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Networks are prevalent in real life, and the study of network evolution models is very important for understanding the nature and
laws of real networks. The distribution of the initial degree of nodes in existing classical models is constant or uniform. The model
we proposed shows binomial distribution, and it is consistent with real network data. The theoretical analysis shows that the
proposed model is scale-free at different probability values and its clustering coefficients are adjustable, and the Barabasi-Albert
model is a special case of p=0 in our model. In addition, the analytical results of the clustering coefficients can be estimated
using mean-field theory. The mean clustering coeflicients calculated from the simulated data and the analytical results tend to
be stable. The model also exhibits small-world characteristics and has good reproducibility for short distances of real networks.
Our model combines three network characteristics, scale-free, high clustering coefficients, and small-world characteristics,
which is a significant improvement over traditional models with only a single or two characteristics. The theoretical analysis
procedure can be used as a theoretical reference for various network models to study the estimation of clustering coefficients.
The existence of stable equilibrium points of the model explains the controversy of whether scale-free is universal or not, and

this explanation provides a new way of thinking to understand the problem.

1. Introduction

Since the emergence of two landmark network models, the
small-world model by Watts and Strogatz (WS model) [1]
and scale-free network model by Barabasi and Albert (BA
model), research on network models is rapidly increasing
[2]. Network models used in data research include the online
social networks [3], mail networks [4], biological networks
[5], annotated networks [6], and online dating market [7].
Recently, complex networks have been extensively evaluated
and applied in several applications by physicists [8-15].
Most of these networks have been shown to achieve a sta-
tionary state and become scale-free. A common conclusion
in network research is that either most or all real-world
networks are scale-free [16-21], and the degree, k, of this
network follows power law distribution. Besides, this scale-
free network has mainly been employed in network science
[2, 22-25]. Moreover, studies have evaluated how a scale-
free structure influences system operation [20-27]. Most
studies consider networks to be scale-free and small-world.

But some scholars have found that some networks are not
[28-30]. Golosovsky reports that a network of citation distri-
butions is not scale-free [31]. Some subnets of scale-free net-
works are sampled by Stumpf et al. These networks are also
not scale-free [32].

Complex network models can describe a large number of
systems. The growing network models have the following
characteristics: clustering coefficient, average path length,
community structure, and degree distribution. Generally, it
has been postulated that the scale-free system can be gener-
ated using the preferential attachment mechanism [8].
Besides the BA model, representative development models
such as the Price model with adjustable power rate
[33, 34], the model proposed by Holme and Kim (HK model)
with adjustable clustering coefficient [35], the fitness model
based on individual differences [36], and the local-world
evolving network model based on local information [32]
can be used to describe the preferential attachment mecha-
nism. Moreover, many real networks have been shown to
have some common features, such as power law degree
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distribution, small average shortest path length, and high
clustering. However, these classical models do not fit all the
three properties. For example, the WS model has a small
average shortest path length and high clustering with no
power law degree distribution, whereas the BA network
exhibits low clustering [37-41].

To some extent, the numerical simulation of HK model
shows a small average path length, high clustering, and
power law distribution. However, they do not provide ana-
Iytical results due to model complexity [35]. Many network
models have provided simulation experiment results. How-
ever, few studies have evaluated the theoretical perspectives
of such models.

The basic assumption derived from the BA and HK
models is that, when each new node joins the network, its
m edges link to the old nodes. At the initial moment, the
new node’s degree is constant, m, which is an assumption
shared by many other models. Moreover, the initial distribu-
tion of the WS model is uniform. However, this is not the
case in real networks. For instance, at the initial moment,
there could be different numbers of one’s friends in the
social network, new paper references in the citation network,
and new paper coauthors in the scientific cooperation net-
work. The Price model has shown reference number distri-
bution [33], which can be thought of as degree distribution
of new nodes at the initial time. Findings from this study
indicate that the distribution is neither uniform nor con-
stant, and with an increase in reference number #, the ratio
of papers promptly dropped. Given that scale-free networks
have been extensively used for numerical simulations and
experimentation purposes [2, 18, 42-44], studies on genera-
tion mechanisms of scale-free structures are very meaning-
ful. Initial distribution is the foundation of the scale-free
network model that influences network evolution and devel-
opment. Therefore, it is important to develop a model whose
initial distribution degree agrees with the existing network.

In this study, the designed model is evaluated to attain a
binomial distribution, which agrees with some real network
systems. We aimed at developing a model with all three
properties: power law degree distribution, small average short-
est path length, and high clustering. Our theoretical analysis
process can provide a feasible reference for this kind of work.

The main contents are organized in the following way:
first, we show the evolution rules of the network model; sec-
ond, we establish the differential equations using probability
theory and mean-field theory and prove that the network
degree distribution is consistent with power law distribution;
then, we prove the existence of the limit of the network aver-
age clustering coefficient and derive the analytic expression;
finally, we verify the theoretical results by numerical simula-
tions, compare them with some real networks, and summa-
rize and analyze the conclusions.

2. Network Model

This model is based on the BA model, but for each time ¢,
the number of new edges given by the newly added node is
a random variable on the basis of binomial distribution. k;
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denotes the degree of node i. Network development rules
are as follows:

(1) Initial moment: the network contains m,, points, and
it is fully connected

(2) Growth: at time t > m,, a new point v is added to the
network

(3) Preferential attachment (PA): v connected to an
existing node i following the probability propor-
tional to its degree

(4) Triad formation (TF): a node j is randomly selected
from the neighbors of i and connected via the new
node v according to probability p

(5) Steps (3) and (4) are repeated m times

The network evolution model is shown in Figure 1. Our
model produces the initial binomial distribution. Besides,
each new node averagely introduced m(1 + p) edges; there-
fore, the average network degree was 2m(1 + p).

When connection probability p = 0, it degrades to the BA
model. p is the model control parameter. It can adjust the final
clustering coefficient of the network model. The larger p is, the
greater the clustering coeflicient is. These results were verified
by theoretical analysis and numerical simulation.

The PA mechanism is following the probability propor-
tional to its degree, because people are more likely to con-
nect with people who are social. The TF mechanism is
designed to fit our social postulate that we are always more
likely to know a friend of our old friend than a person who
has nothing to do with us, and Newman provided evidence
for this mechanism [10].

3. Degree Distribution

Degree distribution of the model is analyzed using the
mean-field theory.

Proposition 1 (degree distribution conforms to power law
distribution). At time t, when a new node joins the network,
degree change probability of node i, which is caused by each
connection operation can be divided into two aspects: the prob-
ability of being directly connected through the new point (PA)
and being connected due to its neighbors (TF). Therefore, it is
= tki + ZP tks i = i + P = ki >

Yiik; Yiik; k, 2(1+p)ymt  2(1+p)mt 2mt

(1)

where F; represents the neighbor set of node i.
Moreover, the equation can be obtained by repeating this
process m times. So,

oki(t) _ ki

TR 2)
ki(t) =m(1 +p).
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FIGURE 1: Diagram of network evolution model.

k; (t) can be obtained by solving equation (2):

kﬂ):fgggb@.
So, one can get
Hh<@:P<mu;£hﬁ<k>
=P(t;> k'zle(z +p)’t)
= I-P(t; < k’m*(1 +p)’t).

(4)

And point addition is uniform, that is, probability P(t;)
=1/t.

Then, one could obtain the degree probability density
function

3P(k; < k)

P(k) = —= =2m?(1+p)’k™. (5)

This shows that our model conforms to power law
distribution.

4. Clustering Coefficient

The definition of clustering coefficient is based on calcula-
tion formula of reference [40]:

2,
iy ©)

where E; represents the number of direct edges connected
between all neighbors of node i.

One notes pij(t) the probability that node j relates to
node i at time ¢. Without loss of generality, one can assume
that j > i and obtain

k(1.
pyj(t) = mm(t;) = 12(2) - ”;(1 Zf])) : @)

Proposition 2 (limit of the average clustering coefficient
exists). We consider the change in clustering coefficient of
node i at time t. This change involves two events. First, when
new node v connects to node i by PA rule and its x neighbors
by TF rule. Second, when node v connects to one neighbor of
node i by PA rule, and node i is randomly chosen by TF rule.
The second event is then said to have occurred x times, which
makes it a binomial distribution.

The probability that a neighbor of i is connected by PA
can be calculated as follows:

ZseFiks — j;kspisdts — E
Yok 2m(L+p)t At

(8)

Then, probability of the first event is

X 1-x
p,(f>=LCfH kiﬂ 1—kiﬂ .9
2(1+p)t 4t 4t

The change in clustering coefficients due to the first event

(1) Z(Ei + x) 2x 2C;
AC = —~—1 - —(C; - . 1

ki(k;+ 1)

The probability that PA connects to the neighbor of node i
and node i is connected using TF at the same time is

ko 1 Pk,
f = ! . 11
;Ff’ Sk 2m(T+p)t (1)

Then, the probability of the second event is

X I-x
S D LU N ST L
Px Cm<2m(1+p)t> <1 mirpi) 12

The change in clustering coefficients caused by the second
event is

AC)(C?: 2(E; +x) _C,- 2x+ k;j(k; — 1)C; e
(ki +x)(k;+x—1) (ki +x)(k;+x—1)

(13)

Due to this pk,(2m(1 + p)t) < 1, chances that the second
event occurs more than twice are small. For the convenience
of subsequent analysis, only the case x <1 is considered in
the calculation. These results imply little effect on this approx-
imation but greatly facilitate the analysis.

Based on the above analysis, one can get

O Y pach v Y pPack.

x=0 x=0
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FIGURE 2: The initial degree distribution of new nodes: (a) model result (m =10); (b) data from the online dictionary entry hyperlink
network [45]; (c) physicians trust network [46]; (d) student interpersonal network [47].

Subsequently, by inserting (3) ((9)-(13)) into (14), one
obtains (15) after some simplify operations,

ac__ mpen pVE
dt m(p+ Dt + /T ' m(p+1)>°t/t+ (p+ Dt /E,
In ¢t
rmm ) Y D v AT

(15)

The initial condition is

m?(In t;)°(1 +p)°

PijPPi
XY

m+mp m+mp 8ti(m +mp — 1)
+ 2P
(I+p)(m+mp—1)’
(16)

Analytical solutions can be obtained from (15) by solution
theory of nonhomogeneous linear ordinary differential equa-
tions. The results show that some terms in the analytical solu-
tion are very small relative to the main part, and these terms
are difficult to integrate in the follow-up, so we can approxi-

mate by ellipsis. For t >/t > Int(Int)*>Int,t> 1, these

smaller items are discarded. Therefore, the analytical solu-
tions could be rewritten as

_ 2p(m+mp+ 1)2 2mp 2mpn/t
Ci(t) = Ap+ )(m+mp—1) (J)+ T\/t—i(b)
m?(Int)°(1+p)’(m+mp+1)° U,

8At,(m+mp—1)

where A= (((m +mp)\/tl\/E;) + 1)2.
Let us note the three terms in (17): J;, J,, and J;.
Then, average clustering coefficients were calculated using

the formula

b f;]ldt,-+f;]2dti+ﬁ]3dti.
t

(18)

clt) = f;Cigt)d

If we let u= ./, then, analytical results of ﬁ]ldti + J";

J,dt; can be obtained easily.
Consequently, we used the mean value theorem for inte-

grals to approximate j;]3dti since we could not get the ana-

Iytical result.
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FIGURE 3: Power law distribution of network: (a) distribution of simulation data (m = 2) and power law exponent value « = —3; (b) data from
the yeast protein network [48], & = —2.87; (c) Erd8s network [49], & = —3.228; (d) bible vocabulary network [50], « = —1.907

! _mA(1+pY(m+mp+1)° [* (Int,)? ~ Hence, it can be rewritten as
L]3dti - §(m+mp—1) L At; dt; <Letu - \/E)
_m(1 +P)2(m+mp+1)2J” Su(lnuy’ : m(1+p)*(m+ mp+ 1)’[(In 1)’ ~2Int+2]
8(m+mp—1) 1 [(m+mp)f+u]2 J1I3dti: 8(m + mp— 1)(m + mp)?
_ m?(1+p)°(m+mp+1)° [t(l Y —2tInt+2t - 2]’ (20)
8[(m + mp) \/_+£‘,] (m+mp—

(19) However, substituting them into (18), one obtains

where & € (1,/1), V/t > &(t — 00).

_2 myErmpyi+1\ 2l tEp+ )P 2mt(p+ 1)’
C(t)_§<2t_2ﬁ+4mt@+l)ln(ﬁ(m+mp+l)>+mﬁ+mp\ﬂ+1_ m+mp+1>
(M :

CL2mp1y 2miRpe1)t 5y [(mVE+mpyE+l 21
33t 5t><t+4m\[@+l)< f) 1+ m+mp+1  m/t+mpy/t+1 6mtp+1) ln<ﬁ(m+mp+1)>> 1)
121(m+mp+1) (t(nt)* - 2¢(In t) + 2t - 2)

240t (m + mp)?
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To investigate the network’s stable clustering coefficient
when time is sufficiently large, the limit of (21) is calculated as

C= lim C(t) =

t—00

4m?p(p + 1)°[5+ 7m(p + 1)|D-2p [ 14m?(p + 1)° + 3m(p + 1) - 1]
(p+1)(m+mp—1)

>

(22)

where D=In (m+mp+ 1) —1In (m + mp).

Therefore, the network’s clustering coefficient has a stable
theoretical value, which is only correlated to m and p. The
clustering coefficient of the BA model tends to 0 with time,
and the results of our model are more in line with the high
clustering property of the real network compared with the
classical BA model. This feature makes the local connection
between the network nodes closer, which is beneficial to the
stability of the network.
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5. Simulation and Result Verification

Simulation was performed to validate the effect of the esti-
mated results obtained from theoretical analysis. These sim-
ulation results are based on the average of 1000 networks
constructed from the model, and the number of nodes in
each system is 10000.

The probability that the newly added nodes connect the
X nodes is calculated as

P(X)=Cy"p* (1 - p) . (23)

That is, as shown in Figure 2, degree distribution of the
recently added nodes at the initial moment conforms to
binomial distribution. Compared to the hyperlink network
of online dictionary entry [45], physicians-trust-relationship
network [46], and the student dormitory interpersonal rela-

tionship network [47], the model results revealed that node
distribution exhibits similar characteristics with binomial dis-
tribution when they initially enter the networks. Whether to
establish a friend relationship is basically a random event
obeying uniform distribution. Thus, the number X of friend-
ship relationships established between the new person and
the roommate follows a binomial distribution (23). This indi-
cates that the model agrees with real networks. This also con-
firms the result of (23). Besides, most development models,
such as the BA and WS models, are improved through this
property. The initial node distribution generated by these clas-
sical development models is either constant m distribution or
uniform distribution.

Simulation results in Figure 3 elucidate on our analytical
findings. Distribution degree under diverse probability values
meets the scale-free characteristic; when p =0, the model
degenerates into the BA model. Besides, as probability p
increases, the model’s distribution is shifted up by 2In(1 + p)
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TaBLE 1: Comparison of average path length between real and simulation networks.

Network N <k > L (real) (m, p) L (model)
Physicians network [46] 241 9.11 2.49 (3, 0.14) 2.54
Interpersonal network [47] 217 24.63 2.33 (8, 0.54) 2.11
Yeast protein [48] 1870 2.44 7.07 (1, 0.22) 7.36
Erdds network [49] 6927 3.42 3.79 (1, 0.71) 6.53
Vocabulary network [50] 1773 18.50 3.38 (6, 0.54) 2.74

relative to the BA model’s distribution. Notably, the scale-free
structure has a particular universality in real networks.
Figure 3 shows the yeast protein interaction network [48],
Erdés network [49], and bible vocabulary network [50]. All
of them are approximately scale-free, which is in conformity
with model results.

Scatter points in Figure 4 represent the distribution of all
nodes’ clustering coefficients in the simulation networks.
The line in the middle is given by equation (17). All node
clustering coefficients are around the node clustering coeffi-
cient equation (17) obtained through the mean-field theory.
The binning plot below shows they are consistent in the
trend. The error is a result of some smaller terms that are
neglected in the analytical solution. Clustering coefficients
of all nodes are high, in line with the characteristic revealed
by real networks, but the BA model’s result is that all nodes’
clustering coefficients approach 0.

Figure 5 illustrates the ability to estimate the network’s
average clustering coeflicient using the simulation data and
the analysis result. Over time, the network’s average clustering
coefficient tends to achieve a stable value that is not 0. Changes
in clustering coefficients, obtained from equation (21), numer-
ical integration from (18), or the simulation data, are the same,
and errors between them are minimal. These results are con-
sistent with real network data. For instance, the power grid

network clustering coefficient is 0.08, the C. elegans neural
network is 0.28, while the film actor’s network is 0.79 [1].
Notably, average clustering coefficients of these actual net-
works do not vary widely as the number of nodes increases
or as time changes. Compared with the BA model, the results
clearly show that the proposed model has a greater clustering
coefficient.

Figure 6(c) demonstrates the relationship between the
clustering coeflicient, m, and p. It denotes that the initial
number of friends and the small community’s linking
probability determines the network’s clustering coefficient.
Figure 6(b) shows that the larger the initial number of
friends when each node joins the network, the smaller the
network’s stable clustering coefficient becomes. Conversely,
Figure 6(a) shows that the larger the linking probability in
a small community, the larger the network’s stable clustering
coefficient becomes.

Therefore, the clustering coefficient in these two excep-
tional cases can be calculated as

8m?(5+ 14m)[In (2m + 1) — In 2m] — 56m* — 6m + 1

C =limC= s
m pinl 2m—1

CP :mlim C=0.

—00

(24)
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Small-world is an essential property of real networks,
which means that the average distance between any two points
in networks is very small. Figure 7 shows that as m and p
decrease, the average length decreases, while the distance
remains small. In this study, we use different parameters such
as m and p to simulate the average degree of networks (<k >
=2m(1 +p)) and employed the model to replicate real net-
works. The results show that our model has the same average
shortest path characteristic as BA. Table 1 shows the obtained
results. Average path length (L) of the simulated networks is
very close to that of real networks, with only the Erdés net-
work exhibiting an apparent error. By comparing model sim-
ulation experiments and real networks, our model exhibits
small-world characteristic and it can reproduce the short dis-
tance characteristic of real networks.

6. Conclusion

Many studies have considered the preferential attachment
mechanism to cause scale-free networks. In contrast, non-
preferential attachment is proposed to explain some non-
scale-free network [51-53]. A significant question is how
to generate networks with high clustering coefficient,
small-world, and scale-free characteristics. Findings from
theoretical analysis are of great significance in construction
of complex networks, especially in the design and control
of complex systems [22-25, 54].

Our study presents a network model that has adjustable
clustering coefficients, scale-free, and small-world character-
istics. Notably, initial degree of the nodes caused by our gen-
eration model is binomial distribution. Besides, it is neither a
constant distribution as the BA and HK models nor a uni-
form distribution as the WS model. This feature is more
consistent with actual display of data from existing networks
[45-47]. Therefore, our study provides an alternative way of
studying the evolution model. These results provide a new
train of thought for understanding the degree distribution
of network.

Results from simulation experiments agree with our
analysis results. The changes in clustering coefficients under
various parameter changes can be obtained. Subsequently,
an increase in p increases the clustering coeflicient, whereas
a rise in m gives a contrasting result. At p =0, our model
degenerates to the BA model, so this is a more general model
containing BA model. TF follows each PA in our model, and
the clustering coefficient attained is lower than that of some
real networks, which makes it easy to theoretically analyze
the model. Suppose we want to get a network with a higher
clustering coefficient. In that case, we only need to modify
our mechanism using TF for x times instead of one in our
model. The clustering coefficient between 0 and 1 can be
obtained by adjusting the parameter x, and the distribution
is still scale-free. Nonetheless, this complexity makes the
model inappropriate for theoretical analysis.

Formula (21) shows the analytical relationship between
the clustering coefficient and p and gives the method of
adjusting the clustering coefficient theoretically. The effec-
tiveness of the adjustment is demonstrated in the simulation
section, and the simulation results of the relationship

between p and C are given. Another conclusion is that there
is a limit to the clustering coeficient; that is, it has a stable
equilibrium point. This indicates that the clustering coeffi-
cient will not change with the change of network size after
the network evolution is sufficiently large in time.

Many previous studies have shown the scale-free distri-
bution of real networks while, recently, some different views
have emerged. Broido and Clauset reported that scale-free
networks are rare [15]. They test the universality of scale-
free structure to a large corpus of nearly 1000 network data
sets. They fit the power law model to each degree distribu-
tion and test its statistical plausibility. They find that scale-
free networks are rare, with only 4% exhibiting the strongest
possible evidence of scale-free structure and 52% exhibiting
the weakest possible evidence. The model proposed may
provide an explanation to these contrasting views. We have
showed that the evolution of the network has a stable equi-
librium. The scale-free structure is the final stable state.
But this state only appears when the time is sufficiently large.
Figure 2 shows initial degree distribution, with the network
finally developing to power law distribution. Degree distri-
bution of the network is always in the process of random
evolution. Therefore, for all real network structures currently
being studied, degree distribution is only a certain stage in
the evolution process, rather than the final state of the net-
work with sufficiently large time. Maybe, the limit state of
network evolution is scale-free. Many real networks exhibit
tail power laws and are not strictly scale-free because they
have not yet reached maturity or stability in their evolution.
It is shown that our model can provide a new idea for the
understanding of degree distributions in network research.
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