
Research Article
Nonclassical Parametric Variational Technique to Manipulability
Control of a Serial-Link Robot That Is Used in Treatment of
Femoral Shaft Fractures

Ghazwa F. Abd

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

Correspondence should be addressed to Ghazwa F. Abd; k.abd@uomustansiriyah.edu.iq

Received 31 January 2023; Revised 12 July 2023; Accepted 29 July 2023; Published 28 October 2023

Academic Editor: Waleed Adel

Copyright © 2023 Ghazwa F. Abd. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Robot-assisted intramedullary nailing is a minimally invasive surgical procedure commonly used to treat femur fractures. Despite
its benefits, there are several disadvantages associated with this technique, such as frequent malalignment, physical fatigue, and
excessive radiation exposure for medical personnel. Therefore, it is crucial to ensure that robotic surgery for fracture reduction
is precise and safe. Precise calculation and regulation of the robot’s reduction force are of utmost importance. In this study, we
propose a manipulator that utilises robot assistance and indirect contact with the femur to effectively reduce fractures in the
shaft. The dynamics of the reduction robot are analysed using the implicit function theorem, which allows us to address the
reduced problem. A parametric approach is presented to tackle the initial algebraic constraints, enabling the approximation of
the state-space solution while simultaneously controlling the class of constraints in a multiway manner. This approach
simplifies the problem from an infinite-dimensional one to a finite-dimensional one, leading to an approximate solution
obtained by solving a set of control linear algebraic equations. The proposed robotic-assisted system enhances fracture
repositioning while reducing radiation exposure for both the patient and the medical staff. Through numerical results and their
practical application, we have developed an efficient method that yields positive outcomes.

1. Introduction

In recent years, there has been a growing trend of analysing and
synthesising linear time-invariant control systems in the form
of differential-algebraic equations [1–4]. One significant class
of these systems, known as DAC-SYS (differential-algebraic
control systems), comprises systems controlled by mechanical
differential algebra [5–7]. These systems find wide application
in various fields, including robot dynamics, machine dynamics,
and vehicle dynamics [8–10], with the principles of multibody
system theory being employed in each case. When subsystems
are coupled by constraints or when kinematic linkages such as
joints are utilised, constraint equations can be explicitly
incorporated, resulting in a mathematical model with
differential-algebraic equations [11, 12]. The physical relevance
of DAC-SYS is clearly manifested in this natural system
description. The concept of DAC-SYS has been introduced
[13–15], and in recent years, tools for simulation, identification,

analysis, and design of these systems have been developed. The
algorithms for numerical simulation are addressed [16, 17],
while for mechanical DAC-SYS, a recent study focuses on
the design and manipulability analysis of a serial-link robot
(S-LR) [18–20]. This paper is aimed at investigating the kine-
matics of the robotic DAC-SYS, specifically under the influence
of algebraic kinematic constraints at the joints. This informa-
tion allows critical points of the variational formulation to be
determined, and all efficiency functions with consistent initial
conditions can be consolidated into a performance index. This
motivated our research to identify the optimal control method
for a robotic manipulation system subject to S-LR constraints.

2. Manipulability Analysis and
Inverse Kinematics

Finding a workspace representation appropriate for regulat-
ing end effector motion is the main goal of this section.

Hindawi
Journal of Applied Mathematics
Volume 2023, Article ID 5575131, 8 pages
https://doi.org/10.1155/2023/5575131

https://orcid.org/0000-0002-6044-5912
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5575131


Dexterity and maneuverability must be quantified in order
to plan tasks that include positioning and orienting the
robot’s end tip as well as for the design and control of the
robot. It is additionally helpful for planning trajectories
and computing inverse kinematics. For assessing a robot’s
capacity to move around a workplace, manipulability mea-
surement is very crucial.

Figure 1 illustrates the manipulator’s coordinate systems.
The robot’s velocity can be determined by Jacobian from

the joint velocities using the following notation for the manip-
ulator tip’s kinematic equation expressed byV = F W , where
V ∈ℝ6 is the robot tip’s operational spatial vector, W ∈ℝ6 is
the joint’s spatial vector, and F stands for transfer function.

The robot’s differential kinematic equation can be
expressed as follows:

V = J W W, 1

with

J W =

∂F1
∂W1

∂F1
∂W2

⋯
∂F1
∂W6

∂F2
∂W1

∂F2
∂W2

⋯
∂F2
∂W6

⋮ ⋮ ⋱ ⋮
∂F6
∂W1

∂F6
∂W2

⋯
∂F6
∂W6

2

The vector product method yields the robot’s Jacobean
matrix as follows:

J =
z0 z1 z2 z3 × s0,36 z4 × s0,46 z5 × s0,56

0 0 0 z3 z4 z5
, 3

where zi is a joint axis-corresponding unit vector; the vector
from the {i}-origin coordinate’s to the {6}-coordinate’s ori-
gin is represented by s0,i6 .

It is possible to formulate equation (3) as

J =

0 0 1 4 J51 J43

0 −1 0 0 −ℓ2 cos ϑ5 − a3 cos ϑ5 ℓ2 sin ϑ5 sin ϑ6

1 0 0 J43 J53 J43

0 0 0 0 −cos ϑ4 sin ϑ4 sin ϑ5

0 0 0 −1 0 cos ϑ5

0 0 0 0 −sin ϑ4 −cos ϑ4 sin ϑ5

,

4

where

J41 = ℓ2 cos ϑ4 cos ϑ5 cos ϑ6 + a3 cos ϑ4 cos ϑ5 + ℓ2 sin ϑ4 sin ϑ6 + ℓ2 sin ϑ4 ,
J51 = −ℓ2 sin ϑ4 sin ϑ5 sin ϑ6 − a3 sin ϑ4 sin ϑ5 ,
J61 = −ℓ2 cos ϑ4 cos ϑ6 − ℓ2 sin ϑ4 cos ϑ5 sin ϑ6 ,
J43 = ℓ2 sin ϑ4 cos ϑ5 cos ϑ6 + a3 sin ϑ4 cos ϑ5 − ℓ2 cos ϑ4 sin ϑ6 − ℓ1 cos ϑ4 ,
J53 = ℓ2 cos ϑ4 sin ϑ5 cos ϑ6 + a3 cos ϑ4 sin ϑ5 ,
J63 = −ℓ2 sin ϑ4 cos ϑ6 + ℓ2 cos ϑ4 cos ϑ5 sin ϑ6

5

We refer to [15, 18–21] for more details on the analysis
of mechanical design of this model.

The manipulability index of the current robotic manipu-
lator was found to range between 0.7 and 1 using the Monte
Carlo approach [14, 20]. This indicates that there is an
inverse kinematic solution and that the manipulator is oper-
able throughout the full work area.

We denote the link velocities as V =
v
p
x v

p
y v

p
z w

p
x w

p
y w

p
z

T . This depicts the relation-
ship between the robot’s first and last links’ velocities. In
Figure 1, the reference states are depicted.

From equation (5), we can write

dA =

1
0
0
0
0
0

0
cos ϑ5ϑ6

−sin ϑ5ϑ6

0
0
0

0
sin ϑ5ϑ6

cos ϑ5ϑ6

0
0
0

0
−ℓ5 cos ϑ6

ℓ5 sin ϑ6

1
0
0

ℓ5 cos ϑ5

0
0
0

cos ϑ56

−sin ϑ56

ℓ5 sin ϑ5

0
0
0

sin ϑ56

cos ϑ56

,

6

where ϑ56 = ϑ5 + ϑ6.

Robotic
frame

Foot
position

Figure 1: Link coordinate system of the robotic manipulator.
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By using the Jacobean body geometry, we may determine
this:

Vpba
= dA T5, dA T6 =

0
−ℓ5 cos ϑ6

ℓ5 sin ϑ6

1
0
0

0
0
0
1
0
0

, 7

where T5 and T6 represent the joint 5 and 6’s respective con-
stant velocity twists. One can see [19–22] for further details.

For a given position and orientation of the tool end tip,
the deformation of the prismatic joints and the rotational
orientations of the rotary joints of the robot manipulators
must be determined using the inverse kinematic solution.
The manipulator’s position control and trajectory planning
can both benefit from using the inverse kinematic model.

The robot velocity of end effector Vpa0
of the moving

point pa with respect to inertial point p0 is given by

EVpa0
= dA Â Vpa0

+Vpba
, 8

where dA is the adjoint map given by

dA =
Rba pbaRba

0 Rba

, 9

where Rba is the rotation matrix that determines how pa is
oriented in relation to p0 and pba is the vector that connects
pa to pb.

Choosing of variable is extremely advantageous for con-
trolling the links’ velocity since it leads to the separation of
the kinematic and dynamic components.
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Hence, DAC-SYS is given by

Ex = Ax + Bu,
y = Cx

11

Thus, the findings in this section can be used to the anal-
ysis and development of control rules for mechanically lim-
ited manipulators, such as the surgical robots of Raven and
da Vinci [22, 23].

3. Reduced Representation with Insertion
Consistent Initial Algebraic Constraints

Recalling from Section 2, the developed robotic system can
be modeled as a time-invariant DAC-SYS.

Ex = Ax + Bu, 12

y = Cx, 13

with

E, A ∈ℝn×n,
B ∈ℝn×m,
C ∈ℝr×n,
x ∈ c1 ℝn ,

u =
u1

u2
∈ c ℝm

14

Rank E = n0 < n that ensures the existence of nonsin-
gular matrices G and H, where

HEG =
In0 0
0 0

, 15

which transform (12) and (13) into its dynamic decom-
position equivalent form with

G−1x =
x1

x2
,x1ϵℝ

n0 ,x2ϵℝ
n−n0 16

Consider

HAG =
W1

1 W2
1

W1
2 W2

2
,

HB =
B1

B2
,

HC = C1 C2

17

The dynamic composite system can now be written as

x1 =W1
1x1 +W2

1x2 + B1u, 18

0 =W1
2x1, 19

y = C1x1 + C2x2 20

Equations (18)–(20) form the Hessenberg DAC-SYS of
size two withW1

2W
2
1 = 0 andW1

2B1 = 0, and this S-LR reduc-
tion counterpart is guaranteed to have the same finite poles,
input and output transformation zeros, and dynamic order
as the character equation.

4. Reduction Robot System

The Hessenberg DAC-SYS is a particularly significant cate-
gory of general differential-algebraic equations having a
distinctive structure. With the manipulability control of
index-two Hessenberg DAC-SYS, a variational formulation
approach was devised.

We are now looking for a suitable function, such that the
core features lead to a solution of DAC-SYS (18)–(20).

Assume that the invertible W1
2W

1
1W

2
1 represent the

Jacobean condition. As a result, by repeatedly differentiating
the algebraic equation, the implicit function theorem [24,
25] can be used to estimate the unknown state x2 until it
can be estimated explicitly as

x2 = W1
2W

1
1W

2
1

−1 −W1
2W

1
1W

1
1x1 −W1

2W
1
1B1u

= −v−1W1
2W

1
1W

1
1x1 − v−1W1

2W
1
1B1u,

21

where v =W1
2W

1
1W

2
1; then, the reduced robot system can be

a dynamic equation defined on consistent initial algebraic
constraints.

x1 = 1 −W2
1v

−1W1
2W

1
1 W1

1x1 + 1 − v−1W1
2W

1
1 B1u, 22

0 =W1
2x1, 23

0 =W1
2W

1
1x1, 24

y = C1 − C2v−1W1
2W

1
1W

1
1 x1 − C2v−1W1

2W
1
1B1u 25

It is clear that the null space of W1
2 and W1

2W
1
1 is non-

empty; then, the class of consistent initial condition is
dropped to become

ϖ = x1 t0 ϵℝn0 x1 t0 ϵNull W1
2 ∩Null W1

2W
1
1

26

4.1. Optimal Control Implementation. Consider that the class
of admissible pairs (x1, u) is

Ω = x1, u ϵc1 ℝn × c ℝm and x1, u satisfies 21 ‐ 25
27
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Now, define

F1Ω = 1

2 t f
t0

y

u
,

K1 0

0 K2

y

u
dt

= 1
2

t f

t0

C1 − C2v
−1W1

2W
1
1W

1
1 x1 − C2v

−1W1
2W

1
1B1u

u
,

K1 0

0 K2

C1 − C2v
−1W1

2W
1
1W

1
1 x1 − C2v

−1W1
2W

1
1B1u

u
dt,

28

with x1, u convex set and K1, K2 > 0 (symmetric), and
finally, we look for min (F1Ω) on the class of admissible
pairs Ω.

4.2. Variational Formulation of DAC-SYS. In this section, we
will briefly examine how the reduction robot system
(22)–(26) transforms into an identical variable (functional)
whose crucial points are the answer to (22)–(26).

(i) Define the linear operator

L =
L1

L2

L3

, 29

with

L1 x1 = f1 t , 30

where L1 = 1 −W2
1v

−1W1
2W

1
1 W1

1 x1, f1 = 1 − v−1W1
2

W1
1 B1u,

L2 x1 =W1
2x1,

L3 x1 =W1
2W

1
1x1,

31

where the separable space Dom L = x1, u ϵc1 ℝn ×
c ℝn has such a supremum norm that fills all the normed
space in the stated domain

(ii) Definition of variational formulation in this case is
challenging because of x1,x2 = tf

t0
x1x2dt, and

with regard to x1,x2 and d/dt, the operator L is
not symmetric.

Then, redefine x1,x2 = x1,Lx2 to guarantee the varia-
tional formulation existence

F2Ω = 1

2 t f
t0
L x1 ,L x1 − 2 L x1 ,

f1

0
0

dt

32

The critical points of F2Ω are the solution of (19)–(23) over
Ω only in the event that , does not degenerate on either
the domain or the range of L x1, u

(iii) The critical points of F2Ω can be concluded from

δF2Ω = F2Ω x1 + δx1, u + δu − F2Ω x1, u linear part of the variation = 0

33

(iv) F1Ω and F2Ω are quadratic in x1 and u

(v) Since x1, u is certain and positive in relation to
, , then minimum of F2Ω is the solution of

(22)–(26)

(vi) Since the Banach space is separable in the solvable
topological space C ℝn , suppose that ϕi, ψi are lin-
early independent basis functions. Afterwards, the
variable x1, u can be defined as a finite linear com-
bination of these basis functions:

x1 = 〠
m1

i=1
αj
iϕ

j
i ; j = 1,⋯, n0,m1 > 0,

u = 〠
m2

i=0
βk
iψ

k
i ; k = 1,⋯,m,m2 > 0

34

Derive F αj
i , βk

i in relation to its unidentified parameters

αj
i , βk

i and set the outcome to zero:

⟹
∂F
∂αj

i

= 0, ∂F
∂βk

i

= 0,∀i, j, k 35

An approximation of a solution to DAC-SYS is then
formed by solving the acquired system of linear algebraic
equations.

5. Numerical Illustration

Using the findings of the inverse kinematic analysis in
equations (12) and (13) and also some design parameters,
including the link lengths and lower limb anatomic
parameters, the objective of our study would be to design
an S-LR manipulator which satisfied the specifications
for comprehensive fracture fragment alignment with in
target operation. The design parameters can be defined
as follows:
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E =

1
0
0
0
0
0

0
1
0
0
0
0

0
0
100
0
0
0

0
0
70
495
0
0

0
0
0
70
0
0

0
0
0
0
0
0

,

A =

1
0
0
0
0
0

0
1 553
−67 45

0
0
0

0
67 45
1 553
0
0
0

0
3 842
233
1
0
0

223
0
0
0

1 553
−67 45

171
0
0
0

67 45
1 553

,

B =

0
4 542
66 23
1
0
0

0
0
0
1
0
0

,

C =
0
0

1
0

0
0

0
0

1
0

0
1

36

Rank E = 4 < n; this lead us to use singular value
decomposition to compute U which is orthonormal
eigenvectors of EET , andV is orthonormal eigenvectors
of ETE.

Set G =V and H =U−1.
Under the transformation G,H , DAC-SYS (12) and

(13) can be expressed as follows:

x1 =W1
1x1 +W2

1x2 + B1u,
0 =W1

2x1,
y = C1x1 + C2x2,

37

with

W1
1 =

−0 604
−0 031
0 030
0 0076

0 012
0 002
−0 042
0 038

60 00
98 94
0
0

−9 883
17 01
0
0

,

W2
1 =

−0 211
−0 221

0
0

−0 034
0 001
0
0

,

W2
2 =

0 0
0 0

,

W1
2 =

0 0 1 0
0 0 0 1

,

C1 =
0 0 1 0
0 0 0 0

,

C2 =
1 0
0 1

,

x1 =

x11

x12

x13

x14

,

x2 =
x21

x22
,

u =
u1

u2
38

According to W1
2W

2
1 = 0,W1

2B1 = 0, the performance
index is obtained:

F =W1
2x1 t0 +W1

2W
1
1x1 t0 +

t f

t0

η1F1Ω + η2F2Ω dt

39

F1Ω and F2Ω are given in Section 3.

η1 = η2 =
1
4 40

All the states are measurable.
Set

x1 = 〠
5

i=1
αj
i ti, j = 1,⋯, n0,

u1 = 〠
5

i=0
βk
i ti, k = 1,⋯, n0,

u2 = 〠
5

i=0
γki ti, k = 1,⋯,m − n0

41

Derive F αj
i , βk

i with respect to its unknown parameters

αj
i , βk

i and equalize the result to zero.
Overall, the system behaved smoothly, allowing the user

to fully manage the endoscope through the selection of
parameters. The system also stayed steady during all selec-
tions (see Figure 2). In comparison to the intended trajec-
tory, the system’s inaccuracy was rather tiny (see Figure 3).

Using the aforementioned parameters, a MATLAB sim-
ulation was employed to invade the manipulator workspace.
The simulation results are shown in Figures 2 and 3.
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6. Conclusions

This contribution provides the necessary tools for address-
ing linear mechanical differential-algebraic systems. The
focus was primarily on analysing the forward and inverse
kinematics of the developed robotic manipulator to sup-
port femoral shaft fracture reduction surgery, thereby
enhancing the safety of the S-LR system. The manipulator’s
design incorporates three rotational joints and three pris-
matic joints.

The results of the workspace study and kinematic analy-
ses demonstrate that the mechanism can access any location
within the specified workspace using the given design
parameters. Modelling the mechanical system naturally
leads to differential-algebraic systems, which can be explored
using variational methods. It is assumed that the solvability
space is a separate Banach space to ensure the existence of
a countable linearly independent set of functions. The
method is based on utilising the implicit function theorem
and differentiation index. The differentiation index is repeat-
edly used to solve the algebraic equations for the unknown

state-space parameters and generate reduced-order dynamic
equations defined on a class of coherent initial algebraic con-
straints. The average operating time was approximately 7
minutes, while the time required for the S-LR system to sta-
bilise was around 6 seconds, demonstrating the efficiency of
the proposed method.

In this particular case, the system is expressed using an
operator from the variant formulation, and the solution is
presented as a linear combination of basis components from
the setting space. The simulation of the S-LR reduction sys-
tem is performed using MATLAB software to ensure the
validity and accuracy of this technique.

7. Future works

Planned future work includes the following:

(i) There is a plan to investigate the dynamics of the
joints in the robotic system to further enhance the
safety of S-LR
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(ii) In the case of nonlinear mechanical systems, the the-
ory of nonlinear DAC-SYS is yet to be developed
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