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The novel coronavirus is a recently discovered member of one of the largest families of viruses with symptoms ranging from a
simple cold to excruciating respiratory agony. In the present paper, a deterministic mathematical model is formulated to
estimate the transmission dynamics of COVID-19 with the inclusion of control strategies like (i) double-dose vaccination, (ii)
prevention, and (iii) treatment. In addition, instead of considering all infectious humans as one unit, we separate them into
symptomatic and asymptomatic groups, and the impact is analyzed. This separation is meaningful because various reports
indicate that the asymptomatic cases will spread the disease more than the symptomatic cases. The model is proved to be
mathematically well-posed and biologically meaningful by showing positivity and boundedness of the solution using the
appropriate initial conditions. For the reproduction number, a parametric formula is constructed, and also the associated
numerical value is calculated from the reported real data in Ethiopia. Moreover, disease-free and endemic equilibria are
determined, and their local and global stabilities are discussed using the Lyapunov function technique. These equilibria are
found to be locally asymptotically stable if R0 < 1 and R0 > 1, respectively. Following the model fitting and estimation of the
parameter values, sensitivity analysis was performed in order to analyze the impact of each parameter on transmission
dynamics. In other words, this study can be used to evaluate how major model parameters affect transmission dynamics and
control. Utilizing Pontryagin’s maximal principle, the best control measures are implemented with the aim of lowering the
burdens associated with infection, prevention, and treatment. To comprehend and visualize the impact of control techniques
on the development of the disease and to illustrate the analytical findings generated in this study, numerical simulation studies
are conducted. Finally, the output of the study illustrates that adhering to all the control strategies has a big impact on
minimizing the transmission of the disease in society. Which means that if the control strategies are well managed by the
concerned body, then the burden of the disease is reduced quickly in the Ethiopian population.

1. Introduction

The novel coronavirus (COVID-19) is one of the largest fatal
viruses which infected millions of humans throughout the
world within a short period of time and has posed serious
challenges to human life style including the economy and
GDPs of the developed countries. The outbreak of the
COVID-19 pandemic was first declared by the People’s
Republic of China on 31st December 2019, and it appeared
in China, Wuhan City [1]. The infection caused by
COVID-19 is identified by its signs and symptoms. Most

of the signs and symptoms of COVID-19 are similar to the
common cold illness, but it is more dangerous and causes
severe respiratory problems. Despite efforts being made to
curb the transmission of the COVID-19 disease, the disease
is still persistent or endemic in many parts of the globe
including Ethiopia [2]. Hence, globally, human beings are
still facing a health problem due to the coronavirus. Numer-
ous studies indicate that direct human contact or physical
separation between susceptible individuals is the primary
means of spreading this epidemic [3, 4]. This is why
COVID-19 becomes pandemic within a very short duration
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of time and is difficult to mitigate but reduce the transmis-
sion rate due the corresponding vaccine is obtained.

According to the nature of its mutation rate and the crit-
icality of the virus, COVID-19 causes millions of deaths
throughout the globe. Because of this, the World Health
Organization (WHO) and scientists throughout the world
face a lot of challenges and competition to get the corre-
sponding vaccine. But now, starting from 7 March 2022,
10 vaccines exist and are granted by the WHO for emer-
gency use in the case of coronavirus [5]. Up to March 07,
2022, around 10.9 billion COVID-19 vaccine doses were
managed globally, and 63.4% of the population throughout
the world has taken the minimum of one dose of a vaccine.
This coverage almost represents developed countries due to
the shortage of the vaccine in developing countries. Up to
the date mentioned above, only 13.6% of people in develop-
ing countries have received the minimum of one dose of the
vaccine [6]. In Ethiopia, until 5 March 2022, 26,178,996
amount of vaccine doses had been administered [7].

A deterministic epidemiological model can be used to
evaluate the dynamics of any infectious disease’s transmis-
sion and outbreak as of the middle of the 20th century. This
model represents real-world situations and predicts the
severity of those diseases using the concept of mathematics
[2]. A lot of research work has been conducted on the trans-
mission dynamics of novel coronavirus and different models
are also presented. Additionally, a number of research works
have been interested to identify the best vaccination strategy
to control the transmission of coronavirus [8, 9].

For instance, Matrajt et al. [10] presented a deterministic
mathematical model depending on age to identify which group
of age must be vaccinated first. They also verified that with low
coverage, priority must be given to individuals whose age is 60
+years to reduce the number of mortality due to COVID-19.
Semu et al. [11] developed a mathematical model to analyze
the mitigation strategies for COVID-19 and take the following
into account. The impact of asymptomatic patient individuals
on the transmission rate of the disease in fully susceptible indi-
viduals, the effect of indirect spread of the disease through the
population, and individuals behavioral changes in the commu-
nity to use self-protective measures. Akuka et al. [12] formu-
lated a SV1V2EIQR mathematical model with double-dose
vaccination and quarantine to show that vaccination and treat-
ment are very effective in controlling the spread of COVID-19
and that properly applying personal protective measures, that
is, nonpharmaceutical public health interventions mechanisms
such as proper use of face masks, regular hand washing, social
distancing, and the like, should continue to be encouraged.

Since COVID-19 first arose in late 2019, numerous studies
have been undertaken using mathematical models to begin
studying the disease’s transmission patterns and the pandemic’s
control mechanisms in various nations with the authors
([13–15]). For example, Atifa et al. [16] developed and exam-
ined a mathematical compartmental model for the pandemic’s
transmission patterns while accounting for the impact of
human reinfection after complete recovery utilizing Pakistan
COVID-19 genuine cases recorded. By comparing the growth
rates of COVID-19 patients in Pakistan and Malaysia before
and after the imposition of lockdown, a mathematical model

based on Lotka-Volterra equations was created to shed light
on the impact of lockdown onCOVID-19 transmission dynam-
ics, as presented by Abro et al. [17]. Coronavirus and diabetes
relationships are discussed by the authors Ozkose et al. [18]
using actual data from Turkey. In order to explore COVID-19
transmission and its connection to diabetes, a pandemic frac-
tional order model is first developed. In their approach, both
types of diabetes those with and without complications are
taken into account in connection to the quarantine strategy.
Peter et al. [19] developed and analyzed an epidemic model of
COVID-19 governed by eight compartmental models. In their
study, they also consider double-dose vaccination in order to
control the transmission dynamic of the pandemic. In particu-
lar, their study’s findings show that when vaccination rates rise,
the number of infected individuals in the population declines,
lowering the disease burden in Malaysia.

In addition, Sharbayta et al. [20] presented a SV1V2EIaIs
QHR deterministic mathematical model to conclude the
transmission of COVID-19 in Ethiopia. In their study, they
consider double-dose vaccination to mitigate the transmission
of COVID-19 and use treatment strategy at quarantine and
hospital classes to treat infected and critically ill individuals,
respectively. By taking into account the combined effects of
public health awareness, self-protective behavior, and treat-
ment of hospitalized individuals, the authors [21–23] consid-
ered a deterministic mathematical model for the dynamics of
COVID-19 transmission. This model is intended to reduce
the spread of the disease. Additionally, by applying the com-
bined effect least squares and Bayesian estimation mecha-
nisms to the data gathered in Ethiopia and other nations,
they calculate the unknown parameter values, identify the
parameters that are most sensitive to the disease’s transmis-
sion rate, and work to control its spread.

Therefore, the ongoing double-dose vaccination program
and the two control techniques to slow the COVID-19 pan-
demic’s spread among people are the driving forces behind
this research. Here, we presented an optimal control analysis
of the deterministic SV1V2EIaIsR compartmental model to
investigate the effect of prevention, treatment, and double
doses of vaccination against novel coronavirus mitigation.
The newly developed model is parameterized using the least
squares method on daily reported COVID-19 confirmed cases
in Ethiopia from 01 July, 2022, to 31 August 2022. After
receiving the first and second doses of the immunization, the
virus’ transmission and progression are also determined.

The remaining parts of our manuscript are organized as
below. The developed model is formulated in Section 2, its
analytical analysis is explained in Section 3, and the estimation
of the parameters using real data is discussed in Section 4.
Sensitivity analysis is discussed in Section 5, and the extension
of the proposed model into optimal control is elaborated in
Section 6. The numerical simulations performed to support
the analytical results discussed in Section 3 are presented in
Section 7. Finally, a conclusion is presented.

2. Model Formulation

Mathematical modeling is one of the best mechanisms
which is used to analyze the epidemiology of a disease. In
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order to properly examine the transmission dynamics and
control of the pandemic in the community, we design and
analyze a deterministic mathematical model with the inclu-
sion of control strategies and estimation of the parameters.
According to their disease status at any moment t, the pop-
ulation size NðtÞ, which represents the suggested model, is
divided into seven mutually exclusive individuals. These dif-
ferent classes include the number of susceptible humans SðtÞ
, who are uninfected individuals with the disease but has a
full chance to be infected with the diseases; the vaccinated
individuals with the first dose V1ðtÞ, who still have a chance
to be susceptible again and infected by COVID-19; the sec-
ond dose vaccinated individuals V2ðtÞ, who are people those
who have finished both dose vaccination within a time but
still have a chance to be susceptible again due to waning vac-
cination during double dose vaccination time. As most of the
researchers estimated, the vaccine will protect against 85
percent of infections with the most optimistic assumption.
Hence, due to this, it is assumed that the population in the
second dose of vaccinated humans goes to the recovered
class at a rate Φ and the other moves to the susceptible class
at a rate ϕ2.The force of infection λ = βððωIa + IsÞ/NÞ, where
β is the effective transmission rate and ω is the reduction in
disease transmission in asymptomatic people. Since the con-
sidered population is assumed to be constant, the recruit-
ment into the susceptible class is only through birth at the
rate of Λ. Due to the first dose of the vaccine’s inadequacy
to prevent against COVID-19, susceptible humans enter
the vaccinated compartment at a rate of θ after receiving
the first dose, first-dose vaccinated humans enter the suscep-
tible class at a rate of ϕ1, and the remaining individuals enter
the vaccinated compartment at a rate of ρ after receiving the
second dose. The number of Exposed individuals EðtÞ get
infected without symptoms (asymptomatic) IaðtÞ or with
symptoms (symptomatic) IsðtÞ at the rate of pν and ð1 − pÞ
ν, respectively. Where ν is the progression rate from the
incubation period (exposed class) to the infected classes,
and p is a fraction of exposed individuals becoming infected
asymptomatically while the remaining (1-p) fractions are
infected symptomatically. γa and γs are the rates at which
IaðtÞ and IsðtÞ are recovered from COVID-19 patient due
to natural immunity and treatment of infected classes,
respectively. RðtÞ stands for the recovered compartment
number; this class consists of either tested persons who have
already had a COVID-19 negative result and are no longer
in contact with contaminated areas or diseased individuals,
or dead cases. In general, it is assumed that the size of the
entire human population, indicated by NðtÞ, is constant
and evenly distributed, as shown by:

N tð Þ = S tð Þ + V1 tð Þ +V2 tð Þ + E tð Þ + Ia tð Þ + Is tð Þ + R tð Þ:
ð1Þ

The proposed COVID-19 model is governed by the fol-
lowing assumptions:

(i) All parameters are nonnegative

(ii) To keep the size of the population constant, con-
sider all dead humans as newborns which are
replaced in the susceptible class

(iii) The susceptible individuals are recruited by birth,
and it is denoted by Λ through this manuscript

(iv) The death rate due to COVID-19 is considered in
both symptomatic and asymptomatic classes as αs
and αa, respectively.

(v) Full-dose vaccinated individuals become suscepti-
ble again due to waning vaccination

(vi) The recovered individuals have permanent immu-
nity and have no probability of re-infection

(vii) The standard incidence rate λ = βððωIa + IsÞ/NÞ
can be used to represent the horizontal spread of
infection

(viii) A proportion θ of susceptible individuals received
first dose of vaccine

(ix) From the first dose-vaccinated individual, the ϕ1
constant rate is moved to susceptible, whereas the
remaining ρ rate of the individuals progresses out
to the second-dose vaccinated individuals V2

(x) Fully vaccinated populations are moved to the
recovery class at a constant rate Φ

The proposed model considers first and second-dose
vaccination as compartment with prevention and treatment
as a control strategy to eradicate the transmission dynamics
of coronavirus in Ethiopia. The proposed model parameters
are described in Table 1 with their source. The model used in
studying the transmission dynamics of COVID-19 in this
study is governed by the next system of ordinary differential
equation, i.e., Equation (2), while the corresponding flow
diagram is depicted in Figure 1.

dS
dt

=Λ + ϕ1V1 + ϕ2V2 − θ + λ + μð ÞS,
dV1
dt

= θS − μ + ρ + ϕ1ð ÞV1,

dV2
dt

= ρV1 − μ + ϕ2 +Φð ÞV2,

dE
dt

= λS − μ + νð ÞE,
dIa
dt

= pνE − μ + γa + αað ÞIa,
dIs
dt

= 1 − pð ÞνE − μ + γs + αsð ÞIs,
dR
dt

= γaIa + γsIs +ΦV2 − μR,

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ
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subject to the next non-negative initial conditions

S 0ð Þ > 0,
V1 0ð Þ ≥ 0,
V2 0ð Þ ≥ 0,
E 0ð Þ ≥ 0,
Ia 0ð Þ ≥ 0,
Is 0ð Þ ≥ 0,
R 0ð Þ ≥ 0,
N 0ð Þ > 0:

ð3Þ

Throughout this paper, k1 = θ + μ + λ, k2 = μ + ϕ1 + ρ,
k3 = μ + ϕ2 +Φ, k4 = μ + ν, k5 = μ + γa + αa, and k6 = μ +
γs + αs.

3. Qualitative Analysis of the Model

In this section, some basic properties of the formulated
model defined in Equation (2) including the feasible region,
the positivity of the solution, equilibria, and their stability,
are discussed.

3.1. Positivity and Boundedness of Solution

Theorem 1 (Positivity of the solutions). Let FðtÞ = fðSðtÞ,
V1ðtÞ, V2ðtÞ, EðtÞ, IaðtÞ, IsðtÞ, RðtÞÞ ∈ R7

+ : Sð0Þ > 0, V1ð0Þ ≥

Table 1: The model parameter estimation with their source.

Parameters Description Value References

θ Vaccination rate of first dose 0.11411 Fitted

Λ Recruitment rate 121.317 Estimated

ϕ 1 Progression rate from V1 to S 0.04348 Fitted

ϕ 2 Progression rate from V2 to S 0.00076 Fitted

β Transmission rate 0.98699 Fitted

μ Natural mortality rate 1/ 67:8 ∗ 365ð Þ Estimated

Φ Recovery rate due to V2 0:13191 Fitted

ν Infection rate after incubation period 0.143 [23]

ρ Second dose vaccination rate 0.03032 Fitted

αa Death rate of Ia individuals due to COVID-19 0:512 Fitted

αs COVID-19 induced death rate of Is individuals 0:18219 [23]

ω Modification factor for asymptomatic individuals 1 [23]

γs Rate of recovery for an individuals with symptom 1:89 ∗ 10−7 [20]

γa Rate of recovery for an asymptomatic individuals 0.0148 [20]

λ Force of infection 0.0002176 Estimated

p Fraction of infections that become asymptomatic 0.94744 Fitted

Rc Effective reproduction number 0.00074951 Estimated

R0 Reproduction number 2.105062463 Estimated

𝜇
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Figure 1: The schematic flow chart of COVID-19 transmission model.
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0, V2ð0Þ ≥ 0, Eð0Þ ≥ 0, Iað0Þ ≥ 0, Isð0Þ ≥ 0, Rð0Þ ≥ 0g, then the
steady state set {S, V1, V2, E, Ia, Is, and R} are all positive
for all t ≥ 0.

Proof. Choosing any one of equation from Equation (2)
above, let us take the first equation i.e.,

dS
dt

=Λ + ϕ1V1 + ϕ2V2 − θ + λ + μð ÞS, ð4Þ

dS
dt

≥ − θ + λ + μð ÞS: ð5Þ

Integrating Equation (5) by separation of variable
method, we obtain

S tð Þ ≥ c1e
− θ+λ+μð Þt: ð6Þ

Using initial condition Sð0Þ = S0 and Equation (6), we
obtain

S tð Þ ≥ S0e
− θ+λ+μð Þt ≥ 0where S0 = ec1 : ð7Þ

In a similar way, the remaining equations of Equation
(2) can be proved and gives the following outputs:

V1 tð Þ ≥V1 0ð Þe− ρ+ϕ1+μð Þt ≥ 0, V2 tð Þ ≥V2 0ð Þe− Φ+ϕ2+μð Þt

≥ 0, E tð Þ ≥ E0e
− ν+μð Þt ≥ 0,

Ia tð Þ ≥ Ia 0ð Þe− γa+αa+μð Þt ≥ 0, Is tð Þ ≥ Is 0ð Þe− γs+αs+μð Þt

≥ 0, R tð Þ ≥ R0e
− μð Þt ≥ 0,

ð8Þ

which is the complete proof of the theorem. Hence, all
solutions of Equation (2) are positive ∀t ≥ 0.

Theorem 2. The region Ω = fðS, V1, V2, E, Ia, Is, RÞ ∈ R7
+ : N

ðtÞ ≤ ðΛ/μÞg is positively invariant under the flow induced
by the model Equation (2) which means the solution of the sys-
tem should be well-posed and biologically meaningful in this
region.

Proof. From the total population size over a time t, we have

dN
dt

= dS
dt

+ dV1
dt

+ dV2
dt

+ dE
dt

+ dIa
dt

+ dIs
dt

+ dR
dt

, ð9Þ

dN
dt

=Λ − μ S + V1 +V2 + E + Ia + Is + Rð Þ − αaIa − αsIs:

ð10Þ
Since NðtÞ is assumed to be constant over a time t, then

ðdN/dtÞ = 0.
Hence, from Equation (1) and Equation (10), we obtain

dN
dt

=Λ − μN − αaIa − αsIs = 0: ð11Þ

If death due to COVID-19 is zero, then Equation (11)
becomes

Λ − μN ≤ 0: ð12Þ

After some arrangement, Equation (12) becomes

N tð Þ ≤ Λ

μ
: ð13Þ

Hence, each solution of Equation (2) with Equation (3)
remains in Equation (14) for all t ≥ 0.

Ω = S, V1, V2, E, Ia, Is, Rð Þ ∈ R7
+ : N tð Þ ≤ Λ

μ

� �
: ð14Þ

Hence, Ω is a positively invariant set, and on this set, the
proposed model is well defined epidemiologically and
mathematically. Therefore, it is sufficient to investigate the
dynamics of the presented model in Ω.

3.2. Equilibrium Points and Reproduction Number

3.2.1. Disease-Free Equilibrium Point (DFE). To calculate the
DFE of Equation (2), we equate the right-hand side of
Equation (2) to zero and make the disease state variables
E = Ia = Is = 0 and DF state variables S, V1, V2, and R non-
zero. But at infection-free, the variables E, Ia, Is, and R are
zero. After that, solve the remaining equations of Equation
(2) will give us

Edfe =
Λ

θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ k2k3, k3θ, ρθ, 0, 0, 0, 0ð Þ:

ð15Þ

When there is no vaccination, then Equation (15) is
reduced to a fully susceptible, and it is given by

Ev0 =
Λ

μ
, 0, 0, 0, 0, 0, 0

� �
: ð16Þ

If θ = 1, then we get a DFE in which every susceptible
human is vaccinated with the first dose, and

Ev1 =
Λ

1 + μð Þk2k3 − ϕ1k3 + ϕ2ρð Þ k2k3, k3, ρ, 0, 0, 0, 0ð Þ:

ð17Þ

3.2.2. Basic Reproduction Number ðR0Þ. The threshold
quantity ðR0Þ is the average number of secondary cases pro-
duced by one primary infection during the infectious period
in a fully susceptible population, and the control threshold
quantity (in our case denoted by Rc) is used to represent
the same quantity for a system incorporating vaccine as
intervention strategies [24]. To calculate the threshold quan-
tity, follow the work of Watmough and Driessche method.
From Equation (2) and the notation X = ðE, Ia, IsÞ, we have
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F =
λS

0
0

2
664

3
775, ð18Þ

which indicates the new infection appearance at the infected
state variable and

V =
ν + μð ÞE

γa + αa + μð ÞIa − pνE

γs + αs + μð ÞIs − 1 − pð ÞνE

2
664

3
775 =

k4E

k5Ia − pνE

k6Is − 1 − pð ÞνE

2
664

3
775
ð19Þ

represent the transfer of individuals into and out of the
infected classes. The Jacobian matrices of F(X) and V(X) at
DFE are given as blow, respectively.

F =DF Edfeð Þ = μβk2k3
θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ

0 ω 1
0 0 0
0 0 0

2
664

3
775,

V =DV Edfeð Þ =
k4 0 0
−pν k5 0

− 1 − pð Þν 0 k6

2
664

3
775,

ð20Þ

Now, it is simple to determine the inverse of V and
given by

V −1 = 1
k4k5k6

k5k6 pνk6 1 − pð Þνk5
0 k4k6 0
0 0 k4k5

2
664

3
775
T

: ð21Þ

Using the next-generation matrix,

FV −1 = μβk2k3
k4k5k6 θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ½ �

Á
pνk6ω + θ 1 − pð Þνk5 ωk4k6 k4k5

0 0 0

0 0 0

2
6664

3
7775

ð22Þ

and the corresponding eigenvalues are λ1 = 0 which is a
double root and

λ2 =
μβνk2k3

k4k5k6 θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ½ � ωpk6 + 1 − pð Þk5ð Þ:

ð23Þ

From λ1 and λ2, we conclude that λ2 is the spectral
radius of the next-generation matrix which equal with
Rc and

Rc =
μβνk2k3

k4k5k6 θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ½ � ωpk6 + 1 − pð Þk5ð Þ:

ð24Þ

Setting θ = ρ = ϕ1 = ϕ2 = 0 in Equation (24) will give
the basic reproduction number, R0 as

R0 =
βν

k4k5k6
ωpk6 + 1 − pð Þk5ð Þ: ð25Þ

Now, rewriting Equation (24) in terms of R0 as

Rc =
μk2k3

θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð ÞR0: ð26Þ

If θ = 0, then Rc =R0; otherwise, Rc <R0 if 0 < θ ≤ 1.
If θ = 1, then all populations are vaccinated with the first
dose of vaccine. Hence, the corresponding effective (con-
trol) reproduction number is given by

R1 =
μk2k3

1 + μð Þk2k3 − ϕ1k3 + ϕ2ρð ÞR0: ð27Þ

In general, if Rc > 1, then COVID-19 infections will
persist in the community, and it will eventually disappear
from society if Rc < 1.

3.2.3. Existence of Endemic Equilibrium (EE) Point of the
Model. In this section, we study the disease EE of Equation
(2). The main interesting idea behind the EE is that it is used
to determine the existence of the disease in the human being.
To find such conditions for the existence of an equilibrium
for which COVID-19 is endemic in the community, at least
one of E∗ ≠ 0, I∗a ≠ 0, or I∗s ≠ 0. Let us denote the steady-state
solution of Equation (2) by Ee = ðS∗, V∗

1 , V∗
2 , E∗, I∗a , I∗s , R∗Þ.

To find Ee, equate Equation (2) to zero, and the reduced part
of Equation (2) becomes

S∗ tð Þ = Λk4k5k6
βμν ωpk6 + 1 − pð Þk5ð Þ ,

V∗
1 tð Þ = Λθk4k5k6

βμνk2 ωpk6 + 1 − pð Þk5ð Þ ,

V∗
2 tð Þ = Λρθk4k5k6

βμνk2k3 ωpk6 + 1 − pð Þk5ð Þ ,

E∗ tð Þ = Λ

k4
1 − 1

Rc

� �
,

I∗a tð Þ = Λνp
k4k5

1 − 1
Rc

� �
,

I∗s tð Þ = Λν 1 − pð Þ
k4k6

1 − 1
Rc

� �
,

R∗ tð Þ = γaI
∗
a + γsI

∗
s +ΦV∗

2 :

ð28Þ

Hence, the existence of Ee depends on Rc, that is, Ee of
Equation (2) exists if Rc > 1.
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3.3. Stability Analysis of Equilibrium Points. To determine
the local and global asymptotic stability of the equilibria of
Equation (2), we use the Jacobian matrices at DFE and EE
for local stability and construct the Lyapunov function for
global stability.

3.3.1. Local Stability Analyses of DFE

Theorem 3. The disease-free-equilibrium point, Edfe of
Equation (2) is locally asymptotically stable (LAS) if Rc < 1
and unstable otherwise.

Proof. To proof the above theorem, first calculate the
Jacobian matrix of Equation (2) at Edfe. That is

J Edfeð Þ =

− θ + μð Þ ϕ1 ϕ2 0 −
μβω

Λ
S0 −

μβ

Λ
S0 0

θ −k2 0 0 0 0 0
0 ρ −k3 0 0 0 0

0 0 0 −k4
μβω

Λ
S0

μβ

Λ
S0 0

0 0 0 pν −k5 0 0
0 0 0 1 − pð Þν 0 −k6 0
0 0 Φ 0 γa γs −μ

2
666666666666666664

3
777777777777777775

:

ð29Þ

We now need to demonstrate that all of JðEdfeÞ‘s eigenvalues
are negative. Only the diagonal element −μ appears in the
seventh column, indicating that −μ is one of the necessary
eigenvalues. The remaining eigenvalues can be found in
the reduced matrix, J1ðEdfeÞ.

J1 Edf e

À Á
=

− θ + μð Þ ϕ1 ϕ2 0 −
μβω

Λ
S0 −

μβ

Λ
S0

θ −k2 0 0 0 0
0 ρ −k3 0 0 0

0 0 0 −k4
μβω

Λ
S0

μβ

Λ
S0

0 0 0 pν −k5 0
0 0 0 1 − pð Þν 0 −k6

2
666666666666664

3
777777777777775

ð30Þ

Let as assume that d1, d2, and d3 are eigenvalues of M1,
and d4, d5, and d6 are eigenvalues of M2 where

M1 =
− θ + μð Þ ϕ1 ϕ2

θ −k2 0
0 ρ −k3

2
664

3
775,

M2 =
−k4

μβω

Λ
S0

μβ

Λ
S0

pν −k5 0
1 − pð Þν 0 −k6

2
6664

3
7775:

ð31Þ

The characteristic equation of M1 is

d3 + b1d
2 + b2d + b3 = 0, ð32Þ

where

b1 = k2 + k3 + θ + μð Þ,
b2 = k2k3 + k3 θ + μð Þ + k2 θ + μð Þ − ϕ1θk3,
b3 = k2k3 θ + μð Þ − ϕ1θk3 − ϕ2θρ:

ð33Þ

Clearly, we see that b1 > 0 and b2 > 0 because they are the
sum of positive parameters. But from the third equation, i.e.,

b3 = k2k3 θ + μð Þ − ϕ1θk3 − ϕ2θρ,

b3 = b3 −
μβνk2k3
k4k5k6

ωpk6 + 1 − pð Þk5ð Þ + μβνk2k3
k4k5k6

ωpk6 + 1 − pð Þk5ð Þ,

b3 =
μβνk2k3
k4k5k6

ωpk6 + 1 − pð Þk5ð Þ + b3 1 − μβνk2k3
k4k5k6b3

ωpk6 + 1 − pð Þk5ð Þ
� �

,

b3 =
μβνk2k3
k4k5k6

ωpk6 + 1 − pð Þk5ð Þ + b3 1 −Rcð Þ:

ð34Þ

We also say that b3 > 0 if and only if Rc < 1. In the same
fashion, the characteristic equation of M2 is

d3 + b4d
2 + b5d + b6 = 0: ð35Þ

where

b4 = k4 + k5 + k6,

b5 = k4k5 + k4k6 + k5k6 −
μβνk2k3

θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ ωp + 1 − pð Þð Þ,

b6 = k4k5k6 −
μβνk2k3

θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ ωpk6 + 1 − pð Þk5ð Þ,

b6 = k4k5k6 1 − μβνk2k3
k4k5k6 θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þð Þ ωpk6 + 1 − pð Þk5ð Þ

� �
,

b6 = k4k5k6 1 −Rcð Þ:
ð36Þ

Since b4 and b5 of Equation (35) are greater than zero
because they are the sum of positive parameters, and b6 > 0
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if and only if Rc < 1. To check the negativity of the eigen-
values, we used the Routh-Hurwitz criteria and by this prin-
ciple Equation (32) has a strictly negative real root if and
only if b1 > 0, b2 > 0, and b3 > 0 and Equation (35) has
strictly negative real root if and only if b4 > 0, b5 > 0, and
b6 > 0. Therefore, we conclude that Edfe of system Equation
(2) is LAS if Rc < 1 and unstable otherwise.

Theorem 4. The disease-endemic equilibrium point ðEeÞ of
the model on Equation (2) above is locally asymptotically
stable (LAS) in Ω if Rc > 1 and unstable if Rc < 1.

The proof is as straight-forward as [25].

3.3.2. Global Stability Analyses of DFE

Theorem 5. The disease-free equilibrium point of the dynam-
ical system on Equation (2) is globally asymptotically stable
(GAS) if Rc < 1 and unstable otherwise.

Proof. To proof global stability of Edef , we first construct the
Lyapunov function [25]. Let the Lyapunov function be V
: R7

+ ⟶ R+ and defined as

V S, V1, V2, E, Ia, Is, Rð Þ = a1S + a2E + a3Ia + a4Is, ð37Þ

dV
dt

= a1
dS
dt

+ a2
dE
dt

+ a3
dIa
dt

+ a4
dIs
dt

, ð38Þ

dV
dt

= a1 Λ + ϕ1V1 + ϕ2V2 − θ + λ + μð ÞSð Þ
+ a2 λS − μ + νð ÞEð Þ + a3 pνE − μ + γa + αað ÞIað Þ
+ a4 1 − pð ÞνE − μ + γs + αsð ÞIsð Þ:

ð39Þ

To determine constants, equate the partial derivatives of
Equation (37) with respect to S, E, Ia, and Is to zero. Hence,
to determine a1, equate the partial derivatives of Equation
(37) in terms of S to zero, and we will obtain

−a1 θ + μð Þ = 0⟹ a1 = 0: ð40Þ

Partial derivative in terms of E gives us −a2k4 + a3pν +
a4ðð1 − pÞνÞ = 0, and from this we obtain

a2 =
a3pν + a4 1 − pð Þνð Þ

k4
: ð41Þ

Partial derivative in terms of Ia gives us −a1βωðS0/NÞ
+ a2βωðS0/NÞ − a3k5 = 0, and this gives us

a3 = −
a1 − a2ð Þ
k5

βω
S0

N
: ð42Þ

Partial derivative in terms of Is gives us −a1βðS0/NÞ +
a2βðS0/NÞ − a4k6 = 0, and from this gives

a4 = −
a1 − a2ð Þ
k6

β
S0

N
: ð43Þ

Since S ≤ S0, and substituting a1, a2, a3, and a4 into
Equation (37) and after some simplification

dV
dt

= a2
βνS0

Nk5k6
k6ωp + k5 1 − pð Þð Þ − k4

� �
E,

dV
dt

= a2k4 Rv − 1ð ÞE:
ð44Þ

Since a2k4 ≥ 0, then dV/dt = a2k4ðRc − 1Þ ≤ 0 where
Rc ≤ 1 and dV/dt = 0 if and only if S = E = Ia = Is = 0. This
implies that the only trajectory of Equation (2) on which
dV/dt ≤ 0 is Edfe. Hence, by LaSalle’s invariance principle,
the Edfe is GAS in Ω if Rc ≤ 1; otherwise, it is unstable.

3.3.3. Global Stability Analyses of EEP

Theorem 6. If Rc > 1, then the disease EEP ðEeÞ of Equation
(2) is GAS in Ω.

Proof. Since diseases EEP exist for Rc > 1, then to prove the
GAS behavior of Ee, we apply [26, 27] approach as

L = 〠
n

1
xi − x∗i − x∗i ln

xi
x∗i

� �� �
, ð45Þ

where xi is a state variable, i = 1,…7 and x∗i is the endemic
equilibrium point. From Equation (45), we have

L S∗,V∗
1 , V∗

2 , E∗, I∗a , I∗a , R∗ð Þ = S − S∗ − S∗ ln S
S∗

� �� �

+ V1 −V∗
1 − V∗

1 ln
V1
V∗

1

� �� �
+ V2 −V∗

2 −V∗
2 ln

V2
V∗

2

� �� �

+ E − E∗ − E∗ ln E
E∗

� �� �
+ Ia − I∗a − I∗a ln

Ia
I∗a

� �� �

+ Is − I∗s − I∗s ln
Is
I∗s

� �� �
+ R − R∗ − R∗ ln R

R∗

� �� �
:

ð46Þ

Having derivative of Equation (45) in the direction of the solu-
tion of Equation (2) and replacing dS/dt, dV1/dt, dV2/dt, d
E/dt, dIa/dt, dIs/dt, and dR/dt by their respective expression
from Equation (2), we get
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dL
dt

= 1 − S∗

S

� �
Λ + ϕ1V1 + ϕ2V2 − θ + β

ωIa + Isð Þ
N

+ μ

� �
S

� �

+ 1 − V∗
1

V1

� �
θS − k2V1ð Þ + 1 − V∗

2
V2

� �
ρV1 − k3V2ð Þ

+ 1 − E∗

E

� �
β

ωIa + Isð Þ
N

S − k4E
� �

+ 1 − I∗a
Ia

� �
pνE − k5Iað Þ + 1 − I∗s

Is

� �
1 − pð ÞνE − k6Isð Þ

+ 1 − R∗

R

� �
γaIa + γsIs +ΦV2 − μRð Þ:

ð47Þ

Expanding the above equation will give us

dL
dt

=Λ + ϕ1V1 + ϕ2V2 − μS −Λ
S∗

S
− ϕ1V1

S∗

S
− ϕ2V2

S∗

S

+ μS∗ + β
ωIa + Isð Þ

N
S∗ + θS∗ − k2V1 − θS

V∗
1

V1

+ ρV1 − k3V2 − ρV1
V∗

2
V2

+ k3V
∗
2 − k4E

− β
ωIa + Isð Þ

N
S
E∗

E
+ k4E

∗ − k5Ia − pνE
I∗a
Ia

+ k5I
∗
a + νE − k6Is − 1 − pð ÞνE I

∗
s

Is
+ k6I

∗
s

+ γaIa + γsIs +ΦV2 − μR − γaIa
R∗

R

− γsIs
R∗

R
−ΦV2

R∗

R
− μR∗:

ð48Þ

Further simplification result to

dL
dt

=Λ + ϕ1V1 + ϕ2V2 + θ + μ + β
ωIa + Isð Þ

N

� �
S∗ + ρV1

+ k3V
8
2 + k4E

∗ + k5I
∗
a + νE + k6I

∗
s + γaIa + γsIs +ΦV2

+ μR∗ − μ + θ
V∗

1
V1

+ β
ωIa + Isð Þ

N

� �
S∗ + Λ + ϕ1V1 + ϕ2V2ð Þ S

∗

S
+

� �

− k2 + ρ
V∗

V2

� �
V1 + k4E + k5Ia + k6Is + pνE

I∗a
Ia

�

+ 1 − pð ÞνE I
∗
s

Is
+ γaIa + γsIs +ΦV2ð ÞR

∗

R

�
:

ð49Þ

Now, we can write dL/dt as dL/dt =Ψ1 −Ψ2, where

Ψ1 =Λ + ϕ1V1 + ϕ2V2 + θ + μ + β
ωIa + Isð Þ

N

� �
S∗

+ ρV1 + k3V
8
2 + k4E

∗ + k5I
∗
a + νE + k6I

∗
s

+ γaIa + γsIs +ΦV2 + μR∗,

Ψ2 = μ + θ
V∗

1
V1

+ β
ωIa + Isð Þ

N

� �
S∗ + Λ + ϕ1V1 + ϕ2V2ð Þ S

∗

S

+ k2 + ρ
V∗

V2

� �
V1 + k4E + k5Ia + k6Is + pνE

I∗a
Ia

+ 1 − pð ÞνE I
∗
s

Is
+ γaIa + γsIs +ΦV2ð ÞR

∗

R
:

ð50Þ

From the fact that all the parameter values considered in
Equation (2) are positive, hence dL/dt ≤ 0 if Ψ1 ≤Ψ2 and dL
/dt = 0 if and only if Ψ1 =Ψ2 which mean dL/dt = 0 ⇐ S =
S∗, V1 =V∗

1 , V2 =V∗
2 , E = E∗, Ia = I∗a , Is = I∗s , and R = R∗.

Thus, by LaSalle’s invariance principle, the Ee is GAS in Ω if
Ψ1 <Ψ2.

4. Estimation of the parameter’s Value

In this manuscript, we solve a dynamics of parameter esti-
mation problem via a daily-wise reported number of corona-
virus confirmed cases in Ethiopia from July 1, 2022, to
August 31, 2022, see Table 2. The best fit corresponding to
the daily-wise reported confirmed individuals via our model
is shown in Figure 2 using the MATLAB routine. Here, we
fitted some number of the model parameter’s value such as
p, ω, θ, ρ, ϕ1, ϕ2, and Φ, whereas the remaining parameter’s
value was taken from well-published literature or estimated,
see Table 1. Furthermore, the initial conditions of the pre-
sented model are estimated according to the demographic
data of Ethiopia and the real reported COVID-19 patient
by the Ethiopian Ministry of Health 2022 and Ethiopian
World in Data (Our World in Data, COVID-19 2022)
between July 01, 2022, and August 31, 2022 [28]. The calcu-
lated parameters from the reported data in Ethiopia are esti-
mated as follows: The total population size of Ethiopia in
2022 is approximately N = 110, 000, 000 during the specified
days, and the life expectancy of Ethiopians for the year 2022
is 67.8 [23]. And the natural death rate (μ) is calculated as
μ = 1/ð365 ∗ 67:8Þ, while Λ = μ ∗Nð0Þ. According to the
Ethiopian Federal Ministry of Health report, there have been
281 active COVID-19 cases, i.e., Isð0Þ = 281, and from the
WHO report, 80% of infected humans become asymptomatic;
hence, we estimated Ia as Iað0Þ = 281/0:8. We let Eð0Þ = 650,
which is approximately equivalent to the sum of Ia and Is
[20]. Consequently, assuming V1ð0Þ=500, V2ð0Þ=300, Rð0Þ =
200, and Nð0Þ = 3002282 then Sð0Þ is estimated as Sð0Þ =
Nð0Þ − ðV1ð0Þ +V2ð0Þ + Eð0Þ + Iað0Þ + Isð0Þ + Rð0ÞÞ.

The fitted parameter’s values are demonstrated using the
least-squares method to minimize the summation of squared
errors defined on Equation (53). The system of Equation (2)
is formulated as a standard dynamic system in the following
form:

y′ = f t, y, pð Þ, ð51Þ

y t0ð Þ = y0, ð52Þ
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where y represent vector of the dependent variables (com-
partments) and p is the vector of unknown parameters.
The associated sum-of-square error is given by

φ =〠
i=1

yi − �yið Þ2, ð53Þ

where yi stands for the real data and yi = yðti, pÞ is the solu-
tion of Equation (51) with initial condition Equation (52)
according to the number of infected individuals at time ti
for a given set of estimated parameters p. The main goal is
to minimize the objective function

min
p

φ pð Þ, ð54Þ

subject to Equation (53) to obtain the required fitted param-
eter values [29].

4.1. Estimation of Basic Reproduction Number (Rc). The basic
reproduction number of any disease shows how fast the dis-
ease can spread throughout susceptible populations. In this
case, we have a control reproduction parameter, Rc, in the
presence of a vaccine and a simple reproduction number R0
in the absence of a vaccine in our model. Particularly, if
Rc > 1, then the disease can spread into the susceptible popu-
lation, and if Rc < 1, then the disease dies out from the com-
munity. So in this section, we estimate the numerical value
ofRc for Equation (2). Substituting the corresponding param-
eter’s value in Equation (25) and Equation (26) from Table 1,
we get the following estimated results. R0 = 2:105062463,
Rc = 0:0007495074407, and R1 = 0:00008555327934. There-
fore, the value of R0 is approximately 2.11 which indicates 2
or 3 susceptible individuals can be infected by a single infected
human because of no vaccination and any other control mech-
anisms in the model. Similarly, Rc is approximately 0.001
indicates that the diseases cannot spread into the population
due to the presence of control strategies in the model like
vaccination.

5. Sensitivity Analysis

In this section, we carried out a sensitivity analysis of the
parameters in the basic reproduction number to identify
their impact on the transition dynamics of the COVID-19
pandemic. To go through this section, we used the normal-
ized sensitivity index definition as stated in [30]. The
Normalized forward sensitivity index of a variable, Rc, that
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Figure 2: Daily time series of COVID-19 data from July 1 to
August 31, 2022.

Table 2: Daily COVID-19 confirmed reports in Ethiopia, from July 1, 2022, to August 31, 2022 [28].

Days Infected Days Infected Days Infected Days Infected

1 281 17 55 33 38 48 26

2 250 18 0 34 59 49 20

3 86 19 199 35 37 50 41

4 161 20 124 36 49 51 25

5 154 21 99 37 15 52 8

6 190 22 134 38 15 53 42

7 185 23 87 39 58 54 22

8 151 24 30 40 41 55 44

9 114 25 75 41 41 56 13

10 74 26 83 42 36 57 43

11 116 27 62 43 46 58 10

12 71 28 67 44 25 59 2

13 138 29 79 45 15 60 23

14 121 30 69 46 63 61 13

15 109 31 43 47 32 62 10

16 106 32 41
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depends on the differentiability of Rc with respect to a
parameter, φ, is defined as

ΛRc
φ = ∂Rc

∂φ
φ

Rc

: ð55Þ

For φ represents all the parameters in Rc

Forφ = ν,Λ R0ð Þ
ν = ∂Rcð Þ

∂ν
ν

Rc
= 1 − ν

k4
> 0,

Forφ = ω,ΛRc
ω = ∂Rc

∂ω
ω

Rc
= ωpk6
ωpk6 + 1 − pð Þk5

> 0,

Forφ = θ,ΛRc
θ = ∂Rc

∂θ
θ

Rc
= −θ

k2k3 − ϕ1k3 + ϕ2ρð Þð Þ
θ + μð Þk2k3 − θ ϕ1k3 + ϕ2ρð Þ < 0:

ð56Þ

The same method can be used to determine the index
values of the other parameters. And as depicted in
Figure 3, the parameters (β, ω, ν, ϕ1, and ϕ2) have positive
indices. This shows us they have a great impact on the
spreading of the disease in the community; as their values
increase the disease expands through the population, and
as their values decrease, the diseases become eliminated
from the population. In addition, the parameters in which
their sensitivity indices are negative (θ, αa, αs, γ1, γ1, Φ,
and ρ) have an effect of reducing the burden of the disease
in the population as their values increase. Therefore,
research advice for stakeholders is to work on minimizing
the positive indices and maximizing the negative indices of
the parameters.

6. Optimal Control Analysis

In this section, we examine the following two suggested con-
trol methods, which are crucial in reducing the dynamics of
the new coronavirus epidemic transmission. Thus, c1ðtÞ and
c2ðtÞ, which stand for the following terms, are used to signify
time-dependent control variables:

(i) The preventive measures focused on inhibiting the
transmission dynamics of the virus from symptom-
atic and asymptomatic humans. This can be obeyed
through public health advocacy for wearing face
masks in public places, regular hand washing, social
distancing, quarantine, and isolation that help
reduce the contact rate. Noting that c1ðtÞ = 1 implies
the strategy is effective for protection against infec-
tion, while c1ðtÞ = 0 implies failure of the strategy

(ii) The treatment measure includes medical care for all
the confirmed cases to increase the recovery rate of
infected individuals and to decrease disease-induced
mortality rate. This can be achieved by rapidly giving
patients who are hospitalized with COVID-19 a criti-
cal case of additional oxygen or mechanical breathing

Consequently, by including these control variables in
Equation (2), we obtain

dS
dt

=Λ + ϕ1V1 + ϕ2V2 − 1 − c1ð Þβ ωIa + Isð Þ
N

S − θ + μð ÞS,
dV1
dt

= θS − μ + ρ + ϕ1ð ÞV1,

dV2
dt

= ρV1 − μ + ϕ2 +Φð ÞV2,

dE
dt

= 1 − c1ð Þβ ωIa + Isð Þ
N

S − μ + νð ÞE,
dIa
dt

= pνE − μ + γa + αa + c2ð ÞIa,
dIs
dt

= 1 − pð ÞνE − μ + γs + αs + c2ð ÞIs,
dR
dt

= γa + c2ð ÞIa + γs + c2ð ÞIs +ΦV2 − μR:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð57Þ
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Figure 3: Correlation between the R0 and Rc and the model parameters β, ν, αa, αs, γa, γs, ω, θ, ρ, Φ, ϕ1, and ϕ2.
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The primary task at hand is to identify the best possible
control for preventive measures c1 and c2, given the rela-
tively low costs of these techniques. The Pontryagin maxi-
mum principle [31] is used to establish the necessary and
sufficient conditions for the existence of optimal control.
The function that minimizes the number of exposed cases
and symptomatically and asymptomatically infected cases
over a time interval of ½0, t f � can be defined as

Jop c1, c2ð Þ = min
0≤c1,c2≤1

ðt f
0

b1E + b2Ia + b3Is +
1
2〠

2

i=1
wic

2
i

 !
dt

ð58Þ

subject to Equation (57) with associated initial conditions
defined on Equation (3). The positive constants b1, b2, and
b3 are used to balance the units of the integrand to reduce
the dominance of any one of the terms in the integral, and
w1 and w2 measure the relative cost of intervention strate-
gies over the time interval ½0, t f �. Minimizing Equation
(58) provides an optimal control c∗i = 1, 2 such that

Jop c∗1 , c∗2ð Þ =min Jop
c1, c2
ci

∈ C
� �

, ð59Þ

subject to the control-induced state Equation (57) with pre-
scribed initial data and where C = ðc1, c2Þ: each ci is measur-
able with 0 ≤ ci < 1, i = 1, 2 for t ∈ ½0, t f �. The solution of
Equation (57) or the optimal control problem is the vector
function ðS∗, V∗

1 ,V∗
2 , E, I∗a , I∗s , R∗Þ ∈ R7

+ associated with an
optimal control pair ðc∗1 , c∗2 Þ ∈ C on the time interval ½0, t f �
that minimizes the cost functional Equation (58).

6.1. Characterization of Optimal Control. In this part, we
outline the features of the optimum control problem defined
in Equation (57) and offer the optimality requirements. Accord-
ing to Pontryagin’s maximum principle [32], if ðc∗1 , c∗2 Þ is
optimal for problem Equation (57) with the associated initial
condition given in Equation (3) and Equation (58) with fixed
final time t f , then there exists a non-trivial absolutely continu-
ous mapping λ : ½0, tt�⟶ R7, λ = ðλ1ðtÞ, λ2ðtÞ, λ3ðtÞ, λ4ðtÞ,
λ5ðtÞ, λ6ðtÞ, λ7ðtÞÞ called the adjoint vector, such that

(1) The Hamiltonian function is defined as

H = b1E + b2Ia + b3Is +
1
2〠

2

i=1
wic

2
i

+ 〠
7

i=1
λi tð Þgi t, S, V1, V2, E, Ia, Is, R, cð Þ,

ð60Þ

where gi represents the right hands of Equation (57) for
i = 1, 2, 3, 4, 5, 6, 7.

(2) The optimal condition of the system

∂H
∂ci

= 0, i = 1, 2: ð61Þ

Moreover, from Equation (61) the corresponding opti-
mal controls c∗1 and c∗2 are given by

c∗1 = max 0, min 1, λ4 − λ1ð Þμβ ωIa + Isð Þ
Λw1

S∗
� �� �

, ð62Þ

c∗2 = max 0, min 1, λ5 − λ7ð ÞI∗a + λ6 − λ7ð ÞI∗s
w2

� �� �
:

ð63Þ

(3) Hamiltonian system which is the combination of the
control system and the adjoint system, respectively,
defined in

S′ = ∂H
∂λ1

,

V1′ =
∂H
∂λ2

,

V2′ =
∂H
∂λ3

,

E′ = ∂H
∂λ4

,

Ia′ =
∂H
∂λ5

,

Is′=
∂H
∂λ6

,

R′ = ∂H
∂λ7

,

λ1′ = −
∂H
∂S

,

λ2′ =
∂H
∂V1

,

λ3′ =
∂H
∂V2

,

λ4′ =
∂H
∂E

,

λ5′ =
∂H
∂I∗a

,

λ6′ =
∂H
∂Is

,

λ′7 =
∂H
∂R

:

ð64Þ
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(4) The transversality condition of the model is also
holds true. That is

λi t f
À Á

= 0,
i = 1, 2, 3, 4, 5, 6, 7:

ð65Þ

Next, we discuss the characterization of optimal controls
and adjoint variables.

Theorem 7 (Necessary optimality conditions). Suppose ðc∗1 ,
c∗2 Þ is the optimal control and (S∗, V∗

1 , V
∗
2 , E

∗, I∗a , I
∗
s , and R∗)

is the corresponding unique optimal solution of the optimal con-
trol problem given in Equation (57) with the initial condition
defined in Equation (3) and Equations (60) and (61) with a fixed
final time t f . Then there exists an adjoint function λ∗i ðtÞ, i = 1,
2, 3, 4, 5, 6, 7 satisfying the following adjoint system:

dλ1
dt

= λ1 − λ4 − b1ð Þ 1 − c1ð Þβμ ωIa + Isð Þ
Λ

+ θ + μð Þλ1 − θλ2,

dλ2
dt

= λ2 − λ1ð Þϕ1 + λ2 − λ3ð Þρ + μλ2,

dλ3
dt

= λ3 − λ1ð Þϕ2 + λ3 − λ7ð ÞΦ + μλ3,

dλ4
dt

= b1 + λ4ð Þ μ + νð Þ + λ6 − λ5 − b2 + b3ð Þpν − b3 + λ6ð Þν,
dλ5
dt

= λ1 − λ4 − b1ð Þ 1 − c1ð Þβωμ
Λ

S + λ5 + b2ð Þ μ + γa + αa + c2ð Þ − λ7 γa + c2ð Þ,
dλ6
dt

= λ1 − λ4 − b1ð Þ 1 − c1ð Þβμ
Λ

S + b3 + λ6ð Þ μ + γs + αs + c2ð Þ − λ7 γs + c2ð Þ,
dλ7
dt

= μλ7 :

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð66Þ

subject to transiversality conditions defined on Equation (65).

Proof. The adjoint equations, optimality condition, and
transversality conditions can be obtained via Pontryagin’s
maximum principle [33]. Thus, system, conditions, and
equations are derived as above. That is Equation (66) from
Equation (64), Equation (62), and Equation (63) from
Equation (61). This completes the proof.

7. Numerical Simulations and Its Discussion

In order to validate the analytical findings mentioned in
Section 3, numerical simulations of the model utilizing the
MATLAB programming language’s ordinary differential
equation solvers are presented in this section. Furthermore,
we may statistically observe how control measures affect the
coronavirus outbreak’s spread in themodel outlined in Section
6. To illustrate the numerical results, use the initial conditions
defined in Section 4 and the parameters in Table 1.

To determine the optimal solution of the optimality system,
an iterative scheme is used. Since our aim is to control the dis-
eases, the numerical simulations carried out on the control sys-
tem Equation (57), adjoint equations defined on Equation (64)
with respect to Equation (65) and characterizations of the
control defined on Equation (62) and Equation (63) are run
in MATLAB using the Runge-Kutta forward-backward sweep
method to support the analytical results discussed in Sections
3 and 6.

An iterative scheme is used to find the optimal solution
to the optimality system. Since the state Equation (2) has
initial conditions and the adjoint systems (66) have final
conditions, we solve the state system using a forward
fourth-order Runge–Kutta method and solve the adjoint sys-
tem using a backward fourth-order Runge–Kutta method.
The iterative solution scheme involves making a guess of
the controls and using that guess to solve the state system.
The initial guess of the control together with the solution
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Figure 4: Impact of vaccine and control variables on susceptible humans.
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of the state systems is used to solve the adjoint systems. The
controls are then updated using a convex combination of the
previous controls and the values obtained using the charac-
terizations. The solution of the state and adjoint systems is
then repeated using the updated controls. This process is
repeated until the values in the current iteration are close
enough to the previous iteration values.

The impact of first- and second-dose vaccines, prevention,
and treatment control strategies on susceptible, exposed,
infected, and recovered humans is discussed qualitatively
below.

7.1. Impact of Full Dose Vaccine and Prevention on S(T).
Figure 4 illustrates the impact of full-dose vaccination on
the susceptible population. In Figure 4(a), the blue line
depicts the effect of a full dose booster on susceptible
humans, that is, ðρÞ and ðθÞ, while the red line indicates
the significant impact of a second shot of COVID-19 vac-
cine. The green line shows the absence of both dose vaccina-
tion, prevention, and treatment on susceptible individuals.
Simply Looking at the figure, we can conclude that full doses
of vaccines have a more significant impact on reducing the
risk of susceptible humans. Figure 4(b) illustrates the
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Figure 5: Impact of vaccine and control variables on exposed humans.

Time (days)

0

50

100

150

200

250

300

Sy
m

pt
om

at
ic

al
ly

 in
fe

ct
ed

 h
um

an
s

0 10 20 30 40 50 60 70

c1, c2, 𝜃 ≠ 0
c1 = c2 = 0, 𝜃 ≠ 0

(a)

0 10 20 30 40 50 60
Time (days)

0

500

1000

1500

2000

2500

I s 
(t)

c1 = c2 = 𝜃 = 0
c1 = c2 = 0, 𝜃 ≠ 0
c1, c2, 𝜃 ≠ 0

(b)

Figure 6: Impact of vaccine and control variables on symptomatically infected humans.

14 Journal of Applied Mathematics



influence of the first dose vaccination rate ðθÞ on susceptible
individuals. Also, we observed that the susceptibility of indi-
viduals to COVID-19 can be decreased significantly when
we increase the first-shot vaccination rate sufficiently. It is
visible from Figure 4 that taking full-dose vaccination in
parallel with prevention and treatment control strategies
decreases the susceptibility of individuals to the COVID-19
virus. From a biological view, when the second dose vaccina-
tion rate Φ increases, it provides humans with herd immu-
nity against the virus.

7.2. Impact Control Strategies on E(T). The blue solid line in
Figure 5(a) depicts the proportion of exposed people who

received vaccinations but did not use any additional preven-
tative measures. It rises initially before progressively falling
off after 15 days. But when we use vaccinations and control
strategies simultaneously, as shown in Figure 5(a), with a red
solid line from the beginning, the exposed cases decrease
rapidly until there are no exposed humans as time increases.
This depicts how the use of both doses of vaccination, pre-
vention, and treatments at the same time can eliminate the
risk of an outbreak of the diseases. From Figure 5(b), we
can conclude that if there are no control strategies, then
the exposed cases increase with time. From a biological
explanation, when there is no vaccination and other control
strategies, anybody can be easily exposed to the disease.
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Figure 7: Impact of vaccine and control variables on asymptomatically infected humans.
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Figure 8: Impact of the first dose vaccine on symptomatically and asymptomatically infected humans.
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7.3. Impact Control Strategies on IsðtÞ. The effect of vaccina-
tion, preventative, and treatment control techniques on peo-
ple with symptoms of infection is shown in Figure 6. As
clearly depicted in Figure 6(a), the red line represents the
controlled symptomatically infected humans with full dose
vaccine and two control strategies, while the green line rep-
resents the controlled symptomatically infected individuals
with full-dose vaccine only. This clearly indicates that the
COVID-19 pandemic can be controlled fast if effective pre-
vention, proper treatment, and vaccinations are carried out
simultaneously. Moreover, if no control strategies are imple-
mented, then symptomatically infested humans increases, as
shown in Figure 6(b). Hence, we recommended that both
dose vaccine, prevention, and treatment are essential to
obtaining maximum protection from coronavirus.

7.4. Impact Control Strategies on IaðtÞ. Figure 7 illustrates
the impact of effective treatment, proper prevention, and
vaccination on asymptotically infected humans with
COVID-19. In Figure 7(a), the red line represents the con-
trolled asymptomatically infected humans with full dose
vaccine only, while the blue one shows the controlled
asymptomatically infected humans with the use of full dose
vaccine and the two control strategies simultaneously. The
green solid line in Figure 7(b) shows that if no control strat-
egies are used, then the rate of asymptotically infected indi-
viduals rises with time. This clearly indicates the COVID-19
pandemic can be controlled fast if effective prevention,
proper treatment, and both shot vaccinations are carried
out simultaneously. If the rate of the first dose of vaccination
θ escalated from 0.11411 to 0.34110, then we observed that
both symptomatically and asymptomatically infected cases
decreased effectively, as shown in Figures 8(a) and 8(b).

7.5. Impact Control Strategies on IaðtÞ and IsðtÞ. Figure 9
shows that asymptomatic infected individuals can spread
the disease more than symptomatically infected individuals,
and it is dangerous to control them relative to the symptom-
atic ones using control strategies like prevention and treat-
ment. The first- and second-shot vaccine, i.e., θ, and ρ rate
has a negative correlation to controlling the pandemic (see
Figure 8 and Table 3). This led us to the conclusion that if
we sufficiently enhance the vaccination rate for both doses
and implement efficient preventive and appropriate treat-
ment, the infection case in both symptomatic and asymp-
tomatic instances may be significantly reduced. Generally,
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Figure 9: Solution curve depicting the impact of vaccine and control variables on infected humans.

Table 3: Sensitivity indices of Rc for the proposed model.

Parameters Sensitivity index

β +Ve

ω +Ve

ϕ2 +Ve

ν +Ve

ϕ1 +Ve

γs -Ve

γa -Ve

ρ -Ve

Φ -Ve

αa -V

αs -V

θ -Ve

μ -Ve
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from Figures 9(a) and 9(b), we conclude that asymptomatic
individuals have a greater effect on the transmission of
COVID-19 than the symptomatic one. In this stage, we can
see that the number of cases in infected subgraphs dropped
sharply after a few days, which also indicates that the combi-
nation of vaccination, personal protection, and treatment
can effectively and quickly inhibit the distribution of the virus.

7.6. The Influence of Control Strategies on RðtÞ. Figure 10
shows that the recovered rate increases when full-dose vacci-
nation, prevention, and treatment strategies are imple-
mented simultaneously. But without thus controls, the
number of recovered individuals is almost null. This reveals
that the number of infectious averted humans from the
COVID-19 pandemic due to the intervention of these con-
trols observe that the biological interpretation of the model
states that practicing the full dose vaccination and the two
control strategies concurrently at the highest level from the
beginning of the pandemic significantly minimized the
number of cases in the populations to the extent that there
are almost no cases, as shown in Figures 5–9, but
Figure 10 shows the recovery rate increaseing.

8. Conclusion

With double dose vaccination and control strategies as
prevention and treatment classes for the susceptible and
infected populations, respectively, the newly emerged corona-
virus transmission dynamics have been modeled and
analyzed in this manuscript using non-linear order differential
equations. Due to its human-to-human transmission method,
COVID-19 encounters numerous difficulties worldwide and
quickly spreads to become a pandemic. Therefore, in order to
prevent this pandemic with limited resources, public health
must be protected through appropriate vaccination as well as
by enforcing any other control measures. In order to analyze

the COVID-19 transmission dynamics using data that is read-
ily available from Ethiopia, the SV1V2EIaIsR compartmental
disease model will be developed and mathematically examined.
A mathematical model fitting to estimate the unknown param-
eters in our proposed model is also performed using real
COVID-19 confirmed case data in Ethiopia from July 01,
2022, to August 31, 2022.We ran analytical and numerical sim-
ulations of the model provided using these parameters and
identified two different equilibrium points: a disease-endemic
equilibrium point and a disease-free equilibrium point.We also
calculated the model’s reproduction number in both the vac-
cine’s presence and absence. We called this reproduction num-
ber the control reproduction number in the vaccine’s presence,
and we denoted it byRc. The two equilibrium points of Equa-
tion (2) are locally and globally asymptotically stable are also
shown. From the epidemiological perspective, we can draw
the conclusion that the COVID-19 pandemic will approxi-
mately fade out of the population when Rc < 1; otherwise, it
persists in society if Rc > 1. Therefore, the estimated Rc for
the suggested model utilizing the pandemic’s reported cases
can accurately ascertain the disease’s true dynamics and iden-
tify the disease’s current state in the Ethiopian population.

A sensitivity analysis has been performed to explore the
effect of the model parameters on COVID-19 transmission
dynamics. For instance, minimizing β and ω will highly help
in reducing the infection burden in society. While boosting θ
has a significant influence on decreasing the infection,
employing θ and ρ jointly has a greater impact on minimiz-
ing the infection. The parameter β has 100% responsible for
spreading the COVID-19 virus. Therefore, the effective
transmission rate needs to be reduced in order to lessen
the spread and burden of COVID-19 in the population. This
can be accomplished by using the right preventative mea-
sures, such as health procedures like good personal hygiene,
social seclusion, and the appropriate use of face masks.

This study draws special attention to controlling the trans-
mission of the virus in society with the significance of first-
and second-dose vaccination with other control strategies like
perversion and treatment using real reported data in Ethiopia.
Moreover, the impact of the first and second vaccine dose rate
was demonstrated. Increasing vaccination rates has the pre-
dicted effect of reducing the number of infected people in
the contaminated compartments. Increases in the second dose
vaccination rate, in particular, have been shown to slow the
spread of COVID-19 and control the endemic disease. How-
ever, COVID-19 continues to pose a hazard to the human
population even after the first and second dose rates of the
vaccine were implemented. Therefore, additional control mea-
sures, such as prevention and treatment for those who are
most at risk of developing a significant COVID-19 illness,
are necessary to further eradicate the disease in the population
and stop the spread of another pandemic. The numerical
simulation has demonstrated that both doses of vaccination
have a negative impact on both symptomatic and asymptom-
atic cases. Therefore, from the numerical simulation and
analytical analysis, we conclude that the use of both dose
vaccination and control strategies such as treatment and per-
version will highly eliminate the COVID-19 pandemic from
the Ethiopian population.
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Therefore, the output of this study can be used as a pol-
icy input for different countries with COVID-19 pandemic.
In order to contain the disease, the World Health Organiza-
tion (WHO) and nations around the world must implement
a policy that requires that not only do full-dose vaccinations
prevent pandemic outbreaks, but also that preventive mea-
sures and treatment are made necessary for all members of
the population. The spread of COVID-19 can be greatly
slowed down with a full-dose vaccine in conjunction with
personal protection measures and aggressive treatment of
affected patients. This will protect everyone on the planet
from the deadly coronavirus of our generation.
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