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The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference
equation xn+1 = αxnxn−1xn−2/βx2n−1 + γx2n−2, where the initial conditions x−2, x−1, x0 are nonzero real numbers and α, β, γ are
positive constants such that α ≤ β + γ. Visual examples supporting solutions are given at the end of the study. The figures are
found with the help of MATLAB.

1. Introduction

Considering every field of biology such as physiology, genet-
ics, development, ecology, or evolution, these fields cannot
be examined without considering the time. Life occurs over
time. It is not surprising that the mathematical modeling
of equations created in biology is defined by temporal pro-
cesses. Physiological events, such as hair growth, occur con-
tinuously over time. Processes such as population growth in
populations occur more discretely over time.

Difference equations are known as mathematical expres-
sions that are mostly used to describe a process that develops
in discrete time. That is why difference equations are of great
importance in applications. Since annual plants complete their
life cycle in one year, they can be explained with discrete-time
models. Bahar and Erdogan [1] investigated the amount of
seed production required for an annual plant with seeds capa-
ble of remaining dormant underground for a maximum of 3
years. The mathematical model obtained in the study is a
discrete-time 3rd-order linear difference equation:

Pn+2 = ασγPn+1 + βσ 1 − α σγPn + θσ 1 − α σ 1 − β σγP n−1

1

Wisnoski and Shoemaker [2] conducted a study showing
that competition in the seed bank alters diversity. In their

study, they referred to previous studies and supported their
work by presenting mathematical models.

Many scholars are interested in rational difference equa-
tions because they are more challenging to study in terms of
dynamics than linear models. Actually, the fact that differ-
ence equations are present in several biological models with
a wide range of applications makes them important to inves-
tigate. The Riccati difference equation is as follows:

xn+1 =
a + bxn
c + dxn

, 2

where a, b, c, d and initial condition are real numbers,
describing one of the intriguing models. AlSharawi and
Rhouma [3] investigated the effect of different harvesting
strategies in a deterministic environment on the discrete
Beverton-Holt model:

yn+1 =
aKyn

K + a − 1 yn
− h, 3

which is a special case of the Riccati difference equation.
Yang [4] investigated the global asymptotic stability of

the difference equation:

xn+1 =
xn−1xn−2 + xn−3 + a
xn−1 + xn−2xn−3 + a

4
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Kulenović et al. [5] studied the behavior of rational
recursive sequence:

xn+1 =
αxn + βxn−1
γxn + δxn−1

5

Elabbasy et al. [6] investigated and study some special
cases of the difference equation:

xn+1 =
axn−lxn−k

bxn−p − cxn − q
6

Khaliq and Elsayed [7] studied the behavior and
obtained some special cases of the difference equation:

xn+1 =
αxnxn−l

βxn−m + γxn−l
7

See also [8–19]. Our aim is to examine the global behav-
ior of the following third-order rational difference equation
that will serve as the basis for such modelling:

xn+1 =
αxnxn−1xn−2
βx2n−1 + γx2n−2

, 8

where the initial conditions x−2, x−1, x0 are nonzero real
numbers and α, β, γ are positive constants such that

α < β,
α < γ

9

Computational examples are given at the end of study
and simulated solutions of some problems via MATLAB.
We hope that the results of this study contribute to the
development of the theory on the global stability of nonlin-
ear rational differential equations.

Let us give some definitions and theorems that we need.

Definition 1 (see [18]). Let I be some interval of real num-
bers and let

f I3 ⟶ I 10

be a continuously differentiable function.
Then, for every set of initial conditions x0, x−1, x−2 ∈ I,

the difference equation

xn+1 = f xn, xn−1, xn−2 , n = 0, 1,⋯ 11

has a unique solution xn
∞
n=−1.

A point x ∈ I is called an equilibrium point of (11) if

x = f x, x, x ; 12

that is,

xn = x for n ≥ 0 13

is a solution of (11), or equivalently, x is a fixed point of f .

Definition 2 (see [18]). Let x be an equilibrium point of
Eq. (11).

(i) The equilibrium x of Eq. (11) is called locally
stable if for every ϵ > 0, there exists δ > 0 such
that for all x0, x−1, x−2 ∈ I with x0 − x + x−1 −
x + x−2 − x < δ, we have xn − x < ϵ for all n ≥ −2

(ii) The equilibrium x of Eq. (11) is called locally
asymptotically stable if it is locally stable, and if
there exists γ > 0 such that for all x0, x−1, x−2 ∈ I
with x0 − x + x−1 − x + x−2 − x < γ, we have
lim

n⟶∞
xn = x

(iii) The equilibrium x of Eq. (11) is called global attrac-
tor if for every x0, x−1, x−2 ∈ I, we have lim

n⟶∞
xn = x

(iv) The equilibrium x of Eq. (11) is called global asymp-
totically stable if it is locally stable and a global
attractor

(v) The equilibrium x of Eq. (11) is called unstable if it
is not stable

(vi) The equilibrium x of Eq. (11) is called source or a
repeller, if there exists r > 0 such that for all x0,
x−1, x−2 ∈ I with 0 < x0 − x + x−1 − x + x−2 − x
< r, there exists N ≥ 1 such that xN − x ≥ r

The linearized equation of (11) about the equilibrium
point x is

yn+1 = p1yn + p2yn−1 + p3yn−2, n = 0, 1,⋯, 14

where

p1 =
∂f
∂xn

x, x, x ,

p2 =
∂f

∂xn−1
x, x, x ,

p3 =
∂f

∂xn−2
x, x, x

15

The characteristic equation of (11) is

λ3 − p1λ
2 − p2λ − p3 = 0 16

Definition 3 (see [18]). A positive semicycle of xn
∞
n=−2 of

Eq. (11) consists of a “string” of terms xl, xl+1,⋯, xm , all
greater than or equal to x, with l ≥ −2 and m <∞ and such
that either l = −2 or l > −2 and xl−1 < x and either m =∞
or m <∞ and xm+1 <%x.

2 Journal of Applied Mathematics



A negative semicycle of xn
∞
n=−2 of Eq. (11) consists of a

“string” of terms xl, xl+1,⋯, xm all less than x, with l ≥ −2
and m <∞ and such that either l = −2 or l > −2 and xl−1 ≥ x
and either m =∞ or m <∞ and xm+1 ≥ x.

Theorem 4 (see [18]). Assume that pi ∈ℝ, i = 1, 2,⋯. Then,

〠
3

i=1
pi < 1 17

is a sufficient condition for the asymptotic stability of (16).

Theorem 5 (see [18]). Let p, q be an interval of real num-
bers and assume that f p, q 3 ⟶ p, q is a continuous
function satisfying the following properties:

(a) f x, y, z is nondecreasing in y, z ∈ p, q for each
x ∈ p, q and nonincreasing in x ∈ p, q for each
y, z ∈ p, q

(b) If m,M ∈ p, q × p, q is a solution of the system
M = f m,M,M and m = f M,m,m , then m =M

Then, Eq. (11) has a unique equilibrium x ∈ p, q , and
every solution of Eq. (11) converges to x.

2. Dynamics of Eq. (8)

In this section, we investigate the dynamics of (8) under the
assumptions that all parameters in the equation are positive
and the initial conditions are nonnegative.

2.1. Local Stability of Eq. (8). Eq. (8) has a unique equilib-
rium point and is given by the equation

x = αx3

βx2 + γx2
18

So,

x3 β + γ = αx3 19

Since α < β and α < γ, then α < β + γ, so the unique equilib-
rium point is x = 0.

Let f 0,∞ 3 ⟶ 0,∞ be a function defined by

f u, v, t = αuvt
βv2 + γt2

20

So,

∂f
∂u

x, x, x = α

β + γ
,

∂f
∂v

x, x, x = α γ − β

β + γ 2 ,

∂f
∂t

x, x, x = α β − γ

β + γ 2

21

The linearized equation of Eq. (8) is

yn+1 −
α

β + γ
yn −

α γ − β

β + γ 2 yn−1 −
α β − γ

β + γ 2 yn−2 = 0 22

Theorem 6. The equilibrium point of Eq. (8) is locally asymp-
totically stable.

Proof. It follows by Theorem 4 that Eq. (22) is asymptotically
stable if

α

β + γ
+ α γ − β

β + γ 2 + α β − γ

β + γ 2 < 1 23

If β = γ,

α

β + γ
< 1 24

So

α < β + γ 25

If β < γ,

3αγ − αβ < β + γ 2 26

So

α < β + γ 2

3γ − β
27

From

α < β + γ < 2γ < 2γ + γ − β = 3γ − β, 28

we can get

α < β + γ 2

3γ − β
< β + γ 2

β + γ
, 29

such that

α < β + γ 30

is obtained.
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Similarly, if γ < β,

3αβ − αγ < β + γ 2 31

So

α < β + γ 2

3β − γ
32

From

α < β + γ < 2β < 2β + β − γ = 3β − γ,

α < β + γ 2

3β − γ
< β + γ 2

β + γ
,

33

such that

α < β + γ 34

is regained. This completes the proof.

2.2. Global Asymptotic Stability of x of Eq. (8)

Theorem 7. The equilibrium point of x of Eq. (8) is globally
asymptotically stable.

Proof. Let p, q be real numbers and assume that f p, q 3

⟶ p, q is a function defined by f u, v, t = αuvt/ βv2 + γ
t2 . Then, we can easily see that the function is increasing in
u and decreasing in v, t. Suppose that m,M is a solution of
the system

M = f m,M,M ,
m = f M,m,m

35

Then, from Eq. (8),

M = αmM2

βM2 + γM2 ,

m = αMm2

βm2 + γm2 ,

α + β + γ M −m = 0

36

Thus,

M =m 37

By Theorem 5, x is a global attractor of Eq. (8). From The-
orem 6 and Definition 1, x is globally asymptotically stable of
Eq. (8) and the proof is complete.

2.3. Boundedness of Solutions of Eq. (8)

Theorem 8. Every solution of Eq. (8) is bounded.

Proof. Let xn
∞
n=−2 be a solution of Eq. (8). Let M =max

xn−1, xn−2 . From Eq. (8),

xn+1 =
αxnxn−1xn−2
βx2n−1 + γx2n−2

≤
αxnMM

βM2 + γM2 < β + γ xnM
2

βM2 + γM2 , 38

which implies that xn+1 < xn for n ≥ 0. Then,

lim
n⟶∞

xn = x 39

Then, the proof is complete.

2.4. Oscillation of Eq. (8).

Theorem 9. Assume that α = β + γ; then, Eq. (8) possesses the
prime period 2 solutions:

⋯,ϕ, ψ, ϕ, ψ,⋯ 40

Furthermore, every solution of Eq. (8) converges to a
period 2 solution (40) with ϕ ≥ 0.

Proof. Let

⋯,ϕ, ψ, ϕ, ψ,⋯ 41

be a period two solution of Eq. (8). Then,

ψ = β + γ ϕ2ψ

βψ2 + γϕ2
,

ϕ = β + γ ψ2ϕ

βϕ2 + γψ2

42

So

ϕ2 = ψ2 43

Then, this implies either ϕ = ψ or ϕ = −ψ. However, from ϕ ≠ ψ
which contradicts to ϕ = ψ, the solution becomes ϕ = −ψ.

This completes the proof.

Theorem 10. Assume that α = β + γ and β = γ; then, there
are four periodic solutions of Eq. (8) as

⋯,ϕ, ϕ, ψ, ψ,⋯ 44

Proof. Let ϕ and ψ be real numbers such that ϕ ≠ ψ.
Let

⋯,ϕ, ϕ, ψ, ψ,⋯ 45

be a periodic solution of Eq. (8) with prime period four.
Then, we have four cases:

(i) ψ = β + γ ψϕ2 / βϕ2 + γϕ2 ; hence, βϕ2ψ + γϕ2

ψ = β + γ ψϕ2. So every ϕ and ψ real numbers
provide the equation
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(ii) ϕ = β + γ ψ2ϕ / βψ2 + γϕ2 ; hence, βϕψ2 + γϕ3 =
β + γ ψ2ϕ, that is, ϕ2 = ψ2. So it becomes ϕ = −ψ like
in Theorem 9

(iii) ϕ = β + γ ψ2ϕ / βψ2 + γψ2 ; hence, βϕψ2 + γϕψ2

= β + γ ϕψ2. So every ϕ andψ real numbers provide
the equation

(iv) ψ = β + γ ψϕ2 / βϕ2 + γψ2 ; hence, βϕ2ψ + γψ3

= β + γ ϕ2ψ, that is, ϕ2 = ψ2. So it becomes ϕ = −
ψ like in Theorem 9

In these cases, the proof is complete.

3. Computational Examples

In this section, I perform computational examples to illus-
trate the validity of the main results. In order to better
express the numerical samples, a graph of the solutions

was obtained by using MATLAB. These graphs are drawn
with different parameters and different starting conditions.

(i) In Figure 1, Eq. (8) is shown to be globally asymptot-
ically stable under the initial conditions x−2 = 4 456,
x−1 = 7 875, and x0 = 5 124 and the parameters α = 3,
β = 5 845, and γ = 6 931 that meet the conditions
α < β + γ and β < γ

(ii) In Figures 2 and 3, Eq. (8) is shown to be globally
asymptotically stable under the initial conditions
x−2 = −7 456, x−1 = 8 875, and x0 = −3 124 and the
parameters α = 13, β = 7 845, and γ = 6 931 that
meet the conditions α < β + γ and γ < β

(iii) In Figure 4, Eq. (8) is shown to be globally
asymptotically stable under the initial conditions
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Figure 1: Stability of the solutions of Eq. (8) under the conditions
α < β + γ and β < γ.
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Figure 2: Behavior of Eq. (8) under the conditions α < β + γ and
γ < β.
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Figure 3: The zoomed version of Figure 2.
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Figure 4: Behavior of Eq. (8) under the conditions α < β + γ and
β = γ.
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x−2 = −1 508, x−1 = −6 57, and x0 = 4 124 and the
parameters α = 13, β = 7, and γ = 7 that meet the
conditions α < β + γ and β = γ

(iv) In Figure 5, Eq. (8) is shown to be not globally
asymptotically stable under the initial conditions
x−2 = 4 456, x−1 = 7 875, and x0 = 5 124 and the
parameters α = 13, β = 5 845, and γ = 6 931 that
meet the conditions β + γ < α and β < γ

(v) In Figure 6, Eq. (8) is shown to be not globally
asymptotically stable under the initial conditions
x−2 = −7 456, x−1 = 8 875, and x0 = −3 124 and the
parameters α = 16, β = 7 845, and γ = 6 931 that
meet the conditions β + γ < α and γ < β
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Figure 6: Unboundness solutions of Eq. (8) under the conditions
β + γ < α and γ < β.
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Figure 7: Unboundness solutions of Eq. (8) under the conditions
β + γ < α and β = γ.
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Figure 8: Prime period two solutions of Eq. (8) under the
conditions α = β + γ and γ < β.
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Figure 5: Unboundness solutions of Eq. (8) under the conditions
β + γ < α and β < γ.
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Figure 9: Periodic solution of Eq. (8) with prime period four under
the conditions α = β + γ and γ = β.

6 Journal of Applied Mathematics



(vi) In Figure 7, Eq. (8) is shown to be not globally
asymptotically stable under the initial conditions
x−2 = 3 802, x−1 = 7 141, and x0 = −5 375 and the
parameters α = 12 124, β = 5 572, and γ = 5 572 that
meet the conditions β + γ < α and β = γ

(vii) In Figure 8, Eq. (8) is shown to be globally asymp-
totically stable with prime period two under the ini-
tial conditions x−2 = −7 456, x−1 = 8 875, and
x0 = −3 124 and the parameters α = 13, β = 7, and
γ = 6 that meet the conditions α = β + γ and γ < β

(viii) In Figure 9, Eq. (8) is shown to be globally asymp-
totically stable with prime period four under the
initial conditions x−2 = −7 456, x−1 = 8 875, and
x0 = −3 124 and the parameters α = 13, β = 7, and
γ = 6 that meet the conditions α = β + γ and γ = β

4. Conclusion

It is very interesting for researchers to examine the dynamics
of rational difference equations, especially high-period
dynamics. In this article, the solutions of a third-order ratio-
nal difference equation with four-period oscillations are
examined. First of all, the local stability of eq. (8) and then
the global asymptotic stability are examined. Afterwards,
the oscillation of equation (8) was examined, and the
obtained theoretical results are supported by numerical
examples and graphics of solutions.
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