ðT∗, C∗,D∗Þ, where

T∗ = α − γ − ϕC∗

αβ
,

C∗ =
− ηγ − ηα − ϕν − καβð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηγ − ηα − ϕν − καβð Þ2 − 4 ηϕð Þν α − βð Þ

q
2ηϕ ,

D∗ = μ

ρC∗ − σT∗ + ω
:

ð21Þ

2.1.4. Basic Reproduction Number. For investing basic repro-
duction number R0, we will use next generationmatrixmethod
[23, 24]. From our mathematical model, it is clear that the only
relevant class of infected cells is tumor cells TðtÞ. We have

dT
dt

= αT 1 − βTð Þ − γT − ϕCT: ð22Þ

Differentiating the above equation with respect toT, we have

d
dT

dT
dt

� �
= −γ − ϕC − α βT − 1ð Þ − αβT: ð23Þ

At the equilibrium point (T∗, C∗, and D∗), we obtain

d
dT

dT
dt

� �
= −γ − ϕC∗ − α βT∗ − 1ð Þ − αβT∗: ð24Þ

Therefore, two matrices F and V which represent the gain
and loss of tumor cells are F = α andV = 2αβT + γ + ϕC. Then,
the basic reproduction number is the largest eigenvalue of FV−1.
Therefore, we have

R0 =
F
V

= α

2αβT∗ + γ + ϕC∗ : ð25Þ

This fundamental reproduction number indicates that
tumor cells will disappear from the human body if α < 2αβT∗

+ γ + ϕC∗ and that they will persist if α > 2αβT∗ + γ + ϕC∗.

2.1.5. Stability Analysis of the System at the Equilibrium
Point. The Jacobian matrix will be used, and then, the char-
acteristic equation will be analyzed for investigating the
behavior of the stability.

Theorem 4. The equilibrium point E0 is asymptotically stable
if γ > α.

Proof. To prove Theorem 4, at first, we consider

f = αT 1 − βTð Þ − γT − ϕCT , ð26Þ

g = νT − ηCT − κC, ð27Þ
h = μ + σDT − ρCD − ωD: ð28Þ
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For equations (26) to (28), the Jacobian matrix is

J = ∂ f , g, hð Þ
∂ T , C,Dð =

∂f
∂T

∂f
∂C

∂f
∂D

∂g
∂T

∂g
∂C

∂g
∂D

∂h
∂T

∂h
∂C

∂h
∂D

2
666666664

3
777777775
⇒ J

=

−γ − ϕC − α βT − 1ð Þ − αβT −ϕT 0

ν − ηC −κ − ηT 0

σD −ρD σT − ω − ρC

2
6664

3
7775:

ð29Þ

At the equilibrium point E0ð0, 0, μ/ωÞ, equation (29)
becomes

J =

α − γ 0 0
ν −κ 0
μσ

ω
−
μρ

ω
−ω

2
664

3
775: ð30Þ

The characteristic equation is

− κ + λð Þ ω + λð Þ γ − α + λð Þ = 0,

⇒ κ + λð Þ ω + λð Þ γ − α + λð Þ = 0,
⇒λ3 + λ2 κ + ω + γ − αð Þ + λ ωγ − ωα − κα + κγ + κωð Þ

+ κω γ − aαð Þ = 0,

⇒β0λ
3 + β1λ

2 + β2λ + β3 = 0, ð31Þ

where

β0 = 1,
β1 = κ + ω + γ − α,
β2 = ωγ − ωα − κα + κγ + κω,
β3 = κω γ − αð Þ:

ð32Þ

Now,

β1β2 − β3 = 2κω γ − αð Þ + κ2 γ − αð Þ + ω2 γ − αð Þ + κ2ω

+ ω2κ + ω + κð Þ γ − αð Þ2:
ð33Þ

It is clear that, if γ > α, then β1 > 0, β2 > 0, and β1β2 −
β3 > 0. So, according to the Routh-Hurwitz stability criterion,
the equlibrium point E0ð0, 0, μ/ωÞ is asymptotically stable.

Alternatively, at the equilibrium point E0ð0, 0, μ/ωÞ, we
have basic reproduction numberR0 = α/γ. First two eigenvalues
are negative, and third one is λ = α − γ⇒ λ = γðα/γ − 1Þ⇒ λ
= γðR0 − 1Þ. This eigenvalue is negative if R0 < 1, and the sys-
tem will be stable at the equilibrium point E0ð0, 0, μ/ωÞ.

Theorem 5. The equilibrium point E1ðT∗, C∗,D∗Þ is stable if
γ > α and ω + ρC∗ > σT∗.

Proof. The Jacobian matrix at the equilibrium point (T∗, C∗,
and D∗) is

We have

J T∗, C∗,D∗ð Þ =

∂f T∗, C∗,D∗ð Þ
∂T∗

∂f T∗, C∗,D∗ð Þ
∂C∗

∂f T∗, C∗,D∗ð Þ
∂D∗

∂g T∗, C∗,D∗ð Þ
∂T∗

∂g T∗, C∗,D∗ð Þ
∂C∗

∂g T∗, C∗,D∗ð Þ
∂D∗

∂h T∗, C∗,D∗ð Þ
∂T∗

∂h T∗, C∗,D∗ð Þ
∂C∗

∂h T∗, C∗,D∗ð Þ
∂D∗

2
666666664

3
777777775
⇒ J

=

−γ − ϕC∗ − α βT∗ − 1ð Þ − αβT∗ −ϕT∗ 0

ν − ηC∗ −κ − ηT∗ 0

σD∗ −ρD∗ σT∗ − ω − ρC∗

2
6664

3
7775:

ð34Þ

⇒J − λI =
−γ − ϕC∗ − α βT∗ − 1ð Þ − αβT∗ − λ −ϕT∗ 0

ν − ηC∗ −κ − ηT∗ − λ 0
σD∗ −ρD∗ σT∗ − ω − ρC∗ − λ

2
664

3
775: ð35Þ
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The characteristic equation is jJ − λIj = 0

⇒ −ω − ρC∗ + σT∗ − λð Þ λ2 + λ γ − α + κ + ϕC∗ + ηT∗ðÂ
+ 2αβT∗Þ + κ γ − αð Þ + ηT∗ γ − αð Þ + ϕνT∗ + ϕκC∗

+ 2αβκT∗ + 2αβηT∗2� = 0,
ð36Þ

where

β1 = γ − α + κ + ϕC∗ + ηT∗ + 2αβT∗,
β2 = κ γ − αð Þ + ηT∗ γ − αð Þ + ϕνT∗ + ϕκC∗ + 2αβκT∗ + 2αβηT∗2:

ð37Þ

The eigenvalue λ = −ω − ρC∗ + σT∗ will be negative if
ω + ρC∗ > σT∗. If γ > α, then β1 and β2 will have the same
sign. Since β1 and β2 are the same sign, according to the
Routh-Hurwitz criterion, the other eigenvalues have a negative
real part. So, the equilibrium point E1ðT∗, C∗,D∗Þ is stable.

Alternatively, at the equilibrium point E1ðT∗, C∗,D∗Þ, we
have basic reproduction number R0 = α/ð2αβT∗ + γ + ϕC∗Þ.

One of the eigenvalues is λ = −ω − ρC∗ + σT∗ which is nega-
tive if ðω + ρC∗Þ > σT∗. β1 is positive if γ > α, and we have

β2 = κ γ − αð Þ + ηT∗ γ − αð Þ + ϕνT∗ + ϕκC∗ + 2αβκT∗

+ 2αβηT∗2 ⇒ β2 = κα
γ + ϕC∗ + 2αβT∗

α
− 1

� �

+ ηT∗ γ − αð Þ + ϕνT∗ + 2αβηT∗,

⇒β2 = κα
1
R0

− 1
� �

+ ηT∗ γ − αð Þ + ϕνT∗ + 2αβηT∗: ð38Þ

Hence, β1 and β2 will have the same sign if R0 < 1, γ > α,
and ω + ρC∗ > σT∗. Therefore, the eigenvalues will be nega-
tive, and the system will be stable at the equilibrium E1ðT∗,
C∗,D∗Þ.
2.1.6. Characteristics of States for Equilibrium Values with
respect to α. We will discuss the characterization of the equi-
librium values of tumor cells, CD8+ T cells, and dendritic
cells with respect to α:

From equations (18)-(20), we can obtain two functions
of T∗, D∗, and α as follows:

f T∗,D∗, αð Þ = αT∗ 1 − βT∗ð Þ − γT∗ − ϕT∗ νT∗

ηT∗ + κ
,

g T∗,D∗, αð Þ = μ + σD∗T∗ − ρD∗ νT∗

ηT∗ + κ
− ωD∗,

dT∗

dα
=

∂f /∂D∗ ∂f /∂α

∂g/∂D∗ ∂g/∂α

�����
�����

∂f /∂T∗ ∂f /∂D∗

∂g/∂T∗ ∂g/∂D∗

�����
�����
= ∂f /∂D∗ð Þ ∂g/∂αð Þð Þ − ∂f /∂αð Þ ∂g/∂D∗ð Þð Þ

∂f /∂T∗ð Þ ∂g/∂D∗ð Þð Þ − ∂f /∂D∗ð Þ ∂g/∂T∗ð Þð Þ ⇒ dT∗

dα

= 2ϕνT∗

κ + ηT∗ + αβT∗ −
T βT∗ − 1ð Þ

γ + α βT∗ − 1ð Þ −
ϕνηT∗2

κ + ηT∗ð Þ2
⇒ dT∗

dα

= 2ϕνT∗

κ + ηT∗ + αβT∗ + T∗ 1 − βT∗ð Þ
γ − α 1 − βT∗ð Þ −

ϕνηT∗2

κ + ηT∗ð Þ2
⇒ dT∗

dα

= αβT∗ + T∗ 1 − βT∗ð Þ
γ − α 1 − βT∗ð Þ + 2ϕνT∗ κ + ηT∗ð Þ − ϕνηT∗2

κ + ηT∗ð Þ2
⇒ dT∗

dα

= αβT∗ + T∗ 1 − βT∗ð Þ
γ − α 1 − βT∗ð Þ + 2ϕνκT∗ + 2ϕνηT∗2 − ϕνηT∗2

κ + ηT∗ð Þ2
⇒ dT∗

dα

= αβT∗ + T∗ 1 − βT∗ð Þ
γ − α 1 − βT∗ð Þ + 2ϕνκT∗ + ϕνηT∗2

κ + ηT∗ð Þ2
:

ð39Þ
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Applying the condition γ > α and βT < 1, third term will
be positive.

So, we can obtain dT/dα > 0 that means T∗ > 0 when
α > 0.

Applying the condition βT∗ < 1, γ > α, σκ > νρ, and ω
> σT , we can obtain dD∗/dα > 0 that indicates D∗ is increas-
ing when α is increasing.

dC∗/dα > 0 since dT∗/dα > 0. That indicates that C∗ is
increasing when α is increasing.

2.1.7. Nature of Tumor Cells When CD8+ T Cells Are
Nondecreasing. For finding nature of tumor cells when CD8
+ T cells are nondecreasing, we consider a Holling type-II
functional response CðtÞ = ϕ1t/ð1 + ϕ2tÞ, and substituting this
in Section 2.1.2, we obtain

dT
dt

= αT 1 − βTð Þ − γT − ϕT
ϕ1t

1 + ϕ2t
: ð41Þ

Now putting right equals of first derivative,

αT 1 − βTð Þ − γT − ϕT
ϕ1t

1 + ϕ2t
= 0: ð42Þ

From the above equation, we get the solution,TðtÞ = 0 and
TðtÞ = 1/β − γ/αγ − ϕϕ1t/ð1 + ϕ2tÞαβ.

The second derivative is

d2T
dt2

= −
ϕϕ1T

1 + ϕ2tð Þ2 : ð43Þ

Putting the values of T , we get

d2T
dt2

= 0,

d2T
dt2

= ϕϕ1
αβ 1 + ϕ2tð Þ3 γ + ϕ2γt + ϕγt − α − αϕ2tð Þ:

ð44Þ

For maximum value, we have d2T/dt2 < 0.
Therefore, t < ðα − γÞ/ðϕ2γ + ϕϕ1 − αϕ2Þ. Since γ > α, so

denominator will be positive and the numerator will be negative
which indicates that tumor cells will have maximum value for
the previous day, but in the first quadrant, it does not have
anymaximum value. Hence, tumor cells do not havemaximum
value, and it can be concluded that the number of tumor cells
will not exceed the initial value of tumor cells if CD8+ T cells
are nondecreasing. When immunotherapy and chemotherapy
are used, CD8+ T cells will not be declining. With the help of
these treatments, the immune system will be strengthened and
better able to combat cancerous cells. Also, some healthy foods
help to boost the immune system.

2.1.8. Convergence of Tumor Cells When CD8+ T Cells Are
Constant. When the number of CD8+ T cells is constant,
we use C = Cc to determine the convergence of tumor
cells. By using immunotherapy, CD8+ T cells can be made
constant. We get by substituting this constant value into
Section 2.1.2,

dD∗

dα
=

∂f /∂α ∂f /∂T∗

∂g/∂α ∂g/∂T∗

�����
�����

∂f /∂T∗ ∂f /∂D∗

∂g/∂T∗ ∂g/∂D∗

�����
�����
= ∂f /∂αð Þ ∂g/∂T∗ð Þð Þ − ∂f /∂T∗ð Þ ∂g/∂αð Þð Þ

∂f /∂T∗ð Þ ∂g/∂D∗ð Þð Þ − ∂f /∂D∗ð Þ ∂g/∂T∗ð Þð Þ ⇒ dD∗

dα

=
− T∗ βT∗ − 1ð Þ σD∗ − νρD∗/ κ + ηT∗ð Þð Þ + νηρD∗T∗/ κ + ηT∗ð Þ2

� �� �h i

ω − σT∗ + νρT∗/ κ + ηT∗ð Þð Þð Þ γ + α βT∗ − 1ð Þ + αβT∗ + 2νϕT∗/ κ + ηT∗ð Þð Þ − ϕνηT∗2/ κ + ηT∗ð Þ2
� �� � ⇒ dD∗

dα

=
T∗ 1 − βT∗ð Þ σD∗ − νρD∗/ κ + ηT∗ð Þð Þ + νηρD∗T∗/ κ + ηT∗ð Þ2

� �� �

ω − σT∗ + νρT∗/ κ + ηT∗ð Þð Þð Þ γ + α βT∗ − 1ð Þ + αβT∗ + 2νϕT∗/ κ + ηT∗ð Þð Þ − ϕνηT∗2/ κ + ηT∗ð Þ2
� �� � ⇒ dD∗

dα

=
T∗ 1 − βT∗ð Þ σκ2D∗ + 2σκηD∗T∗ + ση2D∗T∗2 − νρκD∗

� �
/ κ + ηT∗ð Þ2

� �

ω − σT∗ + νρT∗/ κ + ηT∗ð Þð Þð Þ γ + α βT∗ − 1ð Þ + αβT∗ + 2νϕT∗/ κ + ηT∗ð Þð Þ − ϕνηT∗2/ κ + ηT∗ð Þ2
� �� � :

ð40Þ
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dT
dt

= αT 1 − βTð Þ − γT − ϕCcT ⇒ dT
dt

= T α − αβT − γ − ϕCcð Þ⇒ dT
T α − αβT − γ − ϕCcð Þ

= dt⇒ 1
α − γ − ϕCcð Þ

1
T

+ αβ

α − αβT − γ − ϕCc

� �

= dt⇒ 1
α − γ − ϕCcð Þ ln T − ln α − αβT − γ − ϕCcf g

= t + k⇒ α − αβT − γ − ϕCc

T
= et γ+ϕCc−αð Þe−k α−γ−ϕCcð Þ ⇒ T

= α − γ − ϕCc

et γ+ϕCc−αð Þe−k α−γ−ϕCcð Þ + αβ
:

ð45Þ

By taking limit t⟶∞, we obtain

lim
t⟶∞

T tð Þ = 0: ð46Þ

So, tumor cells converge to zero when the number of
CD8+ T cells remains constant. The number of CD8+ T cells
will remain constant regardless of the number of tumor cells.
As a consequence, CD8+ T cells will continue to destroy can-
cer cells without diminishing, and tumor cells will converge to
zero over a period of time.

2.1.9. Convergence of CD8+ T Cells When Tumor Cells are
Constant. We use the number of tumor cells as a constant to
find the convergence of CD8+ T cells. For making tumor cells
constant, surgery or other treatments can be applied. So, we
take T = Tc and substitute it into Section 2.1.2, yielding

dC
dt

= νTc − ηCTc − κC⇒ dC
dt

= νTc − ηTc + κð ÞC⇒ dC
dt

+ ηTc + κð ÞC
= νTc:

ð47Þ

By taking limit t⟶∞, we obtain

lim
t⟶+∞

C tð Þ = νTc

ηTc + κ
: ð48Þ

This means that as the number of tumor cells grows, so
will the number of CD8+ T cells. Because in the presence of
tumor cells, dendritic cells become active and stimulate CD8
+ T lymphocytes. When CD8+ T cells destroy cancer cells,
the number of tumor cells decreases, and the CD8+ T cells
become inactive. As a result, CD8+ T lymphocytes will decline
as tumor cells decline.

2.1.10. Relation among State Variables. Finally, to discuss the
qualitative behavior of our model, we simulated the model to
obtain phase portraits. The nonlinear behavior is shown in
Figure 1.

Figure 1(a) depicts the relationship between CD8+ T
cells and tumor cells. The initial point, the number of

CD8+ T cells, and the number of tumor cells were 500 and
10,000, respectively. Then, CD8+ T cells start to increase to
compensate for the tumor cell increase. When the number of
tumor cells reaches its peak at 130 days, tumor cells begin to
decrease, but CD8+ T cells are still increasing.When the num-
ber of CD8+T cells reaches its peak at 160 days, then they start
to decline (see Figure 2(a)).With the decrease of CD8+ T cells,
tumor cells begin to increase again.

Dendritic cells proliferate rapidly in response to tumor cell
development in the human body, as shown in Figure 1(b).
After a period of time, dendritic cells continue to increase
slowly in response to tumor cell growth. When the number
of tumor cells reaches a critical level, the number of tumor
cells and dendritic cells both begins to decline.

Figure 1(c) which is drawn for different sets of initial
values represents the convergence of state variables.

2.2. Numerical Simulations. For analyzing mathematical
model, we have used MATLAB (R2018a). The system has
been solved by the Runge-Kutta method using the values
of parameters from Table 1 which was taken from [7, 9, 15].

In human body, normal range of CD8+ T cells is 150 to
1000 per mm3 [25], so the mean of this range Cð0Þ = 500
cells/mm3 is assumed as initial value of CD8+ T cells.
Furthermore, the mean of normal range of dendritic cells
is 10 × 106 cells/L [26]. Hence, Dð0Þ = 10 cells/mm3 is con-
sidered as initial value of dendritic cells. Since we are show-
ing the effect of tumor cells for first 1 year so, Tð0Þ = 10000
is taken as initial value of tumor cells and graphical repre-
sentation displays the behavior of the cells for 365 days.

Firstly, in Figure 2(a), the solution of the system of non-
linear ordinary differential equation has been illustrated
which shows the behavior of tumor cells and immune cells.
Here, tumor cells are increasing gradually up to 60 days,
and the number of cells reaches to 13 × 104. From day 61,
behavior of tumor cells is significantly changed as tumor
cells start to increase rapidly and attain peak at around 130
days with the number of cells 20 × 105 approximately. Then,
it starts to decrease rapidly. After that, tumor cells again
make an increase and decrease like a wave as shown in the
figure but amplitude is lower than previous wave.

At the same time, CD8+ T cells are increasing slowly till
60 days and a number of cells become almost 3 × 104. From
day 61, CD8+ T is showing a rapid growth and obtains its
peak at around 160 days with the number of cells 7 × 105
approximately. Then, it begins to reduce slowly and again
make an increase where increasing and decreasing are not
as higher as previous increase and decrease. From the
dynamics of dendritic cells, it can be seen that from first
day to 80 days, changes of dendritic cells are not noticeable.
After day 80, cells are changing significantly up to 200 days.
After that, a number of cells become almost unchanged.

Figure 2(b) shows how tumor cells alter when the tumor
growth rate α changes. There is no effect of variations in α
on number of tumor cells up to 40 days. Tumor cells rise
after 40 days as the tumor growth rate α increases, and the
peak gets larger. Variations in α have no effect on tumor cells
from day 142 to 152, and then, they decrease somewhat as α
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rises. The number of cells stays constant for various values of
α from day 205 to 215 and then starts to climb as α rises.

Figure 2(c) illustrates the effect of increasing the tumor
growth rate α on CD8+ T cells. From day one to day 50, the
number of cells stays constant, and there is no impact of
increasing α on CD8+ T cells. For an increase in tumor growth
rate α, the number of tumor cells increases after day 50. The
number of cells becomes invariant for fluctuations in α from
day 200 to 240 and thereafter rises with increases in α.

Variations in α have little effect on dendritic cells, as seen in
Figure 2(d). However, owing to an increase in α, they are fluctu-
ated fromday 80 to 190, and themaximumnumber of cells rises.

Variations in ν had no influence on the quantity of
tumor cells from day 1 to day 80, as shown in Figure 3(a).
After that, tumor cells vary significantly for variation of acti-
vation rate of CD8+ T cells ν because of dendritic cells.

Figure 3(b) shows that the number of CD8+ T cells
remains constant from day 1 to day 30 regardless of ν fluc-
tuation. After day 30, the number of CD8+ T cells begins
to rise modestly in response to a small increase in ν. For
any value of ν, the number of cells becomes the same at
around 160 days and then decreases as the value of ν

increases. At 260 days, the number of cells becomes constant
for whatever value of ν and then begins to rise gradually.

From Figure 3(c), it can be seen that there is no effect
on number of dendritic cells for the variation of ν from
day 1 to day 70. Following that, as the value of ν climbs,
the number of dendritic cells falls, reaching a new peak for
each value of ν.

Figure 4(a) shows that the number of tumor cells
remains constant from day 1 to day 50 regardless of the
tumor cell killing rate ϕ by CD8+ T cells. The number of
tumor cells grows as the value of ϕ increases.

We can see from Figure 4(b) that the adjustment in ϕ has
no effect on CD8+ T cells from day 1 to day 70. The number
of cells then begins to shift considerably in response to var-
iations in ϕ.

Figure 4(c) demonstrates that for the first 80 days, den-
dritic cells stay unaltered in response to changes in ϕ, but
after 80 days, it begins to shift somewhat. When the value
of ϕ varies, the peak of dendritic cells shifts.

2.3. Results and Discussion. Lung cancer is the second most
prevalent malignancy in both men and women among all
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Figure 1: (a) Relation between tumor cells TðtÞ and CD8+ T cells CðtÞ. (b) Relation between tumor cells TðtÞ and dendritic cells DðtÞ. (c)
For different sets of initial values, state variables are converging.
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forms of cancer. Overall, in man’s lifetime, lung cancer is
around 1 in 15 cancer patients. Women, on the other hand,
account for around one in every fifteen cancer patients.

In lung cancer, initially tumor cells start to increase and
stimulate dendritic cells. Then, dendritic cells activate CD8+
T cells. As a consequence, CD8+ T cells grow as much as den-
dritic cells rise and dendritic cells increase as much as tumor
cells increase. After a particular amount of time, tumor cells
start to decline due to dendritic cells and CD8+ T cells (see
Figure 2(a)). When a number of dendritic cells and CD8+ T
cells start to be inactive, so tumor cells again increase.

For a minor fluctuation of α, the quantity of tumor cells is
not altering significantly. There is no need to fear if tumor

growth rate α of a lung cancer patient varies. Because after a
set period of time, the number of tumor cells will be similar
for whatever growing rate of tumor (see Figure 2(b)). Since a
minor variation in tumor growth rate α cannot produce a
major change in number of tumor cells, thus for this variation,
dendritic cells will not be influenced considerably (see
Figure 2(c)), because dendritic cells are depending on quantity
of tumor cells. As a result, the number of CD8+ T cells will not
be changed significantly for the change of α (see Figure 2(d)).

The number of CD8+ T cells increases as ν rises (see
Figure 3(b)). We know that CD8+ T cells are immune cells
that kill tumor cells; they are useful in the battle against
tumor cells. As a result, the number of tumor cells reduces
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Figure 2: (a) Dynamics of tumor cells, CD8+ T cells, and dendritic cells. For visible of dendritic cells, scaling was applied. (b) Tumor cells
are increasing gradually for increase of α. (c) For the increase of tumor growth rate α, CD8+ T cells are gradually increasing. (d) The peak of
dendritic cells is increasing rapidly for increase of tumor growth rate α.
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as the number of CD8+ T cells grows (see Figure 3(a)). Den-
dritic cells are activated for tumor cells. So, they begin to
diminish when the number of tumor cells decreases with
the growth of ν (see Figure 3(c)).

Since ϕ represents the decreasing rate of tumor cells by
CD8+ T cells, the number of tumor cells reduces as ϕ rises
(see Figure 4(a)). The amount of tumor cells determines the
activation of dendritic cells. As a result, dendritic cells will
reduce in quantity as tumor cells decrease (see Figure 4(c)),
and the activation of CD8+ T cells will be dependent on the
amount of dendritic cells. As a consequence, the number of
CD8+ T cells will reduce as the number of dendritic cells
diminishes (see Figure 4(b)).

According to [9], dendritic cells become active in the
presence of tumor cells. Then, they will activate CD8+ T cells.
CD8+ T cells fight against tumor cells. When CD8+ T cells
become active, they start to fight against tumor cells. A small
amount of dendritic cells also kills cancer cells. That is similar
to our findings.

3. Treatment of Non-Small-Cell Lung Cancer:
Modeling Approach Using Surgery
and Chemotherapy

Lung cancer is themost frequent cancer amongmales in terms
of incidence and death, and it is the third most common dis-
ease among women in terms of incidence and mortality,
behind only breast cancer. Women’s lung cancer death rates
have been growing for decades and are just now starting to sta-
bilize, in contrast to men’s lung cancer mortality rates, which
have been dropping for more than 20 years [27]. If lung cancer
is discovered, more tests are performed to determine the
extent of the disease’s spread throughout the lungs, lymph
nodes, and the rest of the body. This is referred to as staging.
The kind and stage of lung cancer determine the treatment
options available to patient. There are two types of lung can-
cer. First one is small-cell lung cancer and second one is
non-small-cell lung cancer. We are using surgery and chemo-

therapy as a first-line treatment option for non-small-cell lung
cancer in stages I and II [28].

3.1. Formulation of the Mathematical Model. To formulate a
mathematical model, we assume that some cancer cells may
be left behind following surgery. As a result, cancer may
resurface. Chemotherapy following surgery can assist to
reduce the chance of non-small-cell lung cancer (NSCLC)
recurrence in patients with early stage. We assume that 5%
of tumor cells remain after surgery and 1% remain after che-
motherapy, and surgery is performed after 100 days of
tumor growth. Chemotherapy is usually started within eight
weeks following surgery, so we will start on the 128th day.
We also assume that 2% of CD8+ T cells and dendritic cells
will be destroyed by chemotherapy. We consider that che-
motherapy works instantly for our numerical solution which
is the limitation of our model.

Hence, here is our mathematical model for treatment of
NSCLC:

dT
dt

= αT 1 − βTð Þ − γT − ϕCT − ξ100T − ψ128T ,

dC
dt

= νT − ηCT − κC − τ128C,

dD
dt

= μ + σDT − ρCD − ωD − ζ128D,

ð49Þ

where the destruction rates of tumor cells due to surgery on
day 100 and chemotherapy on day 128 are denoted by ξ100
and ψ128, respectively. τ128 and ζ128 represent the killing
rates of CD8+ T cells and dendritic cells by chemotherapy
on day 128, respectively.

3.2. Numerical Simulations. The impact of various treatment
approaches on tumor cells is shown in Figure 5. Immune cells
are unable to suppress tumor development in the absence of
any treatment options.

Table 1: Parameter values and their descriptions.

Descriptions of the parameter Notations Values

Tumor growth rate α 5:14 × 10−2 day-1

1/β is carrying capacity β 1:02 × 10−9

Tumor cells kill by dendritic cells γ 1 × 10−6 day-1

Tumor cells killing rate by CD8+ T cells ϕ 1 × 10−7 cells-1 mm3 day-1

Activation rate of CD8+ T cells for the interaction of dendritic cells and tumor cells ν 0.01 cells mm-3 day-1

Inactivation rate of CD8+ T cells by tumor cells η 3:42 × 10−10 day-1

Death rate of CD8+ T cells κ 2 × 10−2 day-1

Constant source of dendritic cells μ 4:8 × 102 cells mm-3 day-1

Proliferation rate of dendritic cells due to tumor cells σ 1 × 10−7 day-1

Inactivation rate of dendritic cells by CD8+ T cells ρ 1 × 10−8 cells-1 mm3 day-1

Death rate of dendritic cells ω 2:4 × 10−1 day-1
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Tumor cells decrease in the presence of a large number
of CD8+ T cells and dendritic cells and then rise when these
immune cells decline. When surgery is performed on the
100th day, the number of tumor cells immediately decreases
and 95% of them are removed. If no therapy is given without
surgery, the remaining 5% of tumor cells develop rapidly
and act like tumors that have not been treated. When the
first round of chemotherapy is given on day 128 following
surgery, the remaining tumor cells rapidly decline. However,
1% of tumor cells persist in the human body after surgery
and the first chemotherapy dosage. As a consequence,
tumors begin to be developed once again. If a patient misses
the first dosage of chemotherapy after surgery for whatever
reason and takes the second dose, 5 percent of tumor cells
grow fast after surgery and abruptly decline after 156 days

due to the second dose of chemotherapy, and then, they
begin to grow again. Patients who take both dosages feel bet-
ter than those who just take one. Under this situation, tumor
cells are in control up to 250 days and then develop fast. Fol-
lowing surgery, we use three rounds of chemotherapy to get
the greatest results. This treatment method shows that tumor
cells can be controlled for up to 350 days. The doctor will then
decide what to do.

Figure 6 shows how CD8+ T cells change as a result of var-
ious treatment methods. CD8+ T cells rise without treatment
when the number of dendritic cells in the body increases.

When 95 percent of tumor cells are removed by surgery on
day 100, the number of CD8+ T cells decreases significantly
due to a decrease in dendritic cells. If the patient does not
get chemotherapy after surgery, CD8+ T cells will begin to
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Figure 3: (a) Tumor cells are changing considerably for variation of ν. (b) CD8+ T cells are slightly increasing for little rise of ν. (c) Peak of
dendritic cells is changing because of variation of ν.
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increase and fluctuate again. The decline in CD8+ T cells will
remain if he takes his first dose of chemotherapy following
surgery because chemotherapy cannot identify cancer cells
and fast-growing immune cells, but they will begin to rise after
day 225 if the patient does not take any chemotherapy after the
first dose. Patients who get a second dosage of chemotherapy
after missing the first dose will have fewer CD8+ T cells after
surgery than those who received the first dose. If the patient
receives both doses of chemotherapy after surgery, his CD8+
T cells will be lower on day 250 than if he receives just one
dose, and then, they will begin to increase. The reduction of
CD8+ T cells will be continued for up to 350 days if 3 doses
of chemotherapy are taken following surgery.

Dendritic cell dynamics are shown in Figure 7 for vari-
ous treatment methods. Dendritic cells become active when

they come into contact with tumor cells; hence, dendritic
cells multiply in proportion to the number of tumor cells.
Dendritic cells reduce dramatically on day 100 after surgery,
which eliminates 95% of tumor cells, but grow again if the
patient receives no additional therapy. If the patient receives
his first dosage of chemotherapy after surgery, dendritic cells
will decline again on day 128 and then gradually rise. If the
patient does not get more therapy, dendritic cells will con-
tinue to develop and fluctuate. A patient who misses his first
dose and takes a second dose on day 156 will have a dra-
matic decline in dendritic cells, and if he does not take future
doses, he will have fewer dendritic cells from day 150 to 300
than a patient who takes the first dose after surgery. From
days 128 to 350, the patient who receives both doses will
have fewer dendritic cells than the patient who receives just
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Figure 4: (a) For variations in ϕ, tumor cells change dramatically. (b) Variation in ϕ causes CD8+ T cells to change significantly. (c) Because
of variations in ϕ, the peak of dendritic cells is altering.
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one dosage, and the number of cells will be larger if he does
not receive more treatment. If the patient has three chemo-
therapy treatments after surgery, the number of dendritic
cells will not rise considerably for up to 365 days.

3.3. Results and Discussion. Surgery and chemotherapy are the
two most popular treatment options for non-small-cell lung
cancer in its early stages.When tumor cells form in the human

body, they quickly multiply, and when surgery is used to
eliminate them, they quickly diminish. 5% of tumor cells per-
sist in the patient’s lung after surgery. Chemotherapy destroys
rapidly developing cells, so if it can be taken after surgery, the
outcome will be better. Otherwise, the tumor cells that remain
will proliferate anew (see Figure 5).

Dendritic cells stimulate CD8+ T lymphocytes, and
tumor cells activate dendritic cells. As a result, when surgery
is performed, the number of tumor cells drops dramatically.
Dendritic cells diminish as a result of not being able to come
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Figure 6: Dynamics of CD8+ T cells for various treatment
methods.
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into contact with as many cancer cells as before, and CD8+
T cells fall as a result of dendritic cell depletion. Tumor cells
reduce after each dose of chemotherapy, and as a result,
CD8+ T cells and dendritic cells drop as well. Chemotherapy
is unable to distinguish between fast-growing healthy cells and
cancer cells, which contributes to the loss of CD8+ T cells and
dendritic cells (see Figures 6 and 7).

Figure 8 depicts the impact of different treatment start
days where surgery and three doses of chemotherapy were
used as treatment method. The graph demonstrates that if
the treatment begins on day 100, the tumor size may be
managed for up to 325 days. However, if treatment begins
on day 120 or 150, the number of tumor cells can be con-
trolled for a longer period of time than if treatment begins
on day 100.

But in this case, the patient may not survive for 120 or 150
days after developing non-small-cell lung cancer because the
survival rate of non-small-cell lung cancer is very poor. Fur-
thermore, Table 2 shows that tumor cell toxicity differs
depending on the start date of various treatment approaches.
Tumor cell toxicity will be lower in a patient who receives
three doses of chemotherapy or two doses of chemotherapy
after surgery, or in a patient who receives just surgery as a
treatment option and begins treatment on day 100, than in a
patient who begins treatment on day 150, which indicates that
if any of these treatment methods are applied to a patient on
day 100, then he will be more beneficial than the patient
who starts any of the treatment methods on day 150. Even if
the patient begins treatment on day 100, he will not benefit
from this treatment if he only receives the first doses of che-
motherapy after surgery, or if he skips the first dose and
receives a second dose after surgery.

As shown in Table 2, if treatment begins on day 100,
three doses of chemotherapy following surgery had the least
tumor toxicity of all treatment options. As a result, it might
be considered the finest treatment choice. We can observe
that the tumor toxicity is growing if this treatment is started
after the 100th day. Hence, treatment should begin within
100 days. Otherwise, the cancer has the ability to spread to
other parts of the body.

4. Conclusions

Lung cancer is by far the most common cause of cancer
mortality in both men and women, accounting for over
25% of all cancer fatalities. It kills more people each year
than colon, breast, and prostate cancer combined. We used

mathematical analysis and numerical simulations to analyze
our mathematical model.

At first, in our mathematical analysis, basic reproduction
represents whether tumor cells will exist or not. Positivity
and boundedness analyses reveal that our model’s solution is
both positive and bounded. Characteristic with respect to α
is showing that equilibrium point is changing for change in
tumor growth rate. Then, we have tested convergence of
tumor cells and CD8+ T cells by taking CD8+ T cells and
tumor cells as constant, respectively, and we observed that
tumor cells are converging to zero and CD8+ T cells are
increasing for growth of tumor cells.

Then, we performed numerical simulations and discov-
ered that the amount of tumor cells fluctuates depending
on how many immune cells are present. When CD8+ T cells
and dendritic cells both increase, tumor cells decrease. How-
ever, the number of tumor cells outnumbers both CD8+ T
cells and dendritic cells. As a result, these immune cells are
powerless to stop tumor cells from multiplying. Hence, we
used the therapy option to keep this uncontrollable growth
under control. The treatment approaches were tested on
non-small-cell lung cancer for stages I and II, which is a kind
of lung cancer. The treatment choices include surgery and
chemotherapy. When three doses of chemotherapy are given
after surgery as a treatment option, we have seen an excellent
response. Then, for 100, 120, and 150 days, this treatment
method was used, and we discovered that the patient should
begin his treatment within 100 days. Otherwise, his chances
of surviving will be reduced.

Therefore, from our findings, we can conclude that sur-
gery on day 100 is insufficient for recovery, so three doses
of chemotherapy following surgery are the best treatment
choices with the least tumor toxicity when compared to
alternative treatment options.

In the future, we will use best control in our study to
demonstrate how tumor cells may be reduced.
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Table 2: Toxicity of tumor cells for starting treatment on days 100 and 150.

SL Treatment strategies
Toxicity of tumor cells

(starting treatment on day 100)
Toxicity of tumor cells

(starting treatment on day 150)

1 Surgery+chem1+chem2+chem3 4:8251 × 107 6:3816 × 107

2 Surgery+chem1+chem2 5:0792 × 107 6:4190 × 107

3 Surgery+chem1 8:5408 × 107 7:6852 × 107

4 Surgery+chem2 8:8090 × 107 7:8324 × 107

5 Surgery 11:5120 × 107 11:7840 × 107
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