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Automatic production system scheduling problem under a just-in-time environment is researched in this paper. The automatic
production system is composed of many tanks and one robotic, the tank of the researched problem is responsible for
processing the job, and the robotic moves the job from one tank to the other tank. The difference between the researched
problem and the classic shop scheduling problem is that the former must consider job scheduling and the robotic move
sequence, but the latter considers only job scheduling. For optimizing simultaneously job scheduling and robotic move
sequence in the proposed problem and minimizing total earliness/tardiness, an improved NEH (Nawaz-Enscore-Ham) and
variable search (INEH-VNS) algorithm are developed. In the proposed method, firstly, to obtain initial solution, an improved
NEH is shown. Secondly, for computing value of the objective function, the double procedure method is constructed. Thirdly,
according to the properties of the proposed problem, three neighborhood structures, adjacent exchange, random insertion, and
job exchange, are investigated. To test the performance of the INEH-VNS, 100 instances are randomly generated. When the
run time is the same, compared with CPLEX 12.5, the INEH-VNS algorithm can find high-quality approximate optimal
solution, a special big scale. Compared with the G-VNS algorithm, the average improvement rate of the approximate optimal
solution is 45.9%, and the average stability rate of the INEH-VNS algorithm enhances 75.04%. That is to say, the INEH-VNS
algorithm is outstanding and more effective.

1. Introduction

The competition between enterprises in the market is
becoming increasingly intense. Therefore, the concept of
just-in-time (JIT), which is paid attention to by many indus-
tries and has been widely adopted over the years to improve
production efficiency, stems from the production field [1, 2].
One of the main concepts in JIT production systems is that
the makespan is equal to the due date, avoiding unnecessary
inventory and late delivery; that is to say, the makespan is
not more than the due date, and the makespan is not less
than the due date [3]. If the makespan is less than the due
date, many questions, e.g., inventory cost, product damage,
and economic depreciation, will be generated. If the make-

span is more than the due date, a variety of adverse conse-
quences, e.g., customer loss, contract default, and commercial
reputation damage, will arise [4].

Automatic production system which is applied to
printed circuit board (PCB) industry, wafer fabrication,
automobile manufacturing industry, and steel industry
[5–9] is an advanced intelligent manufacturing system. The
products which are manufactured by the automatic produc-
tion system are easy to depreciate, so JIT production mode is
adopted. In published literatures, the classical shop schedul-
ing problem considering due date is not researched in
robotic move sequence [10–13]. The automatic production
system scheduling problem is studied by robotic move
sequence but is not considered the due date [5–9]. To the
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best of our knowledge, the scheduling problem considering
JIT environment and robotic move sequence is studied
seldom. Due to the significance of JIT production in indus-
trial environment to overcome variations from the demand
providing customer satisfaction and widely applied of auto-
matic production system in industrial environment, in this
research, an improved NEH and variable neighborhood
search (INEH-VNS) that optimizes the proposed problem
is developed for improving production efficiency of the auto-
matic production system and alleviating the contradiction
between supply and demand.

In this paper, the automatic production system schedul-
ing problem considering due date is investigated. The
proposed automatic production system is composed of a
number of tanks, including one input station, one output
station, and one robotic which is controlled by computer.
All jobs which will be processed are loaded into the input
station and are processed in each tank in order; finally, all
jobs which have been finished are loaded into the output
station. Each job is moved from one tank to the other tank.
The due date of each job is given.

To satisfy the due date of the job as much as possible,
the INEH-VNS is designed for optimizing total earliness/
tardiness of more than one tank’s automatic production
system scheduling problem. Our contributions are listed
in the following:

(1) According to the properties of the proposed prob-
lem, the improved NEH is developed for generating
initial solution

(2) To compute the value of the objective function, the
double course method is proposed

(3) According to the solution properties of the proposed
problem, three neighborhood constructs are shown
for designing variable neighborhood search (VNS).

(4) In the previous work, the automatic production
system scheduling problem with one tank under
JIT environment is studied. In this paper, the
INEH-VNS is developed for solving the automatic
production system scheduling problem with more
than one tank under JIT environment and optimizing
simultaneously the job scheduling and the robotic
move sequence

The remainder of this paper is organized as follows.
Section 2 describes the literature on scheduling problems
minimizing total earliness/tardiness. Section 3 presents the
INEH-VNS. Section 4 exhibits computational results.
Finally, the conclusions and the challenge work are given
in Section 5.

2. Literature Review

The shop scheduling under JIT environment means the due
date and the makespan are as consistent as possible, so the
objective of the shop scheduling problem under JIT environ-
ment is to minimize total earliness/tardiness. In this section,

the literatures which the objective is to optimize total earli-
ness/tardiness are described.

For the single-machine scheduling problem under JIT
environment, the mixed integer programming model is
developed by Woodruff and Spearman when the due date
is given [14]. Coleman researched the problem with job
scheduling sequence-dependent setup times and investigated
the mixed integer programming model [15]. To obtain the
total weighted earliness/tardiness of job scheduling
sequence-dependent switching cost, the nonlinear mathe-
matic programming model is constructed [16]. For the prob-
lem with quadratic earliness/tardiness penalties, the mixed
integer programming model with uncertainty due date is
shown [17]. The exact and heuristic methods are proposed
[18] and improved the result of literature [17]. According
to literature [17], the mathematic programming with con-
sidering learning effect and release dates is exhibited [19].
Kayvanfar et al. researched the single machine scheduling
problem with parallel machine under JIT environment and
minimized total earliness/tardiness [11]. The single machine
scheduling problem considering general due date is studied;
if the objective function is to minimize the number of tardi-
ness jobs, the problem is polynomially solvable; if the objec-
tive function is to optimize the number of weighted tardiness
jobs, the problem is NP hard; if the problem is extended to
allow job rejection, the problem is NP hard [20]. For multi-
scenario scheduling problem, to obtain the number of
weighted JIT jobs, the problem is solvable in polynomial
time [21]. Otherwise, if the objective function is a total
weighted makespan, the problem is solvable in (is the num-
ber of jobs) [22]. When the due dates are assigned to each
job depending on its order, and the objective is to minimize
the total penalty for the earliness and tardiness of each job,
the problem is NP hard [16]. For solving the single machine
scheduling problem under JIT environment, the decomposi-
tion algorithm is proposed, so the upper bound and the
lower bound are obtained, and the optimal solution is found
by the proposed branch and bound; for optimizing total
weighted tardiness, four heuristic methods are designed
[23]. Mosheiov et al. introduced pseudopolynomial dynamic
programming algorithms for minimizing the number of
tardy jobs when the jobs allowed rejection [20]. Alidaee
reviewed the published mathematic programming and then
introduced future work [12].

For the two machines scheduling problem under JIT
environment, the problem with simultaneous consideration
of common due date assignment, convex resource allocation,
and learning effect is solvable in polynomial time for mini-
mizing the total resource consumption cost [24]. Shi and
Wang researched the problem with common due window
assignment, learning effect, and resource allocation, and they
proofed the problem is solvable in polynomial time for opti-
mizing the linear weighted sum of job earliness, tardiness,
due window size, and resource cost [25]. The results are
the same if the slack due date substitutes for common due
date [26, 27]. Based on the results of literature [25, 27], for
minimizing the scheduling cost and the resource consump-
tion cost, the scheduling problem with different due window
assignment and learning effects is investigated, and the
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polynomial algorithm is proposed [28]. The classical sched-
uling problem models considering due date assignment are
extended and solvable in polynomial time [29].

For more than two machines scheduling problem under
JIT environment, Jiang et al. addresses the problem consid-
ering position-dependent weights and discusses the
common due date assignment model and slack due date
assignment model. The polynomial time algorithm is devel-
oped for minimizing total cost [30]. Lv et al. proposed poly-
nomial time algorithms for the problem in literature, the
computational time complexity is reduced from O(n2logn)
to O(nlogn) [31]. For the problem with two distinct due
dates, Koulamas et al. show that the proportionate flow shop
problem with variable machine speeds remains NP-hard;
they then show that the no-wait problem with ordered jobs
and a maximal last machine is solvable in time; They also
show that the corresponding problem with the minimum
number of tardy jobs is solvable in time [32].

In summary, for the flow shop scheduling problem
under JIT environment, mathematics model, optimization
algorithm, and computational complexity are studied, but
the robot moving job between the operations is not consid-
ered. Thus, the results of the literatures [14–32] cannot be
applied to the proposed problem in this paper.

For the automatic production system scheduling prob-
lem, Zhao and Guo [9] and Zhao and Guo [33] constructed
optimization algorithm, respectively, for optimizing the pro-
duction cycle. Wu et al. proposed a differential evolution
algorithm for solving robotic cell scheduling problem with
batch-processing machines [34]. Majumder et al. researched
robotic cell scheduling problem with sequence-dependent
setup times and addressed a bacterial foraging optimization
algorithm [35]. Elmi et al. showed an integer programming
for cyclic flow shop robotic cell scheduling problem with
multiple part types [36]. The objective of the literatures [9,
33–36] is to minimize the production cycle. Wang et al.
studied the automatic production system scheduling prob-
lem under JIT environment, developed a mixed integer
programming, and proposed a hybrid guided tabu search
algorithm to optimize the makespan and total weighted tar-
diness [37]. The difference between the proposed problem
and the problem of literature [37] is that the parallel-tank
scheduling problem with hoist and group constraints is
researched in literature [37], but more than one tank flow
shop scheduling problem with hoist is investigated in this
paper, so the method of the literature [37] cannot be applied
in this paper. The method for solving the proposed problem
is worth studying.

Since the automatic production system scheduling prob-
lem is NP-hard, all kinds of algorithms, e.g., chemical reac-
tion optimization [9], branch and bound algorithm [33],
differential evolution algorithm [34], bacterial foraging opti-
mization algorithm [35], and hybrid guided tabu search
algorithm [37], are proposed for obtaining the optimal solu-
tion. There are two shortcomings in these algorithms; one is
it is difficult to find a solution for big scale problem, and the
other is it is troublesome to find parameter values for giving
problem. Variable neighborhood search that is proposed by
Mladenović and Hansen [38] does not involve parameters

and can find optimal solution of the problem. Variable
neighborhood search is applied to solve various combinato-
rial optimization problem [39–42]. In current, it is seldom
found that variable neighborhood search is used to solve
the automatic production system scheduling problem under
just-in-time environment. In addition, for enhancing the
performance of the proposed algorithm, the improved
NEH that is developed generates initial solution. In this
paper, an improved NEH and variable neighborhood search,
namely, INEH-VNS, are investigated for minimizing total
earliness/tardiness and finding the optimal job scheduling
and robotic move sequence.

3. Problem Description

The automatic production system is composed of one input
station T0, m tanks T1, T2,⋯,Tm, one output station Tm+1,
and single robot in this paper. The input station T0 contains
all jobs which will be processed, the output station Tm+1
holds all jobs which have been finished, and all tanks T1,
T2, ⋯, Tm process jobs. The robot moves the job from one
tank to the other tank. n jobs are processed by the automatic
production system at the same time. Firstly, each job is
unloaded from the input station T0. Then, the job is succes-
sively processed in tank T1, T2, ⋯, Tm. Finally, the job is
loaded into the output station Tm+1, that means the job is
finished. The processing time of each job is not all same in
tank Ti(i = 1, 2,⋯,m). So, the proposed problem in this
paper is a flow shop scheduling problem with single robot.
It is difficult that job scheduling and robotic move sequence
are simultaneously optimized in current researched prob-
lem. At the beginning of the period, the input station
contains all unprocessed jobs, and all tanks and the output
station are empty, which is different from published litera-
tures automatic production system scheduling problem,
because the tanks of published literatures automatic pro-
duction system scheduling problem are not all empty. At
any time, the robot can hold only one job at most, and
the tank can contain only one job at most. Furthermore,
processing interruptions and preemption are not consid-
ered. In this paper, three operations: (i) the robot unloads
job from tank Ti; (ii) the robot carries the job from tank
Ti to tank Ti+1; (iii) the robot loads the job into tank Ti+1
(i = 0, 1, 2,⋯,m), are called robotic activity. The robot
moves from tank Ti to tank Tk(i, k = 0, 1, 2,⋯,m,m + 1)
is named void move. For satisfying the due date of job as
much as possible, the objective of total earliness/tardiness
is proposed in this paper. To optimize the objective value,
three types of constraint, processing time constraints,
robot-containing constraints, and tank capacity constraints,
must be considered.

There is an obvious difference between the proposed
problem and the classic shop scheduling problem in that
job scheduling and the robotic move sequence of the pro-
posed problem are simultaneously optimized. Since the flow
shop scheduling problem for two machines is NP-hard to
obtain total earliness/tardiness [43], the proposed problem
is also NP-hard. The notations that are used in this paper
are defined as follows:
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Decision variables:
ti,j: the robotic activity start time (j = 1, 2,⋯, n; i = 0, 1,

2,⋯,m).
Intermediate variables:
yi,j,k,l: binary variables. When ti,j < tk,l is true, yi,j,k,l = 1,

otherwise yi,j,k,l = 0 (j, l = 1, 2,⋯, n; i, k = 0, 1, 2⋯ ,m).
TT : total earliness\tardiness time.
T j: earliness\tardiness time of the jth(j = 1, 2,⋯, n). job.
Cj: makespan of the jth(j = 1, 2,⋯, n). job.
Parameters or notations:
li,j: the processing time lower bound of the jth

(j = 1, 2,⋯, n) job in tank Ti(i = 1, 2,⋯,m).
dj: the due date of the jth(j = 1, 2,⋯, n) job.
mti,j: the time of robotic activity(j = 1, 2,⋯, n

;i = 0, 1, 2,⋯,m).
emi,k: the time of void move(i, k = 0, 1, 2,⋯,m,m + 1).
Other notations:
δ: 1, 2,⋯,n ⟶ 1, 2,⋯,n , the jobs permutation.
σ: 0, 1,⋯,n m + 1 − 1 ⟶ 0, 1,⋯,n m + 1 − 1 , the

robotic activities permutation.
σ k : the kth robotic activity in feasible

solution(k = 0, 1,⋯, n m + 1 − 1).
σ k : the kth robotic activity corresponds to the sub-

script of the tank in feasible
solution(k = 0, 1,⋯, n m + 1 − 1).

σ k / m + 1 + 1: the kth robotic activity corresponds
to the job in feasible solution(k = 0, 1,⋯, n m + 1 − 1).

tσ k : the start time of robotic activity σ k and tσ 0 = 0
(k = 0, 1,⋯, n m + 1 − 1).

The mixed integer programming is shown.

Minimize TT = 〠
n

j=1
Cj − dj 1

Subject to ti+1,j − ti,j ≥ lmi,j + li,j, j = 1, 2,⋯, n ; i
= 0, 1, 2,⋯,m − 1,

2

ti,j − tk,l ≥ lmk,l + emk+1,i −M 1 − yi,j,k,l , j, l

= 1,⋯, n ; i, k = 0, 1,⋯,m ; i ≠ k and i ≠ k + 1 or j ≠ l,
3

tk,l − ti,j ≥ lmi,j + emi+1,k −Myi,j,k,l, j, l = 1,⋯, n ; i, k

= 0, 1,⋯,m ; i ≠ k and i + 1 ≠ k or j ≠ l,
4

yi,h,i−1,h + yi−1,h,i,j + yi,j,i−1,j + yi−1,j,i,h

= 3, i = 1, 2,⋯,m, j, h = 1, 2,⋯, n and j ≠ h,
5

Cj = tm,j +mtm,j, j = 1, 2,⋯, n, 6

mti,j ≥ emi,i+1 j = 1,⋯, n ; i = 0, 1,⋯,m, 7

emi,p ≤ emi,k + emk,p i, p, k
= 0, 1,⋯,m + 1 ; i ≠ p ; i ≠ k ; p ≠ k,

8

ti,j ≥ 0, j = 1, 2,⋯, n ; i = 0, 1, 2,⋯,m, 9

yi,j,k,l = 0 or 1, j, l = 1, 2,⋯, n, i, k = 0, 1, 2,⋯,m 10

The objective function that is to minimize total earlines-
s\tardiness is shown by equality (1). Inequality (2) is a
processing time constraint. Inequality (3) and Inequality
(4) are robots containing constraints. Equality (5) is the tank
capacity constraint. Makespan is computed by equality (6).
Inequality (7) and Inequality (8) are triangle inequality
constraints. Inequality (9) and Inequality (10) are nonnega-
tive constraints and binary variables, respectively.

4. INEH-VNS

Variable neighborhood search that improves local search
algorithm is composed of initial solution, neighborhood
structure, and stop condition. Next initial solution and
neighborhood structure of the proposed algorithm that are
designed are introduced.

4.1. INEH. Since the job scheduling and the robot move
sequence of the proposed problem are optimized, if the job
scheduling is discussed first of all and, secondly, the robot
move sequence is optimized, it is hard to find the optimal
solution of the proposed problem, vice versa. In addition,
since the job scheduling and the robot move sequence are
not one-to-one, it is not easy to find the optimal solution
to the current researched problem if the job scheduling or
the robot move sequence represents the initial solution. In
this paper, to obtain initial solution, the robotic activity
sequence [12] that is composed of the job scheduling and
the robot move sequence is applied. It has been proven that
the NEH heuristic is an effective heuristic\method to address
flow-shop scheduling problems [44]. The improved NEH is
developed for constructing the initial solution, and the
detailed process is as follows:

Step 1. Since the time which the job moves from tank Ti to
tank Ti+1 is considered. In order to apply NEH method,
the processing time of the job, called li+1,j′ , is revised. The
detailed process is shown in equation (3).

li+1,j′ = li+1,j +mti+1,j 11

Step 2. Compute the sum of the processing time of the jth
(j = 1, 2,⋯, n) job in all tanks, named sum j. It means
equation (4) holds

sumj = 〠
m

i=1
li,j′ j = 1, 2,⋯,n 12

Step 3. All sum j(j = 1, 2,⋯, n) are arranged in descending
order; then, the job sequence set J is obtained.

Step 4. The first two robotic activities of the first job of set J
are inserted in the first two places of the initial solution,
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namely, S. The last two robotic activities of the last job of set
J are inserted in the last two places of initial solution S.

Step 5. The first robotic activity of each job, except the first
job and the last job, in set J is inserted in the place of initial
solution S in turn.

Step 6. According to property 1 (the appendix), the remain-
der robotic activities of each job in set J are inserted in the
initial solution S; then, the initial solution S is obtained.

Example 1. The number of jobs is four, and the number of
tanks, including the input station and output station, is five.
The processing time of jobs is listed in Table 1. The robotic
activities are shown in Table 2. The time of the void move
emi,k is equal to 2 i − k (i, k = 0, 1, 2,⋯, 5). The time of
robotic activity mti,j is 6 (i = 0, 1, 2, 3, 4,j = 1, 2, 3, 4). The
due date of jobs is d1, d2, d3, d4 = 4, 3, 2, 1 .

According to Step 1, Step 2, and Step 3, the set J = 1,
2, 3, 4 . Figures 1(a) and 1(b) are obtained according to Step
4 and Step 5, respectively. Figures 1(c) and 1(b) are obtained
according to Step 6. Finally, the initial solution S,
Figure 1(d), is given.

4.2. Double Procedure Method. In order to calculate the
makespan cj(j = 1, 2, 3, 4), the double procedure method is
developed. Firstly, the relation between the makespan cj
(j = 1, 2, 3, 4) and the start time of robotic activity is built.
Secondly, the start time of robotic activity is computed that
is separated into two procedures: one is the complete time
of job on the tank, and the other is the time of void move.
If the complete time of job on the tank is more than the time
of the void move, the start time of the robotic activity is
equal to the complete time of job on the tank, vice versa. If
σ k =m is true, the makespan c σ k / m+1 +1 = tσ k +
mtm, σ k / m+1 +1 holds, where the tσ k is obtained according
equation (5), equation (14), and equation (15).

tσ k′ = tσ k‐1 + mt σ k‐1 , σ k‐1 / m+1 +1

+ l σ k , σ k / m+1 +1
σ k
m + 1

=
σ k‐1
m + 1

,
13

tσ k′ ′ = tσ k‐1 + mt σ k‐1 , σ k‐1 / m+1 +1

+ em σ k‐1 +1, σ k
σ k
m + 1

≠
σ k‐1
m + 1

,
14

tσ k =max tσ k′ , tσ k′′ 15

Example 2. The relation between the robotic activities in
feasible solution is exhibited in Figure 2. The start time of
each robotic activity is computed as follows. So, the
makespan c1 is equal to 62.

tσ 1 = tσ 0 +mt0,1 + l1 1 = 0 + 6 + 2 = 8, tσ 2 = tσ 1 +
mt1,1 + l2 1 = 8 + 6 + 4 = 18, tσ 3 = tσ 2 +mt2,1 + l3 1 = 18 + 6
+ 6 = 30, tσ 4 = tσ 3 +mt3,1 + em3+1 0 = 30 + 6 + 4 × 2 = 44,
tσ 5′ = tσ 3 +mt3,1 + l4 1 = 30 + 6 + 8 = 44, tσ 5′′ = tσ 4 +

mt0,2 + em1,4 = 44 + 6 + 6 = 56, tσ 5 = max tσ 5′ , tσ 5′′ =
max 44, 56 = 56c1 = tσ 5 +mt4,1 = 56 + 6 = 62.

After the double procedure method is applied, c2 = 140,
c3 = 192, and c4 = 260 are true.

4.3. Neighborhood Structure. The feasible solution properties
of the proposed problem are applied, and three neighbor-
hood structures, adjacent exchange, random insertion, and
job exchange, are shown.

4.3.1. Adjacent Exchange. The S = σ 0 , σ 1 ,⋯,σ k − 1 , σ
k , σ k + 1 , σ k + 2 ,⋯,σ n m + 1 − 1 represents a feasi-
ble solution of the current researched problem, and σ k and
σ k + 1 are two robotic activities. If the inequality σ k /
m + 1 ≠ σ k + 1 / m + 1 holds, the robotic activities,
σ k and σ k + 1 , are exchanged. New solution S′ = σ 0 ,
σ 1 ,⋯,σ k − 1 ,σ k + 1 , σ k ,⋯, σ n m + 1 − 1 is
obtained and is feasible. For improving convergence, when
the robotic activities are exchanged, the job of smaller pro-
cessing time is moved from right to left. According to the
following steps, the neighborhood structure of adjacent
exchange is realized.

Step 1. The place, called k, is randomly selected in feasible
solution. There is a robotic activity σ k at place k.

Step 2. If the inequality σ k / m + 1 ≠ σ k + 1 / m + 1
holds, Step 3 is implemented. Otherwise, Step 4 is
implemented.

Step 3. If the inequality l σ k+1 , σ k+1 / m+1 +1 <
l σ k , σ k / m+1 +1 is true, the robotic activities, σ k and σ
k + 1 , are exchanged. Otherwise, Step 4 is implemented.

Step 4. If the inequality σ k / m + 1 ≠ σ k − 1 / m + 1
holds, Step 5 is implemented. Otherwise, Step 1 is
implemented.

Step 5. If the inequality l σ k−1 , σ k−1 / m+1 +1 >
l σ k , σ k / m+1 +1 is true, the robotic activities, σ k and σ

k − 1 , are exchanged. Otherwise, Step 1 is implemented.

Example 3. A feasible solution is shown in Figure 3(a). The
place, k = 6, is selected, and there are two robotic activities
σ 6 = 4, σ 7 = 6 at place k = 6 and k + 1 = 7, respectively.
The inequality σ 6 / 4 + 1 ≠ σ 6 + 1 / 4 + 1 is true,
and the inequality l σ 6+1 , σ 6+1 / 4+1 +1 < l σ 6 , σ 6 / 4+1 +1
holds. After the robotic activities σ 6 and σ 7 are
exchanged, new solution which is shown in Figure 3(b) is
obtained and is feasible.

4.3.2. Random Insertion. For exploring field, the neighbor-
hood of random insertion is developed. Since there is only
one tank Ti+1 between successive two tanks Ti
(i = 0, 1,⋯,m − 1), or there is only one tank Ti−1 between
successive two tanks Ti(i = 1,⋯,m), the neighborhood
structure of random insertion which is constructed is listed
as follows:
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Step 1. The place, denoted k, is randomly selected in feasible
solution.

Step 2. The tanks, σ k + 1 and σ k − 1, which are located
in the right-most at the left of the place k are found. The
tanks σ k + 1 and σ k − 1 correspond to the places k1
and k2, respectively.

Step 3. The tanks, σ k + 1 and σ k − 1, which are located
in the left-most at the right of the place k are found. The
tanks σ k + 1 and σ k − 1 correspond to the places k1
and k2, respectively.

Step 4. Let k′ =max k1, k2 and k′′ =min k1, k2 .

Step 5. If k′ = k′′ − 1 is true, go to Step 1. Otherwise, Step 6 is
implemented.

Step 6. A random number k is obtained between k′ and k′′,
and k ≠ k holds.

Step 7. The robotic activity σ k is inserted at the place k.
The relative position of the remainder robot activities is
unchanged.

Example 4. The value of k is 9, and σ 9 = 8. The result is
shown in Figure 4(a). According to Step 2, k1 = 6, σ k1 = 4
, and k2 = 8, σ k2 = 7 are shown in Figure 4(b). According
to Step 3, k1 = 12, σ k1 = 9, k2 = 13, and σ k2 = 12 are
shown in Figure 4(c). Figure 4(d) shows the results of k′ =
8 and k′′ = 12, and k′ ≠ k′′ − 1 is true. Finally, the place k
= 11 is selected that is shown in Figure 4(e). Figure 4(f)
shows that the robotic activity σ k = 8 is inserted at the
place k = 11.

4.3.3. Job Exchange. Two neighborhood structures, neigh-
borhood exchange and random insertion, change the robotic

move sequence, but the job scheduling does not change.
Therefore, to find a much better solution, the neighborhood
of job exchange is investigated for changing job sequence.
After the robotic activities of the job δ k and the robotic
activities of the job δ h have corresponded to swap in feasi-
ble solution, new solution is obtained and is feasible. To
enhance algorithm efficiency, the job that the due date is
smaller is prior processed. The following steps show the
process that job exchange is constructed.

Step 1. The two different jobs, δ k and δ h , are randomly
selected. Without loss of generality, the job δ k is processed
before the job δ h .

Step 2. The due dates of job δ k and δ h are dδ k and dδ h ,
respectively.

Step 3. If dδ k ≥ dδ h holds, implement Step 4; otherwise,
implement Step 1.

Step 4. The robotic activities of the job δ k and the robotic
activities of the job δ h correspond to swap.

Example 5. Figure 5(a) shows the randomly selected two
jobs, δ 1 (the shadow is the slash) and δ 2 (the shadow
is the square), respectively. The due dates of job δ 1 and
δ 2 are dδ 1 = 4 and dδ 2 = 3, respectively. Since dδ 1 >
dδ 2 is true, the robotic activities of the job δ 1 and the
robotic activities of the job δ 2 corresponded to swap. New
feasible solution is obtained and is shown in Figure 5(b).

As mentioned above, INEH-VNS flowchart is shown in
Figure 6. The detailed procedure of INEH-VNS is illustrated
as algorithm in Algorithm 1.

5. Computational Result

To test the performance of the proposed method, the
computational experiments are shown in this section.
Extensive experiments are conducted on a set of problems.
All experiments are implemented using Microsoft Visual
Studio 2010 and are run on an Intel(R) Core(TM)i5-
4344 CPU@3.20GHz and RAM 8.0GB PC.

In order to evaluate the performance of the proposed
method, we develop the other algorithms, namely, G-VNS
and simulated annealing (SA), respectively. There are two
differences between the G-VNS and the proposed method.
One is all the due dates dj(j = 1, 2,⋯, n) are arranged in
descending order, and then the job sequence set J is obtained
for generating the initial solution of the G-VNS; the other is
the dδ k ≥ dδ h which is replaced by sumδ k ≥ sumδ h in
Step 3 of Section 4.3.3, where sumδ k is computed by equa-
tion (4). The initial solution of SA is generated by the INEH
method, and the proposed neighborhood structures in this
study are applied in the SA.

For single machine scheduling problem under JIT
environment, the due dates obey the uniform distribution
of P 1 −H − R/2 , P 1 −H + R/2 , where P is the lower
bound, H is the tardiness factor, and R is the due date

Table 2: Robotic activity.

Job
Tank

T0 T1 T2 T3 T4

1 0 1 2 3 4

2 5 6 7 8 9

3 10 11 12 13 14

4 15 16 17 18 19

Table 1: Processing time.

Job
Tank

T1 T2 T3 T4

1 2 4 6 8

2 4 6 8 10

3 6 8 10 12

4 8 10 12 14
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range [45]. The computational method of the lower bound P
is developed for m machine scheduling problem under JIT
environment by Taillard [46]. The computational method
which is proposed by Taillard does not consider the time of
robotic activity. In this paper, to obtain a lower bound P, equa-
tion (3) is used. Then, the tardiness factor H and the due date
range R are 0.2 and 0.6, respectively [47].

Since bench marks are not found for the proposed prob-
lem, one hundred instances are generated according to liter-
ature [48]. li,j is an integer and li,j ~U 20, 99 . The robotic
move time mti,j = 6 for all i = 0, 1, 2,⋯,m;j = 1, 2,⋯, n.
The void move time emi,k = 2 i − k for all i, k = 0, 1, 2,⋯,

m,m + 1. The number of tanks m is an even number
between 2 and 20. The number of jobs n varies between 5
and 50 and is an integer multiple of 5.

On the test of the instances, the proposed algorithm,
called INEH-VNS, compares with the G-VNS, CPLEX12.5,
and SA. Termination condition is the maximum computa-
tional time does not exceed 600 seconds. The other parame-
ters of CPLEX 12.5 are default. Each instance is run 10 times,
and the average of each instance, namely, AVGEi
(i ∈ G‐VNS, INEH‐VNS, CPLEX, SA ), is recorded. The
performance measure is defined by equation (8), equation
(9), and equation (10).

0 1 18 19

(a)

0 1 18 195 10 15

(b)

0 1 18 195 10 156 1611

(c)

0 1 18 195 10 156 1611

……

82 7 12 173 4 13 149

(d)

Figure 1: Procedure of producing initial solution.

0 1 2 3 5 4 6 7 8 10

1191213151419 18 17 16

Waiting or void move

Robotic activity

Figure 2: Robotic activity relationship of feasible solution.

0 1 18 195 10 156 161182 7 12 173 4 13 149

(a)

0 1 18 195 10 156 161182 7 12 173 4 13 149

(b)

Figure 3: Schematic diagram of adjacent exchange.
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IR1 =
AVGECPLEX‐AVGEINEH‐VNS

AVGECPLEX
× 100%,

IR2 =
AVGESA‐AVGEINEH‐VNS

AVGESA
× 100%,

IR3 =
AVGEG‐VNS‐AVGEINEH‐VNS

AVGEG‐VNS
× 100%

16

5.1. Comparison Approximate Optimal Solution. The pro-
posed algorithm compares with CPLEX 12.5, the G-VNS,
and the SA, and the results are displayed in Tables 3–7.
The results indicate high-quality solutions that can be found
by the INEH-VNS.

The INEH-VNS algorithm compares with CPLEX 12.5,
and the INEH-VNS algorithm is more effective for large-
scale problems. The approximate optimal solutions of all
instances are found by the INEH-VNS. Otherwise, 27% of
the instances of the approximate optimal solutions are
solved by CPLEX 12.5. Furthermore, in the instances in
which the approximate optimal solutions are discovered by
CPLEX 12.5, the approximate optimal solutions of eleven
instances that are solved by INEH-VNS are better than the

optimal solutions obtained by CPLEX 12.5. The best
improvement rate is 77.96%, the worst improvement rate is
0.44%, and the average of IR1 is 34.55%. The best improve-
ment rate and the worst improvement rate are shown in bold.

The INEH-VNS algorithm compares with the SA algo-
rithm, and the INEH-VNS algorithm is more effective than
the G-VNS algorithm. That is to say, if the run time is the
same, better approximate solutions are found by the
INEH-VNS algorithm in all instances. The best improve-
ment rate is 77.78%, the worst improvement rate is 7.09%,
and the average of IR2 is 54.18%. The best improvement rate
and the worst improvement rate are exhibited by bold and
shadow. The G-VNS algorithm compares with the SA algo-
rithm, The G-VNS algorithm is better than the SA algo-
rithm. 85 out of 100 instances of the solution quality
which is found by the G-VNS are better than the solution
quality which is solved by the SA algorithm. We find that
if the number of tank is more than 4, the G-VNS algorithm
is more competitive than the SA algorithm. The INEH-VNS
algorithm and the G-VNS algorithm are more effective than
the SA algorithm.

The INEH-VNS algorithm compares with the G-VNS
algorithm, and the INEH-VNS algorithm is more

0 1 18 195 10 156 161182 7 12 173 4 13 149

(a)

0 1 18 195 10 156 161182 7 12 173 4 13 149

(b)

0 1 18 195 10 156 161182 7 12 173 4 13 149

(c)

0 1 18 195 10 156 161182 7 12 173 4 13 149

(d)

0 1 18 195 10 156 161182 7 12 173 4 13 149

(e)

0 1 18 195 10 156 1611 82 7 12 173 4 13 149

(f)

Figure 4: Schematic diagram of random insertion.

4 7 8 90 1 2 3 18 195 10 156 1611 12 13 14 17

(a)

0 1 18 195 10 156 16118 27 12 173 4 13 149

(b)

Figure 5: Schematic diagram of job exchange.
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competitive than the G-VNS algorithm. The approximate
optimal solutions of all instances are obtained by the
INEH-VNS algorithm and the G-VNS algorithm, but 94
out of 100 instances of the solution quality which is found
by the INEH-VNS are better than the solution quality which
is solved by the G-VNS. The biggest IR3 is 69.86%, the smal-
lest IR3 is 0.59%, and the average of IR3 is 45.9%. The
biggest IR3 and the smallest IR3 are shown by shadow.
The results show job exchange that is designed according
to descending order due date is more effective.

5.2. Stability Comparison. In this subsection, the stability of
the INEH-VNS algorithm, the G-VNS algorithm, and the
SA algorithm is discussed. For evaluating algorithm stability,
the standard deviation is used. Since CPLEX 12.5 can find
27% of the instances of the approximate optimal solutions,
CPLEX 12.5 is not considered in this subsection. The results
are shown in Tables 7–11. The stability rate, called SR1 and
SR2, is computed according to equation (17) and equation
(18), where STSA, STG-VNS, and STINEH-VNS represent
the standard deviation of the SA algorithm, the G-VNS
algorithm, and the INEH-VNS algorithm, respectively.

SR1 =
STSA‐STINEH‐VNS

STSA
× 100%, 17

SR2 =
STG‐VNS‐STINEH‐VNS

STG‐VNS × 100% 18

In Tables 8–12, the stability of the INEH-VNS algo-
rithm and the G-VNS algorithm is much better than the
stability of the SA algorithm. The stability of the INEH-
VNS algorithm is much better than the stability of the
G-VNS algorithm except for six instances. In the remain-
der instances, the standard deviation of the G-VNS
algorithm is more than the standard deviation of the
INEH-VNS. When n = 5 and m = 6 or m = 18, the same
solution is obtained by the INEH-VNS algorithm; thus,
the stability of the INEH-VNS is the best. The results
are shown in bold. The standard deviation of the INEH-
VNS algorithm, compared with the standard deviation of
the G-VNS algorithm, is the worst improvement.

The rate is 3.46%, and the result is shown by shadow.
That is to say, when n = 20 and m = 4, there is little differ-
ence for the stability of the INEH-VNS algorithm and the
G-VNS algorithm. In these instances where the standard
deviation of the INEH-VNS algorithm is more than the stan-
dard deviation of the G-VNS, the average of SR2 is 75.04%.
These results show that job exchange that is designed
according to descending order due date is more stable; that
is to say, the INEH-VNS is better convergent.

5.3. Convergence. Because CPLEX 12.5 can find 27% of the
instances of the approximate optimal solutions and the
performance of the SA algorithm is poor, in this subsec-
tion, the convergence of the INEH-VNS algorithm and
the G-VNS algorithm is described. When the number of

Start

Give initial solution by INEH.

Compute current optimal solution by double
procedure method.

Design 3 neighborhood structures. Let i =1.

Search the ith Neighborhood structure.

Current solution is better than
current optimal solution.

Update current optimal
solution. Let i =1.

Output optimal solution

Yes No Yes

No

Let i  = i+1.

i<4

Figure 6: INEH-VNS flowchart.
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Algorithm INEH-VNS
Input: processing time of job, the time of robotic activity, the time of void move, the number of jobs n, the number of tanks m, the
due date of job, the time of void move, neighborhood structures, N1 (Adjacent exchange), N2 (Random insertion), and N3 (Job
exchange). Let k = 1, 2, 3.
Output: optimal solution S, and optimal objective value TT .
//First stage: generate initiation solution by INEH.
For i=0 to m

For j=0 to n
Record the amend processing time of job as li+1, j′

End for
End for
For i=0 to m

For j=0 to n
Calculate the sum of processing time of each job in all tanks as sumj

End for
End for
For i=0 to m

For j=0 to n
Descending order sumj, obtain the job sequence set J .

End for
End for
For i=0 to n − 1

For j=i + 1 to n
According to property 1, initiation solution S0 is obtained.

End for
End for
The double procedure method is proposed, the objective value TT0 is computed. Let S = S0 and TT = TT0.
//Second stage: find optimal solution by VNS.
Repeat

For k = 1to 3

Find the best neighbor S′ of S in Nk ;

When the solution is S′, the objective value is TT ‘;
If TT ‘ < TT , then S = S‘ and k = 1;
Otherwise k = k + 1;

End for
Until Stopping criteria.

Algorithm 1: The pseudocode of the INEH-VNS.

Table 3: The result of the comparison between the INEH-VNS and CPLEX 12.5, the G-VNS, and the SA for n = 5 and n = 10.

m
5 10

CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%) CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%)
2 493 635 439 590 -19.68 7.09 -34.40 925 1681 1186 1179 -27.46 29.85 0.59

4 1091 1488 1091 1214 -11.27 18.40 -11.27 1883 3406 2443 2551 -35.48 25.10 -4.42

6 1063 1854 1125 1305 -22.77 29.63 -16.00 2526 3815 3211 1933 23.48 49.33 39.80

8 1463 2611 1624 1803 -23.24 30.94 -11.02 4882 7943 4946 3322 31.95 58.18 32.83

10 1780 3077 2094 2144 -20.45 30.32 -2.39 6523 11452 7100 5139 21.22 55.12 27.62

12 1978 4435 2493 2172 -9.81 51.02 12.88 — 16925 10206 7215 — 57.37 29.31

14 2499 6188 3381 3236 -29.49 47.71 4.29 — 20124 12297 7886 — 60.81 35.87

16 1436 5246 2689 2158 -50.28 58.86 19.75 — 22493 14487 8077 — 64.09 44.25

18 2841 7008 4302 3549 -24.92 49.36 17.50 — 32611 20270 11912 — 63.47 41.23

20 3720 9997 5325 4663 -25.35 53.35 12.43 — 33530 22108 11689 — 65.14 47.13

The symbol bold’ indicates the best improvement rate and the worst improvement rate.
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tanks is 50, and the number of jobs is 10, 12, 14, 16, 18,
and 20, respectively, the convergence of the INEH-VNS
algorithm and the G-VNS algorithm is shown in
Figures 7(a)–7(f). In Figure 7, the INEH-VNS algorithm
and the G-VNS algorithm cause a quick decrease in the
objective function value at the beginning and continue

reducing this function with lower speed until it converges
to its best solution with a reduced speed of approximately
zero. But the best solution which is found by the INEH-
VNS algorithm is much better than the best solution
which is found by the G-VNS algorithm. That is to say,
the proposed algorithm is effective.

Table 4: The result of the comparison between the INEH-VNS and CPLEX 12.5, the G-VNS, and the SA for n = 15 and n = 20.

m
15 20

CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%) CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%)
2 1867 3334 2973 2331 -24.85 30.08 21.59 4365 6463 6462 4950 -13.40 23.41 23.40

4 7451 7169 6328 4694 37.00 34.52 25.82 13103 9114 10063 6525 50.20 28.40 35.16

6 7703 8805 8294 5335 30.74 39.41 35.68 — 12299 14348 6048 — 50.82 57.85

8 11659 18178 11604 7231 37.98 60.22 37.69 — 32291 21171 10649 — 67.02 49.70

10 — 24791 15983 9276 — 62.58 41.96 — 44868 29839 16187 — 63.92 45.75

12 — 34570 20709 12069 — 65.09 41.72 — 59627 39092 23384 — 60.78 40.18

14 — 42426 27015 16720 — 60.59 38.11 — 69337 46135 24621 — 64.49 46.63

16 — 52705 35570 22062 — 58.14 37.98 — 86514 58817 33019 — 61.83 43.86

18 — 62078 42921 23315 — 62.44 45.68 — 104738 76923 43351 — 58.61 43.64

20 — 70017 50865 26879 — 61.61 47.16 — 122469 91142 49460 — 59.61 45.73

Table 5: The result of the comparison between the INEH-VNS and CPLEX 12.5, the G-VNS, and the SA for n = 25 and n = 30.

m
25 30

CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%) CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%)
2 6744 9846 11394 8103 -20.15 17.70 28.88 10112 12305 15603 10068 0.44 18.18 35.47

4 36771 13595 17490 8103 77.96 40.40 53.67 — 18518 24649 12287 — 33.65 50.15

6 — 23188 21934 9638 — 58.44 56.06 — 28782 34238 12232 — 57.50 64.27

8 — 47217 33205 12605 — 73.30 62.04 — 61529 45596 14232 — 76.87 68.79

10 — 68084 45098 23307 — 65.77 48.32 — 95193 64206 30880 — 67.56 51.90

12 — 98962 59518 32134 — 67.53 46.01 — 121323 82199 40165 — 66.89 51.14

14 — 105430 71535 35534 — 66.30 50.33 — 150899 105295 50646 — 66.44 51.90

16 — 135521 93677 48914 — 63.91 47.78 — 186305 135841 72702 — 60.98 46.48

18 — 158791 117724 66081 — 58.38 43.87 — 220702 168404 88466 — 59.92 47.47

20 — 181473 140627 75785 — 58.24 46.11 — 253343 202082 104241 — 58.85 48.42

The symbol bold’ indicates the best improvement rate and the worst improvement rate.

Table 6: The result of the comparison between the INEH-VNS and CPLEX 12.5, the G-VNS, and the SA for n = 35 and n = 40.

m
35 40

CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%) CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%)
2 13006 17059 22483 14108 -8.47 17.30 37.25 26736 25286 33131 22323 16.51 11.72 32.62

4 — 21931 34534 16376 — 25.33 52.58 — 30620 46964 24170 — 21.06 48.54

6 — 46902 49152 17002 — 63.75 65.41 — 65436 64193 22612 — 65.44 64.77

8 — 93408 65086 22189 — 76.25 65.91 — 109027 80392 24229 — 77.78 69.86

10 — 127233 87192 36513 — 71.30 58.12 — 168067 115275 44716 — 73.39 61.21

12 — 165049 113481 52317 — 68.30 53.90 — 211854 148882 68293 — 67.76 54.13

14 — 196886 144152 71225 — 63.82 50.59 — 259912 191018 92834 — 64.28 51.40

16 — 232382 176042 83334 — 64.14 52.66 — 310703 237617 118029 — 62.01 50.33

18 — 295100 222768 115001 — 61.03 48.38 — 377706 295988 149591 — 60.39 49.46

20 — 336981 268031 135693 — 59.73 49.37 — 431811 347982 176065 — 59.23 49.40

The symbol bold’ indicates the best improvement rate and the worst improvement rate.
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Table 7: The result of the comparison between the INEH-VNS and CPLEX 12.5, the G-VNS, and the SA for n = 45 and n = 50.

m
45 50

CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%) CPLEX SA G-VNS INEH-VNS IR1(%) IR2(%) IR3(%)
2 51314 27826 40584 24157 52.92 13.18 40.48 — 37055 53160 29196 — 21.21 45.08

4 — 37668 59833 26187 — 30.48 56.23 — 49054 78949 39258 — 19.97 50.27

6 — 90543 82649 30006 — 66.86 63.69 — 110265 103603 41566 — 62.30 59.88

8 — 142668 103064 34014 — 76.16 67.00 — 173608 129906 39274 — 77.38 69.77

10 — 203423 144021 55515 — 72.71 61.45 — 244018 172848 59123 — 75.77 65.79

12 — 256067 185770 79818 — 68.83 57.03 — 318390 234713 98828 — 68.96 57.89

14 — 324433 232567 99217 — 69.42 57.34 — 396303 294291 134595 — 66.04 54.26

16 — 370196 282836 126261 — 65.89 55.36 — 465536 361976 165256 — 64.50 54.35

18 — 463879 364988 178594 — 61.50 51.07 — 551850 438044 207390 — 62.42 52.66

20 — 519073 427214 199962 — 61.48 53.19 — 657109 537185 264502 — 59.75 50.76

Table 8: Comparison standard deviation between the INEH-VNS algorithm, the G-VNS algorithm, and the SA algorithm when n = 5
and n = 10.

Tank
5 10

STSA STG-VNS STINEH-VNS SR1(%) SR2(%) STSA STG-VNS STINEH-VNS SR1(%) SR2(%)
2 96.74 0.00 5.10 94.73 — 293.99 18.80 87.20 70.34 -363.73

4 194.45 0.00 7.04 96.38 — 449.42 104.29 84.29 81.24 19.17

6 209.63 14.71 0.00 100.00 100.00 945.32 120.58 3.43 99.64 97.16

8 293.84 34.58 4.00 98.64 88.43 883.43 141.86 82.66 90.64 41.73

10 516.10 50.94 5.37 98.96 89.45 1573.53 171.76 244.73 84.45 -42.48

12 756.24 68.63 13.03 98.28 81.01 1695.16 282.55 80.25 95.27 71.60

14 912.01 104.50 2.72 99.70 97.40 2385.22 302.74 105.86 95.56 65.03

16 644.08 79.07 71.60 88.88 9.44 1601.24 324.34 71.04 95.56 78.10

18 893.98 128.16 0.00 100.00 100.00 2005.54 290.72 44.44 97.78 84.71

20 605.46 162.93 22.58 96.27 86.14 2134.83 456.86 57.60 97.30 87.39

The symbol bold’ indicates the best improvement rate and the worst improvement rate.

Table 9: Comparison standard deviation between the INEH-VNS algorithm, the G-VNS algorithm, and the SA algorithm when n = 15
and n = 20.

Tank
15 20

STSA STG-VNS STINEH-VNS SR1(%) SR2(%) STSA STG-VNS STINEH-VNS SR1(%) SR2(%)
2 190.55 91.40 153.56 19.41 -68.01 341.35 163.34 45.46 86.68 72.17

4 1067.12 207.40 121.74 88.59 41.30 1037.31 264.67 255.50 75.37 3.46

6 1757.07 280.04 21.84 98.76 92.20 1687.32 569.50 8.34 99.51 98.53

8 2515.67 472.49 162.06 93.56 65.70 2422.99 636.79 144.54 94.03 77.30

10 1639.26 399.43 152.27 90.71 61.88 3144.65 743.05 203.85 93.52 72.57

12 2277.20 392.36 302.40 86.72 22.93 2789.35 628.26 145.73 94.78 76.80

14 2613.79 613.04 288.78 88.95 52.89 5319.97 1386.70 400.55 92.47 71.11

16 3802.75 622.98 240.98 93.66 61.32 4752.51 1023.85 19.95 99.58 98.05

18 3613.17 312.13 317.07 91.22 -1.58 3108.78 994.65 415.17 86.65 58.26

20 4172.77 615.93 138.41 96.68 77.53 4102.68 2193.45 379.71 90.74 82.69

The symbol bold’ indicates the best improvement rate and the worst improvement rate.
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Table 10: Comparison standard deviation between the INEH-VNS algorithm, the G-VNS algorithm, and the SA algorithm when n = 25
and n = 30.

Tank
25 30

STSA STG-VNS STINEH-VNS SR1(%) SR2(%) STSA STG-VNS STINEH-VNS SR1(%) SR2(%)
2 543.68 293.57 25.77 95.26 91.22 699.23 366.14 111.56 84.05 69.53

4 1760.64 506.39 25.77 98.54 94.91 2241.29 960.99 422.20 81.16 56.07

6 4451.15 831.56 113.10 97.46 86.40 3995.50 452.35 64.38 98.39 85.77

8 3077.30 989.86 43.46 98.59 95.61 5126.49 1549.31 85.86 98.33 94.46

10 3922.83 1371.23 218.17 94.44 84.09 5546.11 1147.74 306.76 94.47 73.27

12 6034.24 1100.04 305.91 94.93 72.19 5229.98 1766.38 326.26 93.76 81.53

14 7276.99 900.98 120.48 98.34 86.63 7243.47 1828.94 327.07 95.48 82.12

16 7872.45 1591.45 377.41 95.21 76.29 7659.39 1815.99 949.75 87.60 47.70

18 7401.14 712.86 369.40 95.01 48.18 10273.96 1327.83 554.84 94.60 58.21

20 6099.01 2310.39 318.55 94.78 86.21 6201.25 2110.95 399.79 93.55 81.06

Table 11: Comparison standard deviation between the INEH-VNS algorithm, the G-VNS algorithm, and the SA algorithm when n = 35
and n = 40.

Tank
35 40

STSA STG-VNS STINEH-VNS SR1(%) SR2(%) STSA STG-VNS STINEH-VNS SR1(%) SR2(%)
2 529.61 330.32 252.09 52.40 23.68 1378.74 493.97 271.28 80.32 45.08

4 1708.50 943.56 450.31 73.64 52.28 1878.89 1365.57 792.22 57.84 41.99

6 4659.21 1185.72 184.05 96.05 84.48 3779.64 2004.88 169.03 95.53 91.57

8 4679.38 1811.13 182.94 96.09 89.90 6302.77 3901.98 97.62 98.45 97.50

10 5455.54 1609.81 343.82 93.70 78.64 10878.84 1753.24 184.96 98.30 89.45

12 9451.82 1779.00 183.22 98.06 89.70 7263.92 2330.18 250.07 96.56 89.27

14 7831.62 1735.54 790.83 89.90 54.43 12433.64 4733.82 599.02 95.18 87.35

16 12810.56 2148.04 530.44 95.86 75.31 8770.79 1560.77 573.16 93.47 63.28

18 6587.30 2266.52 1267.52 80.76 44.08 11822.65 3134.82 268.54 97.73 91.43

20 7386.41 2372.08 428.91 94.19 81.92 12216.95 3018.54 901.23 92.62 70.14

Table 12: Comparison standard deviation between the INEH-VNS algorithm, the G-VNS algorithm, and the SA algorithm when n = 45
and n = 50.

Tank
45 50

STSA STG-VNS STINEH-VNS SR1(%) SR2(%) STSA STG-VNS STINEH-VNS SR1(%) SR2(%)
2 888.95 576.72 300.87 66.15 47.83 1969.96 633.32 585.14 70.30 7.61

4 4153.02 2662.17 399.54 90.38 84.99 2497.47 2121.86 587.25 76.49 72.32

6 3911.70 2237.33 353.38 90.97 84.21 8525.72 2815.48 500.19 94.13 82.23

8 2732.91 3789.85 161.71 94.08 95.73 9229.39 3257.93 141.18 98.47 95.67

10 10637.93 4163.80 41.10 99.61 99.01 6375.13 3456.54 375.50 94.11 89.14

12 8225.88 4089.40 345.49 95.80 91.55 16666.92 3580.72 291.88 98.25 91.85

14 15088.96 3974.43 59.25 99.61 98.51 18254.07 3403.23 176.78 99.03 94.81

16 10226.13 3178.66 250.23 97.55 92.13 16266.27 3395.58 414.28 97.45 87.80

18 10488.95 5661.82 311.76 97.03 94.49 22244.65 4447.87 358.74 98.39 91.93

20 10474.91 7102.92 590.66 94.36 91.68 17813.45 6935.89 1116.90 93.73 83.90
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6. Conclusions

In this article, the automatic production system scheduling
problem under just-in-time environment is investigated,
and the INEH-VNS algorithm is developed for minimizing
total earliness/tardiness time.

In the proposed algorithm, the improved NEH robotic
activity method is investigated to obtain initial solution. The
double procedure method is designed to compute the value

of the objective function. According to the property of the
current researched problem, three neighborhood structures,
adjacent exchange, random insertion, and job exchange, are
discussed for finding approximate optimal solution. Com-
pared with CPLEX 12.5, the G-VNS algorithm, and the SA
algorithm based on solving randomly generating instances,
the proposed algorithm is outstanding. Next, we will research
multiobjective automatic production system scheduling prob-
lems under just-in-time environment.
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Figure 7: Convergence of the INEH-VNS algorithm and the G-VNS algorithm.
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Appendix

Property 1. If S = tσ 0 , tσ 1 ,⋯,tσ n m+1 −2 , tσ n m+1 −1 is a
solution of the proposed problem, σ 0 = 0, σ 1 = 1,
σ n m + 1 − 2 =m − 1, and σ n m + 1 − 1 =m, σ 0
/ m + 1 + 1 = σ 1 / m + 1 + 1, σ n m + 1 − 2 / m + 1
+ 1 = σ n m + 1 − 1 / m + 1 + 1 all hold.

Proof. Because at the beginning of the period, the input
device is the full exclusion of all tanks and the output device.
The job σ 0 / m + 1 + 1 is moved to the tank T1; that is
to say, the tank T1 is occupied. According to condition (iii)
of definition 1, the other job cannot be loaded into the tank
T1. The robot stays in the tank T1. After the job σ 0 / m
+ 1 + 1 is processed completely on the tank T1, the robot
moved the job σ 0 / m + 1 + 1 from tank T1 to tank T2.
So, σ 0 / m + 1 + 1 = σ 1 / m + 1 + 1, σ 0 = 0, and
σ 1 = 1 are all true. All jobs are done, the output device
is full, and all tanks and the input device are empty. The last
two robotic activities of the solution must implement the job
σ n m + 1 − 2 from tank Tm−1 to tank Tm, and the robot
stays in the tank Tm; when the job is done on the tank Tm,
the robot moves the job σ n m + 1 − 2 from tank Tm to
tank Tm+1. That is to say, σ n m + 1 − 2 / m + 1 + 1
= σ n m + 1 − 1 / m + 1 + 1, σ n m + 1 − 2 =m − 1,
and σ n m + 1 − 1 =m all hold.

Data Availability

The data used to support the findings of this study are
included within the article.

Disclosure

The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing
of the manuscript; or in the decision to publish the results.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

L.Q. and Z.X. were responsible for the conceptualization.
H.Y. was responsible for the methodology. L.Q. was respon-
sible for the software. Z.X. and H.Y. were responsible for the
validation. Z.X. was responsible for the formal analysis. L.Q.
was responsible for the investigation. H.Y. and Y. S. were
responsible for the resources. H.Y. and Y. S. were responsible
for the data curation. L.Q. and Y. S. were responsible for the
writing—original draft preparation. Z.X. and H.Y. were
responsible for the writing—review and editing. Z.X. and
Y. S. were responsible for the visualization. Z.X. was respon-
sible for the supervision. Z.X. and L.Q. were responsible for
the project administration. Z. X and L.Q. were responsible
for the funding acquisition. All authors have read and agreed
to the published version of the manuscript.

Acknowledgments

This research was funded by the Humanities and Social
Sciences Project of the Ministry of Education of the People’s
Republic of China under Grant No. 18YJCZH26. It was also
supported by the Social Science Planning PhD Project of
Chongqing under Grant No. 2019BS072, and the Science
and Technology Research Program of Chongqing Municipal
Education Commission under Grant Nos. KJQN201901337,
KJQN202001316, and KJQN202101324.

References

[1] R. R. Fullerton and C. S. McWatters, “The production perfor-
mance benefits from JIT implementation,” Journal of Opera-
tions Management, vol. 19, no. 1, pp. 81–96, 2001.

[2] R. E. White and V. Prybutok, “The relationship between JIT
practices and type of production system,” Omega, vol. 29,
no. 2, pp. 113–124, 2001.

[3] K. R. Baker and G. D. Scudder, “Sequencing with earliness and
tardiness penalties: a review,” Operations Research, vol. 38,
no. 1, pp. 22–36, 1990.

[4] C. J. Liao and C. C. Cheng, “A variable neighborhood search
for minimizing single machine weighted earliness and tardi-
ness with common due date,” Computers & Industrial Engi-
neering, vol. 48, no. 4, pp. 404–413, 2007.

[5] P. Yan, G. Wang, A. Che, and Y. Li, “Hybrid discrete differen-
tial evolution algorithm for biobjective cyclic hoist scheduling
with reentrance,” Computers & Operations Research, vol. 76,
no. 12, pp. 155–166, 2016.

[6] A. Amraoui and M. Elhafsi, “An efficient new heuristic for the
hoist scheduling problem,” Computers & Operations Research,
vol. 67, no. 3, pp. 184–192, 2016.

[7] Q. Zhu, M. Zhou, Y. Qiao, and N. Wu, “Scheduling transient
processes for time-constrained single-arm robotic multi-
cluster tools,” IEEE Transactions on Semiconductor
Manufacturing, vol. 30, no. 3, pp. 261–269, 2017.

[8] D. Kim, H. Kim, and T. Lee, “Optimal scheduling for sequen-
tially connected cluster tools with dual-armed robots and a
single input and output module,” International Journal of Pro-
duction Research, vol. 55, no. 11, pp. 3092–3109, 2017.

[9] X. Zhao and X. Guo, “An effective chemical reaction optimiza-
tion for cyclic multi-type parts robotic cell scheduling problem
with blocking,” Journal of Intelligent & Fuzzy Systems, vol. 35,
no. 3, pp. 3567–3579, 2018.

[10] V. Kayvanfar, I. Mahdavi, and G. H. M. Komak, “A drastic
hybrid heuristic algorithm to approach to JIT policy consider-
ing controllable processing times,” International Journal of
Advanced Manufacturing Technology, vol. 69, no. 1-4,
pp. 257–267, 2013.

[11] V. Kayvanfar, G. H. M. Komaki, A. Alaei, and M. Zandieh,
“Minimizing total tardiness and earliness on unrelated parallel
machines with controllable processing times,” Computers &
Operations Research, vol. 41, no. 1, pp. 31–43, 2014.

[12] B. Alidaee, H. Li, H. Wang, and K. Womer, “Integer program-
ming formulations in sequencing with total earliness and tar-
diness penalties, arbitrary due dates, and no idle time: a
concise review and extension,” Omega, vol. 103, article
102446, 2021.

[13] B. Choi and M. Park, “Single-machine scheduling with peri-
odic due dates to minimize the total earliness and tardy

15Journal of Applied Mathematics



penalty,” Journal of Combinatorial Optimization, vol. 41, no. 4,
pp. 781–793, 2021.

[14] D. Woodruff and M. Spearman, “Sequencing and batching for
two classes of jobs with deadlines and setups,” Production and
Operations Management, vol. 1, no. 1, pp. 87–102, 1992.

[15] B. J. Coleman, “Technical note: a simple model for Optimizing
the single machine early/tardy problem with sequence-
dependent setups,” Production and Operations Management,
vol. 1, no. 2, pp. 225–228, 1992.

[16] Y. W. Chen, Y. Z. Lu, M. Ge, G. K. Yang, and C. C. Pan,
“Development of hybrid evolutionary algorithms for produc-
tion scheduling of hot strip mill,” Computers & Operations
Research., vol. 39, no. 2, pp. 339–349, 2012.

[17] K. Kianfar and G. Moslehi, “A branch-and-bound algorithm
for single machine scheduling with quadratic earliness and tar-
diness penalties,” Computers & Operations Research, vol. 39,
no. 12, pp. 2978–2990, 2012.

[18] M. Vila and J. Pereira, “Exact and heuristic procedures for sin-
gle machine scheduling with quadratic earliness and tardiness
penalties,” Computers & Operations Research., vol. 40, no. 7,
pp. 1819–1828, 2013.

[19] S. Muştu and T. Eren, “Minimization of the total weighted tar-
diness on a single machine scheduling problem with a position
based learning effect and unequal release dates,” INFOR: Infor-
mation Systems and Operational Research, vol. 59, no. 2,
pp. 353–376, 2021.

[20] G. Mosheiov, D. Oron, and D. Shabtay, “Minimizing total late
work on a single machine with generalized due-dates,” Euro-
pean Journal of Operational Research, vol. 293, no. 3,
pp. 837–846, 2021.

[21] M. Gilenson and D. Shabtay, “Multi-scenario scheduling to
maximise the weighted number of just-in-time jobs,” Journal
of the Operational Research Society, vol. 72, no. 8, pp. 1762–
1779, 2021.

[22] J. Wang, B. Cui, P. Ji, and W. W. Liu, “Research on single-
machine scheduling with position-dependent weights and
past-sequence-dependent delivery times,” Journal of Combi-
natorial Optimization, vol. 41, no. 2, pp. 290–303, 2021.

[23] C. F. Liaw, “A branch-and-bound algorithm for the single
machine earliness and tardiness scheduling problem,” Com-
puters & Operations Research, vol. 26, no. 7, pp. 679–693, 1999.

[24] X. Geng, J. Wang, and D. Bai, “Common due date assignment
scheduling for a no-wait flowshop with convex resource allo-
cation and learning effect,” Engineering Optimization, vol. 51,
no. 8, pp. 1301–1323, 2019.

[25] H. Shi and J. Wang, “Research on common due window
assignment flowshop scheduling with learning effect and
resource allocation,” Engineering Optimization, vol. 52, no. 4,
pp. 669–686, 2020.

[26] X. Sun, X. Geng, J. Wang, and F. Liu, “Convex resource alloca-
tion scheduling in the no-wait flowshop with common flow
allowance and learning effect,” International Journal of Pro-
duction Research, vol. 57, no. 6, pp. 1873–1891, 2019.

[27] S. Zhao, “Resource allocation flowshop scheduling with learn-
ing effect and slack due window assignment,” Journal of Indus-
trial and Management Optimization, vol. 17, no. 5, pp. 2817–
2835, 2021.

[28] D. Lv and J. Wang, “Study on resource-dependent no-wait
flow shop scheduling with different due-window assignment
and learning effects,” Asia-Pacific Journal of Operational
Research, vol. 38, no. 6, pp. 145–154, 2021.

[29] B. Mor and G. Mosheiov, “Minmax due-date assignment on a
two-machine flowshop,” Annals of Operations Research,
vol. 305, no. 1-2, pp. 191–209, 2021.

[30] C. Jiang, D. Zou, D. Bai, and J. B. Wang, “Proportionate flow-
shop scheduling with position dependent weights,” Engineer-
ing Optimization, vol. 52, no. 1, pp. 37–52, 2020.

[31] D. Lv and J. Wang, “Study on proportionate flowshop schedul-
ing with due-date assignment and position-dependent
weights,” Optimization Letters, vol. 15, no. 6, pp. 2311–2319,
2021.

[32] J. Koulamas Christos and K. George, “Flow shop scheduling
with two distinct job due dates,” Computers & Industrial Engi-
neering, vol. 163, p. 107835, 2022.

[33] X. Zhao and X. Guo, “Branch and bound algorithm for solving
hybrid flow shop robotic cells scheduling problem with block-
ing,” Journal of Computer Applications, vol. 35, no. 3,
pp. 3516–3529, 2018.

[34] X.Wu, Q. Yuan, and L.Wang, “Multiobjective differential evo-
lution algorithm for solving robotic cell scheduling problem
with batch-processing machines,” IEEE Transactions on Auto-
mation Science and Engineering, vol. 18, no. 2, pp. 757–775,
2021.

[35] A. Majumder, D. Laha, and P. N. Suganthan, “Bacterial forag-
ing optimization algorithm in robotic cells with sequence-
dependent setup times,” Knowledge-Based Systems, vol. 172,
no. 1, pp. 104–122, 2019.

[36] A. Elmi, A. Nazari, and D. Thiruvady, “Cyclic flow shop
robotic cell scheduling problem with multiple part types,”
IEEE Transactions on Engineering Management, vol. 69,
no. 6, pp. 3240–3252, 2020.

[37] H. Wang, Z. Guan, C. Zhang, L. Yue, D. Luo, and S. Ullah,
“The printed-circuit-board electroplating parallel-tank sched-
uling with hoist and group constraints using a hybrid guided
tabu search algorithm,” IEEE Access, vol. 7, pp. 61363–61377,
2019.

[38] N. Mladenović and P. Hansen, “Variable neighborhood
search,” Computers & Operations Research, vol. 24, no. 11,
pp. 1097–1100, 1997.

[39] Y. Xu, S. Wandelt, and X. Sun, “Airline integrated robust
scheduling with a variable neighborhood search based heuris-
tic,” Transportation Research: Part B, vol. 149, pp. 181–203,
2021.

[40] M. Kong, J. Xu, T. Zhang, S. Lu, C. Fang, and N. Mladenovic,
“Energy-efficient rescheduling with time-of-use energy cost:
application of variable neighborhood search algorithm,”
Computers & Industrial Engineering, vol. 156, article
107286, 2021.

[41] J. Wahiba, M. Eddaly, and J. Bassem, “Variable neighborhood
search algorithms for the permutation flowshop scheduling
problem with the preventive maintenance,” Operational
Research, vol. 21, no. 4, pp. 2525–2542, 2021.

[42] A. Anokić, Z. Stanimirović, T. Davidović, and Đ. Stakić, “Var-
iable neighborhood search based approaches to a vehicle
scheduling problem in agriculture,” International Transac-
tions in Operational Research, vol. 27, no. 1, pp. 26–56, 2020.

[43] C. Koulamas, “The total tardiness problem: review and exten-
sions,” Operations Research, vol. 42, no. 6, pp. 1025–1041,
1994.

[44] M. Nawaz, E. Enscore, and I. Ham, “A heuristic algorithm for
the m -machine, n -job flow-shop sequencing problem,”
Omega, vol. 11, no. 1, pp. 91–95, 1983.

16 Journal of Applied Mathematics



[45] C. Potts and L. VanWassenhove, “A decomposition algorithm
for the single machine total tardiness problem,” Operations
Research Letters, vol. 1, no. 5, pp. 177–181, 1982.

[46] E. Taillard, “Benchmarks for basic scheduling problems,”
European Journal of Operational Research, vol. 64, no. 2,
pp. 278–285, 1993.

[47] D. Ronconi and L. Henriques, “Some heuristic algorithms for
total tardiness minimization in a flowshop with blocking,”
Omega, vol. 37, no. 2, pp. 272–281, 2009.

[48] H. Kamoun, N. Hall, and C. Sriskandarajah, “Scheduling in
robotic cells: heuristics and cell design,” Operational Research,
vol. 47, no. 6, pp. 821–835, 1999.

17Journal of Applied Mathematics


	INEH-VNS Algorithm Solved Automatic Production System Scheduling Problem under Just-in-Time Environment
	1. Introduction
	2. Literature Review
	3. Problem Description
	4. INEH-VNS
	4.1. INEH
	4.2. Double Procedure Method
	4.3. Neighborhood Structure
	4.3.1. Adjacent Exchange
	4.3.2. Random Insertion
	4.3.3. Job Exchange


	5. Computational Result
	5.1. Comparison Approximate Optimal Solution
	5.2. Stability Comparison
	5.3. Convergence

	6. Conclusions
	Appendix
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



